

The STaTe of

Multicore has gone mainstream —
but are developers ready?

Parallel Programming

Sponsored by

An Exclusive Research Report P arallel computing is the primary way that processor
manufacturers are dealing with the physical limits
of transistor-based processor technology. Multiple

processors — or cores — are joined together on a single inte-
grated circuit to provide increased performance and better
energy efficiency than using a single processor. Multicore
technology is now standard in desktop and laptop computers.
Mobile computing devices like smartphones and tablets are
also incorporating multicore processors into their designs.
 The problem with multicore computing is that
software applications no longer automatically benefit from
improvements in processor performance the way they did
in the past. Those benefits can only be realized by writing
applications that expect and take advantage of parallelism.

The proliferation of multicore processors means
that software developers must incorporate
parallelism into their programming in order
to achieve increased application performance.
But many programmers are ill-equipped for
parallel programming, lacking the requisite
training and often relying on primitive devel-
opment tools. The research shows that better
and simpler tools and libraries are needed to
help programmers parallelize their code and
to debug the complex concurrency bugs that
parallelism exposes.

The Parallel Programming
Landscape

melhem
Highlight

melhem
Highlight

In 2006, Saman Amarasinghe, now a computer science
professor at MIT, described this as a “looming software
crisis”1 for software developers who write code on platforms
that abstract away processor architecture and who therefore
don’t know how to benefit from parallelism. Fast forward
to late 2011, when multicore processors are the norm. Have
software developers been able to overcome this “crisis” and
incorporate parallelism in their programming? Are the
programming tools they use a help or a hindrance? What
tools and techniques do programmers need to achieve full
performance and correctness on multicore architectures?

UBM TechWeb surveyed Dr. Dobb’s readers in October,
2011, to determine how much experience software develop-
ers have with parallel programming and what challenges
they face in developing software that exploits multicore
architectures. What follows is a summary of the state of
parallel programming in 2012 based on the survey results
and the latest academic research.

The Parallel Programming Landscape
Crisis or not, awareness about parallel programming is high
in the developer community. 81 percent of the developers
surveyed report having at least some parallel programming
experience. (See Figure 1.) Not only that, but 82 percent
of developers now consider parallel programming to be

important or even critical for the proper functioning of the
software they develop. (See Figure 2.) Increased applica-
tion performance was cited by 90 percent of the managers
surveyed as the primary motivation for optimizing applica-
tions for parallelism. (See Figure 3.)

The fundamental challenge with multicore architectures
is that application performance does not automatically
scale to the number of processors. Applications written in
a serial (sequential) manner cannot take full advantage of

The State of Parallel Programming

2

figure 3. What was the primary reason for
conversion?

7%
3%

90% Improved performance

Other benefit (please specify)

Customer
requirement/perception

Base: 59 directors or managers of development teams who are converting serial
 applications to parallel code
Data:

UBM TechWeb Survey of 275 software engineers or managers of development
teams, October 2011

1. Saman Amarasinghe, “The Looming Software Crisis due to the Multicore Menace,” presentation at http://groups.csail.mit.edu/commit/papers/2006/MulticoreMenace.pdf, 2006.

10% 26%

56%

8%

Important but not critical –
our software would still
work, but not as well

Not important – our
software would not

benefit from parallelism

Not sure

Critical – our software would not
work without parallelism

Base: 197 Software engineers/developers
Data:

UBM TechWeb Survey of 275 software engineers or managers of development
teams, October 2011

Figure 2. how important is parallel programming to
your work?

Methodology:

UBM TechWeb conducted a survey on parallel programming for Intel in September and October 2011. The
online survey collected data from a total of 275 software engineers or those who manage development
teams, nearly all of whom use C/C++ as their primary development language. Results in this paper are
based on these 275 qualified respondents unless otherwise noted. The greatest possible margin of error
for the total respondent base (N=275) is +/-5.8 percentage points. UBM TechWeb was responsible for all
programming and data analysis. These procedures were carried out in strict accordance with standard
market research practices.

figure 1. how much parallel programming experi-
ence do you have?

melhem
Highlight

multiple cores without some rewriting. Even multithreaded
applications may suffer – concurrency problems that arise
when multithreaded code is run simultaneously on separate
cores may also negate any perceived performance benefit,
or may lead to incorrect behavior and results.

In the academic literature, much of the current research on
parallel programming focuses on creating new programming
languages with explicit support for parallel constructs or on
adapting existing languages with new extensions and librar-
ies. According to Microsoft researcher Sebastian Burckhardt:

On multicores, we need programming languages to rise
to an abstraction level where correctness issues (such
as atomicity violations, data races, and deadlocks) and
performance concerns (such as scheduling) are no lon-
ger nasty surprises, but become transparent properties
of a program … Once we find the right abstractions,
they can provide tremendous value, whether they be
delivered as libraries, language extensions, or domain-
specific languages.2

In practice, however, software developers are most inter-
ested in libraries and language extensions, not learning a
new language. All but four of the survey respondents use
C/C++ as their primary programming language, and the
remaining four use Fortran.

It’s interesting to note that parallelism is now used in all
types of software. The developers surveyed work on a wide
variety of software applications (see Figure 4), including
embedded and real-time applications. Ignoring parallel pro-
gramming issues simply isn’t possible anymore. As research-
ers Mario Leyton and Jose M. Piquer put it:

The danger is that parallel programming, which has
up to now been reserved for an elite of program-
mers, will be mandatory for all types of programmers
world-wide, along with its complexities and pitfalls.3

Clearly, the survey shows that software developers are
incorporating parallelism in their software, but most of those
developers would not consider themselves part of the “elite.”
Computer science professor Ami Marowka further explains
the problems that software developers face in using parallelism:

Currently, the responsibility to bridge the gap
between software and hardware to write better par-
allel programs may ultimately lie with developers.
Many programmers are not up to speed on the latest
developments in hardware design. They should study
chip architectures to understand how their code can
perform better. This is not a desirable situation.4

One way to fix this situation is to educate software devel-
opers about parallelism, which is now happening. Parallel
programming courses are now being offered at the under-
graduate level by various colleges and universities. Online
sites like Dr. Dobb’s Go Parallel offer practical continuing
education for software developers. New books about parallel
programming are also being published.

Education is not enough, however – good programming
tools are also needed.

Use of Parallel Programming Tools
Marowka believes that more and better parallel program-
ming tools are needed to help software developers:

The lack of multicore programming tools for main-
stream developers is perhaps the biggest challenge the
industry faces today. ... Parallel programming should
be as simple and productive as sequential program-
ming.5

Pedro Fonseca, a researcher in Germany who studies
parallel programming issues, agrees with this sentiment:

“Many programmers are not prepared to deal with

The State of Parallel Programming

3

2. Sebastian Burckhardt, “Multicore, Manycore, and Cloud Computing: Is a New Programming Language Paradigm Required?” panel discussion reprinted in SPLASH ’11 Companion, October 2011.
3. Mario Leyton and Jose M. Piquer, “Skandium: Multi-core Programming with Algorithmic Skeletons”, 18th Euromicro ii. Conference on Parallel, Distributed and Networked-Based Processing, 2010.
4. Ami Marowka, “A Study of the Usability of Multicore Threading Tools”, International Journal of Software Engineering and Its Applications, July 2010.
5. Ibid.

Graphics and visualization

15%

Trading and financial analysis
6%

Medical and biotech
3%

9%

Communications and networking

Embedded and real-time systems
14%

Automation and robotics
8%

Military
4%

Simulation
6%

System and development tools
7%

4%
Database and middleware

Speech and audio processing
3%

General data analysis
9%

Base: 163 Software engineers/developers
Data: UBM TechWeb Survey of 275 software engineers or managers of

development teams, October 2011

figure 4. What kind of software do you develop?

melhem
Highlight

melhem
Highlight

parallelism, i.e., reasoning about parallel programs
requires thinking in a very different way. Dealing cor-
rectly with parallelism requires training and practice,
but having good tools and knowing how to use them
can make a huge difference.”

There are actually many types of parallel programming tools
available today, both commercial and open source, including:
• Parallelizing compilers that generate parallel code either

automatically (by analyzing the source code) or using
embedded programmer directives

• Parallel-optimized libraries
• Memory checking and profiling tools
• Data race detectors
• Thread interleaving and replay tools

Many survey respondents indicated that they already use
one or more of these kinds of tools in their programming,
particularly for debugging purposes. For example, 72 percent
of respondents use memory checking tools (see Figure 5)

and performance tuning tools (see Figure 6) – not surprising
given their long history with serial software development.

But far fewer developers use the other types of parallel pro-
gramming tools. In fact, a significant number of developers
– at least 25 percent for each type of tool surveyed, includ-
ing memory and performance tuning tools – do not use any
software tool at all. Significantly, 66 percent of the developers
surveyed do not use any concurrency tool. (See Figure 7.) This
is no surprise to Fonseca:

“My perception is that currently developers in general
rely mostly on an hoc methods, including simple code
inspection, to debug concurrency bugs.”

When asked how they find software defects, many
respondents agreed with this perception, stating that they

use a combination of manual debugging and primitive
techniques such as print statements and log analysis to find
and fix software bugs.

According to Fonseca, the reasons for this resistance are
unclear:

“In part, this may be caused by the fact that some of
these tools are not as mature as they could be. Another
reason may be that many of these don’t come with the
usual development tools or do not easily integrate with
the development environment (e.g., IDEs).”

The tools may be overly complex, according to Marowka:

Valgrind
31%

Figure 5. What tools do you use to find memory
defects? Check all that apply.

Microsoft Visual Studio Static Security Analysis
25%

IBM Rational Purify or PurifyPlus
16%

10%

Micro Focus Boundschecker

Other

21%

Don’t use a tool/Don’t know
28%

Note: Multiple responses allowed
Data: UBM TechWeb Survey of 275 software engineers or managers of

development teams, October 2011

Intel Inspector XE

Micro Focus Boundschecker

Helgrind

Don’t use a tool

Don’t know

Other

11%

9%

6%

66%

8%

8%

Note: Multiple responses allowed
Data: UBM TechWeb Survey of 275 software engineers or managers of development

teams, October 2011

Figure 7. What tools do you use to find thread-
ing defects?

Visual Studio 2010
30%

Figure 6. What type of performance tuning tools do you use?

GProf
26%

IBM Rational PurifyPlus
14%

14%

Intel® VTune Amplifier XE

OProfile
8%

AMD Code Analyst
7%

Micro Focus DevPartner
6%

Zoom
2%
Accumem

1%
Other

12%

28%
Don’t use a tool/Don’t know

Note: Multiple responses allowed
Data: UBM TechWeb Survey of 275 software engineers or managers of development

teams, October 2011

The State of Parallel Programming

4

melhem
Highlight

melhem
Highlight

The programmer that is using these tools must have
the appropriate skills and knowledge. It is impossible
to find and resolve deadlocks and data-races without
understanding these issues from the theoretical and
practical points of view. The user must be an expert
in parallel computing and programming.6

Cost is likely also a limiting factor, at least for commer-
cial tools, with individual tools often costing hundreds or
thousands of dollars per developer.

Whether or not they currently use tools for parallel program-
ming, respondents clearly identified a desire for one family of
tools: those that would guide them in parallelizing their code.

The Need for Better Parallelization Tools
When asked to rank the parallel programming tool features
that would be the most beneficial, 33 percent of participants
said that “[determining] where parallelization should occur
for the maximum benefit” is the most important, while 21
percent said that “[avoiding] incorrect use of parallelization”
is the most important. (See Figure 8.)

In other words, more than half the respondents are inter-
ested in tools that would guide them and help them paral-
lelize their code. “It is hard to create good code without
the tools to help you identify where things can go wrong
and give you advice on how to correct it,” said one respon-
dent. Another respondent focused on the correctness issue:

“Incorrect implementation of parallel code can cause unex-
pected results and performance issues.”

Unfortunately, these kinds of tools are hard to create.
Software engineering researchers Hans Vandierendonck
and Tom Mens describe the difficulties:

Deciding whether a code excerpt can be parallelized
and guaranteeing the correctness of parallelization
are complex issues. In fact, performing this analysis
based on static code examination is exactly the same
problem that an automatic parallelizing compiler
faces in discovering parallelizable code – and it is
considered unsolvable for general code structures. As
such, alternative strategies might be required, such as
dynamic or profile-driven program analysis.7

Refactoring existing code is particularly challenging, so
the researchers recommend that parallelism be part of the
design from the start. But the reality is that many software
developers today are working on converting existing serial
code to parallel code and need help. Said one respondent:
“Our software is fairly complex, and it is not readily appar-
ent where parallelizing it would help.”

Parallelization tools may not be easy to write, but software
developers still need them, and tool vendors should con-
tinue to improve them and integrate them more often into
existing development environments – anything that makes
parallelization simpler will benefit a large cross-section of
the developer community.

Note that while survey participants clearly expressed a
desire for more and better tools to help them parallelize
their code, tools to help debug the threading and concur-
rency problems arising from parallelization did not receive
the same prioritization, although some academics argue
these tools are extremely important.

Dealing with Concurrency Problems
Concurrency problems in multithreaded code, parallel or
not, have been well documented. Consider the results of an
internal survey of Microsoft software developers in 2007,
which occurred while single-core machines were still in
widespread use:

… about 66 percent of our respondents deal with
concurrency issues in one form or another.... Most
respondents said that they find the majority of concur-
rency bugs during system/integration, performance
and ad hoc testing.8

Concurrency problems in parallel environments are in
fact potentially worse than in non-parallel environments

Unsure or multiple reasons

4%

Figure 8. Why will the specified features for parallel
programming tools provide you the most benefit?

Find defects earlier in the development cycle

2%

Accurately measure performance improvements

9%
Lack of experience with parallel programming

9%

Need thread-safe libraries
7%

Avoid incorrect use of parallelization

21%

Need help finding defects

8%

Determine where parallelization should occur for the maximum benefit
33%

Develop applications more quickly
4%

Note: Multiple responses allowed
Data: UBM TechWeb Survey of 275 software engineers or managers of

development teams, October 2011

Memory defects are hard to find
3%

The State of Parallel Programming

5

6. Ibid.
7. Hans Vandierendonck and Tom Mens, “Averting the Next Software Crisis,” IEEE Computer, April 2011.
8. Patrice Godefroid and Nachiappan Nagappan, “Concurrency at Microsoft – An Exploratory Survey,” Microsoft Research, 2008.

The State of Parallel Programming

6

because parallel threads of execution run simultaneously.
This may expose cross-thread interactions that do not occur
in a single-processor environment where only one thread is
actually running at any given time.

A 2010 study of concurrency bugs by Fonseca and others
found that there was a class of concurrency bugs that was of
particular concern, the latent concurrency bug that leads to
an application crash long after the bug occurs:

Latent concurrency bugs, when triggered, do not
become immediately visible to users. Instead, these
concurrency bugs first silently corrupt internal data
structures, and only potentially much later cause
an application failure to become externally visible.9

These types of bugs are particularly hard to find because
their effects are not immediately apparent.

Approximately 15 percent of the concurrency bugs in
the study were latent concurrency bugs, a number that the
researchers found surprising:

The fraction is large enough that we believe there is
value in developing tools that try to recover the internal
state of the concurrent application. Performing such a
recovery could prevent concurrency bugs from affecting
the correct behavior of the application, even after the
concurrent requests that cause the error have already
been executed and the application state is corrupt.10

The effects of latent concurrency bugs are perhaps even
greater than these numbers suggest, actually. Defects exist
that cause applications to fail in ways other than crashing,
such as by generating incorrect results. These “Byzantine”
bugs are often worse than having the application crash:
“Wrong answers are wrong – no matter how fast the com-
puter runs,” as one respondent wrote. The researchers found
a strong correlation between Byzantine bugs and latent

concurrency bugs. In other words, subtle data corruption
bugs due to concurrency problems could later cause incor-
rect application behavior, not just crashes.

Developers may not be spending enough time finding and
fixing concurrency bugs. More than half of those surveyed
spend six hours or more per month performance tuning
their applications (see Figure 9), but only 32 percent of them
spend that much time finding data race or deadlock bugs.
(See Figure 10.) But many concurrency bugs masquerade
as memory defects, so developers may actually be spending
more time than they think dealing with concurrency issues.

As more sequential code is converted to parallel code,
expect the time spent on finding and fixing concurrency
bugs to increase, particularly latent bugs. As a result, expect
tool vendors to come out with new tools for debugging
concurrency problems.

Unlocking the Parallel advantage
Now that multicore processors are mainstream technol-
ogy, a majority of software developers are trying to work
parallelism into their code in order to boost application
performance. Parallel programming is no longer an area of
research confined to university laboratories or supercom-
puter installations, but something that average program-
mers use in their day-to-day software development, whether
or not they feel qualified to do so.

Because parallel programming is complex and error-prone,
software developers need good development tools to help
them parallelize their code and to find and fix the inevitable
bugs, particularly concurrency bugs. Tools already exist, but
they are often complex and unintegrated with other tools.
Going forward, tool vendors need to create simpler tools
that guide developers in their programming and that make
it easier to find and fix bugs in parallel code. It’s those tools
that will truly allow developers to unlock the performance
advantage inherent in multicore programming. ■

9. Pedro Fonseca, Cheng Li, Vishal Singhal and Rodrigo Rodrigues, “A Study of the Internal and External Effects of Concurrency Bugs,” 2010 IEEE/IFIP International Conference on Dependable
Systems and Networks, August 2010.

10. Ibid.

Don’t know

11 to 20 hours

More than 20
hours

5 hours or less

6 to 10 hours

31%

26%

13%

10%

20%

Data: UBM TechWeb Survey of 275 software engineers or managers of
development teams, October 2011

figure 9. how much time do you spend in a month to
performance tune your application?

figure 10. how much time do you spend in a month
to find a data race or deadlock condition?

Don’t know

6 to 10 hours

More than 20
hours

5 hours or less

11 to 20 hours

56%

9%

5%

18%

Data: UBM TechWeb Survey of 275 software engineers or managers of
development teams, October 2011

12%

