
NOVA: A Functional Language for Data Parallelism

Alexander Collins
University of Edinburgh

a.collins@ed.ac.uk

Dominik Grewe
University of Edinburgh

dominik.grewe@ed.ac.uk

Vinod Grover
NVIDIA Corporation
vgrover@nvidia.com

Sean Lee
NVIDIA Corporation
selee@nvidia.com

Adriana Susnea
NVIDIA Corporation

adriana@alumni.princeton.edu

Abstract
Functional languages provide a solid foundation on which complex
optimization passes can be designed to exploit parallelism available
in the underlying system. Their mathematical foundations enable
high-level optimizations that would be impossible in traditional im-
perative languages. This makes them uniquely suited for generation
of efficient target code for parallel systems, such as multiple Central
Processing Units (CPUs) or highly data-parallel Graphics Process-
ing Units (GPUs). Such systems are becoming the mainstream for
scientific and commodity desktop computing.

Writing performance portable code for such systems using low-
level languages requires significant effort from a human expert.
This paper presents NOVA, a functional language and compiler for
multi-core CPUs and GPUs. The NOVA language is a polymorphic,
statically-typed functional language with a suite of higher-order
functions which are used to express parallelism. These include
map, reduce and scan. The NOVA compiler is a light-weight, yet
powerful, optimizing compiler. It generates code for a variety of
target platforms that achieve performance comparable to competing
languages and tools, including hand-optimized code. The NOVA
compiler is stand-alone and can be easily used as a target for
higher-level or domain specific languages or embedded in other
applications.

We evaluate NOVA against two competing approaches: the
Thrust library and hand-written CUDA C. NOVA achieves com-
parable performance to these approaches across a range of bench-
marks. NOVA-generated code also scales linearly with the number
of processor cores across all compute-bound benchmarks.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming

General Terms Languages, Performance

Keywords Functional programming, Compilation, Code genera-
tion, Array-oriented programming, CUDA, Multi-core CPU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ARRAY’14 June 11 2014, Edinburgh, United Kingdom
Copyright © 2014 ACM Copyright is held by the owner/author(s).
Publication rights licensed to ACM. ACM 978-1-4503-2937-8/14/06
http://dx.doi.org/10.1145/2627373.2627375. . . $15.00

1. Introduction
Although a number of programming systems have emerged to make
parallel programming more accessible on multi-core CPUs and
programmable GPUs for the last several years, many of them — in-
cluding Threading Building Block (TBB) [3], CUDA [4], and Open
Compute Language (OpenCL) [2] — are targeted towards C/C++
programmers who are familiar with the intricacies of the underlying
parallel hardware. They provide low-level control of the hardware,
with which C/C++ programmers can fine-tune their applications to
enhance the performance significantly, by sacrificing high-level ab-
straction. Whilst the level of abstraction they provide gives much
flexibility to the C/C++ programmers, it also has been an obstacle
for others to adopt these low-level programming systems.

To broaden the application of parallel programming, there have
been various attempts to provide programming systems with high-
level abstraction and performance gains comparable to what the
aforementioned low-level systems offer [1, 10–12, 15, 20]. This
paper presents NOVA, a new functional language for parallel pro-
gramming that shares the same goal as these systems. NOVA al-
lows the user to express parallelism using high-level parallel prim-
itives including map, reduce and scan. The NOVA compiler gener-
ates multi-threaded C code for CPUs or CUDA C code for NVIDIA
GPUs. The generated code achieves performance comparable to
similar approaches and hand-written code.

While NOVA can be used on its own, it can also be used as
an intermediate language (IL) for other languages such as domain
specific languages (DSLs). The NOVA compiler can be extended
with additional front-ends for DSLs. This allows them to exploit
the optimizations and multiple back-ends present in the compiler.
Moreover, the compiler can be extended with additional back-ends.
There are currently three back-ends (sequential C, parallel C and
CUDA C). By allowing extension of both the front and back-ends,
NOVA can be integrated within existing tools.

The main contributions of this paper are:

• The NOVA language: a high-level functional programming lan-
guage for parallel computation. It includes support for nested
parallelism, recursion and type polymorphism.

• The NOVA compiler: which produces efficient, scalable and
performance portable target code from the NOVA language.
It achieves performance comparable to existing state-of-the-art
low-level tools and hand written parallel code.

8

2. Motivation
Consider implementing an algorithm that computes the tight
bounding box of a set of two-dimensional points. Implementing
this by hand for both multi-core CPU and GPU would require two
distinct versions of the program. For example, one would be im-
plemented in C++ and the other in CUDA C [4]. An alternative
would be to use Thrust [6], which provides parallel abstractions for
both CPU and GPU using CUDA C. The bounding box example
from the Thrust example distribution1 achieves this with 86 lines
of code.

However, we can implement this algorithm far more succinctly
using a functional programming language. Using NOVA, we can
implement this in 32 lines of code, compared to the 86 lines re-
quired by Thrust. NOVA completely removes the need for low-level
boiler plate code, such as device management and host to device
memory transfers which are required when using CUDA C. NOVA
also removes the need for platform specific optimizations. These
are often required to achieve best performance in hand-written C++
and CUDA C, and Thrust.

On a NVIDIA GeForce GTX4802, the NOVA version of bound-
ing box achieves a speedup in execution time of 1.07⇥ over the
Thrust version.

This performance improvement is due to the high-level opti-
mizations that are enabled by expressing the algorithm in a func-
tional language form. For example, the map and reduce operations
can be merged into a composite mapReduce operation. This over-
laps the execution of the map and reduce operations, increasing the
utilization of the GPU and therefore improving performance.

The code is also far more maintainable. It does not require the
programmer to have an in-depth knowledge of the intricacies of the
underlying hardware. They simply choose the parallel primitives
that best suit their algorithm, and the NOVA compiler decides how
best to implement them on the given hardware.

3. The NOVA Language
NOVA is a statically-typed functional language, intended to be used
as an intermediate language, or target language, for domain specific
front-ends. Figure 1 summarises the structure of the compiler; with
multiple front-ends, and back-ends (for code generation). The de-
sign of the language is centered around vectors and data parallel
operations, rather than registers and instructions. It is also designed
to facilitate high-level language transformations such as deforesta-
tion of vector operations and closure conversion [14]. A represen-
tative set of the parallel operations provided by NOVA are listed in
Table 1.

The rest of this section is structured as follows. Section 3.1 de-
scribes the salient features of NOVA, Section 3.2 details the poly-
morphic type system and Section 3.3 shows two simple example
programs, highlighting the salient features of the language.

3.1 Language Features
NOVA includes the usual features of a functional language such as,
lambda expressions and let-expressions.

NOVA allows existing code, written in the target language (such
as C) to be used within a NOVA program. These are defined in
a foreign section at the start of the program. For example the
following makes the foreign function f available within a NOVA
program:

(f o r e i g n
(f : (i n t ! i n t))

)

1 http://thrust.googlecode.com/files/examples-1.6.zip
2 using CUDA 4.1

















Figure 1. Summary of the structure of the NOVA compiler infras-
tructure, with a common NOVA-Intermediate Representation, and
multiple front-ends and back-ends.

Operation Description

map f X1 . . .Xn Applies function f to every tuple of elements at

the same index in vectors X1 . . .Xn

reduce f i X Performs a reduction on vector X using func-

tion f and initial value i

scan f i X Performs a prefix-scan on vector X using func-

tion f and initial value i

permute I X Generates an output vector Y such that

Y [I[i]] = X[i]
gather I X Generates an output vector Y such that Y [i] =

X[I[i]]
slice b s e X Generates an output vector Y such that Y [i] =

X[b+ i.s] with a length of d(e� b)/se
filter f X Given a filter function f and a vector X, re-

turns a vectors containing only those elements

from X for which f evaluates to true

Table 1. A representative sample of NOVAs built-in parallel oper-
ations

The generated code can then be linked against a library containing
the implementation of the foreign function.

NOVA supports sum types, a form of user-defined algebraic
(or compositional) data type. This allows types to be combined to
create more complex types. For example, a Maybe data type, that
either holds a value of type int , or nil can be defined as follows:

(t y p e s
(Maybe :

(+ (Some : i n t)
(None : u n i t))))

Sum types also support recursion. This allows complex struc-
tures such as lists or trees to be defined. For example, a list of inte-
gers can be defined as follows:

(t y p e s
(I n t L i s t :

(+ (N i l : u n i t)
(Cons : (i n t , I n t L i s t)))))

However, use of NOVA’s built-in vector data types and parallel
operators is recommended over the use of, for example, a user-
defined list type, as this will achieve best performance.

3.1.1 Recursion
NOVA supports recursion through the use of µ-expressions, which
are similar to the fixed-point combinator. A µ-expression has the
form mu (x : t) e. This binds identifier x to expression mu (x : t) e
in expression e. In other words, e can refer to itself using the iden-
tifier x. On top of this very general definition, we add the constraint
that e must be a �-expression that is statically determinable. This
allows us to perform closure conversion on µ-expressions.

9

For example, consider the following recursive µ-expression:

(mu (f i b : i n t ! i n t)
(lambda (n : i n t)

(i f (< n 2) then 1
e l s e (f i b (� n 1) (� n 2)))))

The enclosing µ-expression defines the identifier fib . This identifier
is bound to the entire µ-expression. When fib is used within the
body of the µ-expression, it evaluates to this entire µ-expression.

Many functional languages use a recursive let-expression (some-
times called letrec) to implement recursion. Our µ-expressions
are equivalent:

mu (x:⌧) e ⌘ letrec (x e) in x

NOVA allows type generalization and specialization, in a simi-
lar manner to System F [13, 18].

We impose a few restrictions on the use of generalized, forall
types and type applications. Firstly, general types can only be
constructed within the types section at the start of a NOVA program.

Secondly, after type checking a program, all types must be spe-
cialized, or turned into concrete types. This is because the pro-
gramming environments that NOVA targets (including CUDA C
and parallel C) require all types to be concrete. If an expression is
discovered whose type is not specialized to a concrete type (such as
partial application of a parallel operator), the compiler complains
that it could not statically determine the concrete type of the ex-
pression.

3.2 Type Inference
The NOVA language performs Hindley-Milner type inference [17],
with some extensions to support polymorphism in the arity of some
of the built-in parallel operators.

For example, the map parallel operator can take a variable num-
ber of input vectors, which are used to compute a single output vec-
tor. Performing type inference over this variable number of input
parameters is not possible with Hindley-Milner type inference, but
it is restricted to the built-in operations. Therefore the compiler in-
cludes hand-coded rules to perform type inference for expressions
involving these operators.

3.3 Example Programs
This section presents some simple example programs in the NOVA
language, demonstrating the salient features of the language.

Computing the Length of a List This example uses a tail-
recursive algorithm to count the number of items in a polymorphic
list.

((i n p u t : (L i s t i n t)))
(t y p e s

(L i s t ' a : (+ (N i l : u n i t)
(Cons : (' a , (L i s t ' a))))))

(l e t
(l e n (mu (l e n : i n t ! (L i s t ' a) ! i n t)

(lambda (l : i n t) (xs : (L i s t ' a)) : i n t
(cas e xs

(N i l x l)
(Cons xs (l e n (+ l 1) (xs . 1)))))))

in (l e n 0 i n p u t))

Reduction on a Polymorphic Binary Tree This example demon-
strates tree reduction on a polymorphic binary tree, using a poly-
morphic reduction function with type ' a ! ' a ! ' b.

((i n p u t : (Tree i n t)))
(t y p e s

(Tree ' a : (+ (Lea f : ' a)
(Node : (' a , (Tree ' a) , (Tree ' a))))))

   



Figure 2. Nested vector example. The data vector stores all 11
elements of the nested vector. The segment vector points to the
beginning of each segment and behind the last segment.

(l e t
(red

(mu (red : (' a! ' a! ' a) ! (Tree ' a) ! ' a)
(lambda (f : ' a! ' a! ' a) (t : (Tree ' a)) : ' a

(case t
(Lea f l (l))
(Node n

(l e t
(l e f t (red f (n . 1)))
(r i g h t (red f (n . 2)))

in
(f (t . 0) (f l e f t r i g h t))))))))

in (red + i n p u t))

4. Optimizations
This section details some of the optimization passes performed by
the NOVA compiler. These passes are implemented as graph trans-
formations applied to the abstract syntax tree of a NOVA program.
Section 4.1 then details how NOVA handles nested parallelism a
vital optimization pass for performance of NOVA programs.

Fusion Each application of a higher-order function such as map
produces a new vector. To avoid unneccessary allocation of tem-
porary results, the compiler tries to fuse these functions whenever
possible. Consider this example:

(l e t (Y (map f X))
in (map g Y))

This code produces a new vector Y by applying function f to vector
X. Elements of Y are then passed to function g. Instead of creating
the temporary variable Y, the two map operations can be fused:

(l e t
(h (lambda (x : ' a) : ' b

(g (f x))))
in (map h X))

This way, we avoid the allocation of a temporary vector.
Currently, the compiler supports fusion of maps inside map,

fold and reduce. In addition, filters can be fused, too, when inside
a reduce or another filter. Fusing filters is especially important
because they are expensive operations.

4.1 Nested parallelism
NOVA supports nested vectors, i.e., vectors whose elements are
vectors. Any level of nesting is possible. Nested vectors are stored
as a flat data vector holding all data values of the vectors and one
segment vector for each level describing the shape of the vector.
See Figure 2 for an example.

To operate on nested vectors, we need nested parallelism. Con-
sider a vector X whose type is vector vector int . To add 1 to each
element of the vector, we write:

(map (map (+ 1)) X)

In other words, for all inner vectors of X, we apply map with (+ 1).
To execute this expression, we have to break up the nested vector
X into individual sub-vectors X1, . . . , Xn and then apply each of
these to map (+ 1).

10

There are several ways to execute the above expression in par-
allel. We could divide the sub-vectors equally among the available
processors and perform the inner map sequentially. However, this
can lead to load imbalance because some sub-vectors may be much
bigger than others. In a different approach we could execute the
outer map sequentially and the inner maps in parallel. This may
cause a lot of overhead though especially when the sub-vectors are
small.

To avoid these problems, the NOVA compiler can automatically
flatten the vectors [15]. Since all data values of the sub-vectors are
stored contiguously we can simply apply the map on the flattened
data without any overhead. However, the result of the map is now a
flat vector and the compiler must unflatten it using the shape of the
input vector. The above expression gets thus transformed into:

(u n f l a t t e n (map (+ 1) (f l a t t e n X)))

While nested maps are simple to deal with a reduce inside of a
map is more complex:

(map (reduce + 0) X)

Simply performing the reduction on the flattened array is wrong
because we have to take the segment boundaries into account. The
expression is thus transformed into a special node called segmented
reduction [8]. A segmented reduction works on the flattened data,
thus avoiding load imbalance, and adheres to segments, i.e., one
value is computed for each segment.

5. Code Generation
The NOVA compiler currently contains three back-ends for code
generation: sequential C, parallel (multi-threaded) C and CUDA C.
All of them are C-based which means they can be easily integrated
in other programs and frameworks.

There are some built-in functions whose use is currently re-
stricted. gather, slice , and range can only be used in conjunction
with vector functions such as map, but not on its own. This is be-
cause the return value of these functions is never computed as such.
It is only used to change the index computation when accessing
vector elements. For example,

(map f (gather I X))

results in (pseudo code):

for i in 0 .. N
x = X[I[i]]
...

Slice and range are handled similarly.
The next sections describe how higher-level built-in functions

are handled in the different code generators.

5.1 Sequential C code generation
When generating sequential C code, all higher-level built-in func-
tions are mapped to loops. A reduction (reduce f i X), for example,
gets translated to

accu = i
for it in 0 .. N

accu = f(accu, X[it])

Segmented reduction is implemented as a nested loop with the outer
loop iterating over segments and the inner loop iterating over the
elements of that segment.

Tuples For every tuple type in a NOVA program, a new struct
type is declared. The components of the struct reflect the compo-
nents of the tuple. A tuple value is thus represented as an object of
the corresponding struct.

Closures Closures are represented by objects containing a pointer
to the closure function and memory to hold the values of free vari-
ables. On encountering a closure, a new closure object is created
and the values of the free variables are captured. At function appli-
cations, the function associated with the closure is called and the
closure itself and the argument are passed. Inside the function, the
captured values are unpacked from the closure object and the func-
tion body is evaluated.

Foreign functions When using foreign functions in NOVA, a cer-
tain signature is expected based on the function’s type. The return
value of the C implementation of a foreign function is always void.
The first parameter to the function is a pointer to the result variable
which is followed by the function’s parameters. The following rules
explain how NOVA types are mapped to C types: primitive values
are mapped to their C counterparts (bool is mapped to int); tuples
are represented by a corresponding struct as explained above; vec-
tors are represented by a pointer to a data array and a length (of
type int). If the vector is nested, there will be a pointer for each
nest pointing to the segment descriptors at that level. In that case,
the length of the vector is the length of the first segment descrip-
tor. Foreign functions must not have functions as parameters. The
signatures of foreign functions can be found in the header file.

Example:

(f f : v e c t o r f l o a t ! f l o a t ! v e c t o r f l o a t)

has the signature

void ff (int*, float**, float, int, float*)

If the return value of a foreign function is a vector, the function
is expected to allocate the memory for it.

5.2 Parallel C code generation
The parallel C code generator generates code to run on a multi-core
CPU using multiple threads. On encountering a parallel operation
such as map or reduce, the generated code calls a multi-core run-
time passing it information on how to process this operation. This
data contains a pointer to the function to be executed as well as
the data needed to execute the function. The runtime passes control
back to the host program when the operation has finished.

The function that corresponds to the operation is essentially a
sequential version of the operation. However, instead of processing
the entire input, it only processes a section of the input. Information
on which part of the input to process is passed together with the in-
put data. It is the runtime’s responsibility to split the work between
the CPU cores.

Some operations require individual results to be merged. When
performing a reduction, for example, each thread may compute
the result for a share of the input. In this case the runtime passes
the results back to the host program which then performs the final
reduction step sequentially.

Multi-core runtime The current implementation of the multi-
core runtime is straightforward: When a parallel operation needs
to be performed, it creates a certain number of threads. Each
thread gets assigned an equal share of the input to process.
The number of threads can be specified by the user setting the
NOVA_NUM_THREADS environment variable. If the variable is not
set, the runtime creates as many threads as there are CPU cores.

5.3 CUDA C code generation
When targeting the GPU, NOVA code gets translated to CUDA
C. Parallel operations result in CUDA kernel launches to perform
the operation. The map operation, for example, gets translated to
a kernel where each thread computes one or more elements of the

11

bb
ox do

t

no
rm

gr
id

ed

su
m

st
at

s

su
m

ro
w

s

wo
rd

co
un

t

AV
ER

AG
ESp

ee
du

p
ov

er
 T

hr
us

t

0.0x
0.2x
0.4x
0.6x
0.8x
1.0x
1.2x

NOVA Thrust

Figure 3. Speedup over Thrust.

result vector. Other operations are slightly more complex because
they require communication between threads.

There is a default maximum number of thread blocks that are
created at kernel launch as well as a default block size. These values
can be changed by the user in the generated header file. If there are
more elements to process than there are threads being launched,
each thread processes multiple elements sequentially inside the
kernel.

In NOVA, the data resides in main memory initially. When
a kernel launch is encountered, the data needed to perform the
computation is copied to the GPU’s device memory. After a kernel
has finished, the result is copied back to the host memory. Every
variable gets copied exactly once even if it is used multiple times.
Since the value of variables in NOVA cannot be changed the copies
of variables are never out-of-date.

A tree-based reduction is used for both normal and segmented
reduction [19]. The scan operation is implemented in three steps: a
partial reduction, followed by a scan on the intermediate result and
a “down-sweep” phase to compute the final result [19]. The filter
operation is also implemented as a sequence of operations. First,
we perform a map operation on the input vector using the filter
function. The resulting vector is a mask of ones and zeros indicating
for each element if it should be part of the output. A +-scan is
performed on the mask resulting in an index vector indicating the
position of each element that is part of the output. Finally, the
elements are moved from the input vector to the output vector based
on the mask and the index vector.

Foreign functions in CUDA C When generating CUDA C code
parallel operations, such as map and reduce, are performed on the
device. If a foreign function is used within such an operation, it thus
needs to be a device function (__device__ in CUDA C).

If a foreign function is used outside of parallel operations, the
compiler assumes that it is a host function, i.e., written in standard
C/C++ code. The function itself may launch kernels on the device
but the compiler has no knowledge of that. Any vector arguments
the function works on are passed as host pointers. If inside the
function they are passed to kernels, the user has to allocate the
device memory and perform the data copy.

6. Performance Evaluation
This section evaluates the performance of NOVA generated code
for both CPU and GPU systems. The experiments were run on an
8-core CPU and NVIDIA GeForce GTX480 using CUDA 4.1. We
use a suite of 10 benchmark programs, taken from the Trust source
distribution and CUDA SDK.

6.1 Comparison with Existing Languages
Figures 3 and 4 show performance results of the CUDA C code
generated by NOVA and Thrust [6], and the hand-written CUDA C
code for the benchmarks from the NVIDIA CUDA SDK. We mea-
sure the kernel-execution time only. This does not include memory

blackscholes nbody AVERAGE

Sp
ee

du
p

ov
er

 N
VI

D
IA

 C
U

DA
 S

D
K

0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

1.2x

NOVA CUDA SDK

Figure 4. Speedup over NVIDIA CUDA SDK.

de
ns

e2

m
c2

de
pi

pd
b1

H
YS

qc
d5

_4

ra
m

10

sc
irc

ui
t

sh
ip

se
c1

we
bb

as
e−

1M

AV
ER

AG
E

Sp
ee

du
p

ov
er

 C
U

SP

2.8x 4.0x

0.0x

0.5x

1.0x

1.5x

2.0x

NOVA CUSP

Figure 5. Speedup over CUSP sparse matrix-vector multiplication
benchmark for a range of input matrices.

transfers and other CUDA device initialization. This allows direct
comparison of the quality of the CUDA C code generated by each
approach, which would otherwise be skewed by memory transfer
times.

In Figure 3, we compare the performance of NOVA to that of
Thrust on 7 benchmarks. Both NOVA and Thrust achieve similar
performance. The performance results for NOVA and Thrust are
within 10% of each other.

Figure 4 compares the performance of NOVA to hand-written
CUDA C code from the NVIDIA CUDA SDK. On both bench-
marks, the performance of the NOVA code is within 4% of the
hand-written code. Again, the two approaches achieve similar per-
formance.

Figure 5 shows the performance of the SpMV benchmark across
a range of different input matrices. The matrix format used is
ELL [16]. The performance of the NOVA generated code is com-
pared against CUSP [5], a library of carefully-tuned sparse ma-
trix algorithms. The NOVA-generated CUDA C codes significantly
outperform the CUSP generated code on all but three of the bench-
marks (mc2depi, scircuit and webbase-1M). On average, over all of
the benchmarks, NOVA achieves a speedup of 1.5⇥ over the CUSP
implementations.

6.2 Performance on multi-core CPUs
Figure 6 shows the speedup of the parallel C++ code over the
sequential version. The experiments are run on an 8-core Intel i7
CPU and the number of threads is varied from 1 to 8.

Most applications demonstrate good scaling behavior. The per-
formance roughly scales linearly with the number of threads. How-
ever, for nbody and box3x3 benchmarks, the performance only im-
proves marginally when using more than 4 threads. These appli-

12

bb
ox do

t

no
rm

gr
id

re
d

su
m

st
at

s

su
m

ro
w

s

wo
rd

co
un

t

bl
ac

ks
ch

ol
es

nb
od

y

re
m

_p
oi

nt
s

bo
x3

x3

ra
di

x_
so

rt

AV
ER

AG
E

Sp
ee

du
p

ov
er

 s
eq

ue
nt

ia
l e

xe
cu

tio
n

0x

1x

2x

3x

4x

5x

6x

1 thread 2 threads 4 threads 8 threads

Figure 6. Speedup over sequential execution on 8-core CPU.

cations are memory-bound, thus adding more compute resources
does not improve performance significantly. Their performance is
bounded by the memory bandwidth of the system which does not
scale linearly with the number of cores used.

7. Related Work
The closest work to our own is on generating parallel target code
from functional languages. Data Parallel Haskell [15] (DPH) al-
lows programmers to express nested parallelism [9] in Haskell.
Nested parallelism is particularly useful for irregular computation
and recursive parallelism. An important optimization is ‘vector-
ization’ which flattens nested computations to better load balance
work across multiple processors. Our approach, described in Sec-
tion 4.1, extends this by allowing nested parallelism on GPUs as
well as multi-core CPUs. However, we do not support recursive
nesting. In contrast to DPH, which adds parallelism for CPUs to
Haskell, Accelerate [11] adds GPU support to Haskell. Accelerate
uses array-based operations such as zipWith and fold to map
data parallelism to GPUs. It does not support nested arrays. Copper-
head [10] is a language for GPU computing embedded in Python.
Similarly to Accelerate and NOVA, it uses array-based operations
such as map and scan. Copperhead supports nested parallelism
but unlike DPH the computation is not flattened. Instead the differ-
ent levels are mapped to the hierarchy of the GPU, including thread
blocks and threads. There also have been efforts to compile Nesl to
CUDA for GPUs [7, 21].

8. Conclusions and Future Work
This paper has presented NOVA, a functional language and com-
piler for parallel computing. NOVA allows users to write parallel
programs using a high-level abstraction. This makes the code con-
cise and maintainable, but also performance portable across a vari-
ety of processors.

NOVA provides support for integrating existing code into
NOVA programs through the use of foreign functions. However,
foreign functions are assumed to be side effect free. We are ex-
tending NOVA with support for monads to allow side effects to be
handled in a safe manner. We are also experimenting with the use
of NOVA as an intermediate language.

References
[1] The OpenACC application programming interface, 2011.

URL http://www.openacc.org/sites/default/
files/OpenACC.1.0_0.pdf. Version 1.0.

[2] The OpenCL specification version 1.2, 2011. URL
http://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf.

[3] Intel Threading Building Blocks reference manual, 2011. URL
http://software.intel.com/sites/products/
documentation/hpc/tbb/referencev2.pdf.

[4] CUDA C programming guide version 4.1, 2012. URL
http://developer.download.nvidia.com/compute/
DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf.

[5] N. Bell and M. Garland. Cusp: Generic parallel algorithms for sparse
matrix and graph computations, 2012. Version 0.3.0.

[6] N. Bell and J. Hoberock. Thrust: A productivity-orientied library for
CUDA. In GPU Computing Gems: Jade Edition. 2011.

[7] L. Bergstrom and J. Reppy. Nested data-parallelism on the gpu. In
ICFP, 2012.

[8] G. E. Blelloch. Prefix sums and their applications. Technical Re-
port CMU-CS-90-190, School of Computer Science, Carnegie Mellon
University, 1990.

[9] G. E. Blelloch, J. C. Hardwick, J. Sipelstein, M. Zagha, and S. Chat-
terjee. Implementation of a portable nested data-parallel language. J.
Parallel Distrib. Comput., 21(1):4–14, 1994.

[10] B. C. Catanzaro, M. Garland, and K. Keutzer. Copperhead: compiling
an embedded data parallel language. In PPOPP, 2011.

[11] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and
V. Grover. Accelerating haskell array codes with multicore GPUs.
In DAMP, 2011.

[12] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A hybrid multi-core
parallel programming environment. In Workshop on General Purpose
Processing Using GPUs, 2007.

[13] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures
de l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII,
1972.

[14] T. Johnsson. Lambda lifting: Transforming programs to recursive
equations. 1985.

[15] S. L. P. Jones, R. Leshchinskiy, G. Keller, and M. M. T. Chakravarty.
Harnessing the multicores: Nested data parallelism in haskell. In
FSTTCS, 2008.

[16] D. R. Kincaid, J. R. Respess, and D. M. Young. ITPACK 2.0 user’s
guide. Technical Report CNA-150, Center for Numerical Analysis,
University of Texas, Austin, Texas, 1979.

[17] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Science, 1978.

[18] J. C. Reynolds. Towards a theory of type structure. In Programming
Symposium, Proceedings Colloque sur la Programmation, pages 408–
423, 1974.

[19] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives
for GPU computing. In Graphics Hardware, 2007.

[20] M. Wolfe. Implementing the PGI accelerator model. In GPGPU,
2010.

[21] Y. Zhang and F. Mueller. Cunesl: Compiling nested data-parallel
languages for simt architectures. In ICPP, 2012.

13

