
Spot: A Programming Language
for Verified Flight Software

Robert L. Bocchino Jr.
Jet Propulsion Laboratory

California Institute of
Technology

4800 Oak Grove Drive
Pasadena, CA 91109

bocchino@jpl.nasa.gov

Edward Gamble
Jet Propulsion Laboratory

California Institute of
Technology

4800 Oak Grove Drive
Pasadena, CA 91109

ed_gamble@me.com

Kim P. Gostelow
Jet Propulsion Laboratory

California Institute of
Technology

4800 Oak Grove Drive
Pasadena, CA 91109

kimpgostelow@gmail.com

Raphael R. Some
Jet Propulsion Laboratory

California Institute of
Technology

4800 Oak Grove Drive
Pasadena, CA 91109

Raphael.R.Some@jpl.nasa.gov

ABSTRACT

The C programming language is widely used for program-
ming space flight software and other safety-critical real time
systems. C, however, is far from ideal for this purpose: as
is well known, it is both low-level and unsafe. This pa-
per describes Spot, a language derived from C for program-
ming space flight systems. Spot aims to maintain compat-
ibility with existing C code while improving the language
and supporting verification with the SPIN model checker.
The major features of Spot include actor-based concurrency,
distributed state with message passing and transactional up-
dates, and annotations for testing and verification. Spot also
supports domain-specific annotations for managing space-
craft state, e.g., communicating telemetry information to
the ground. We describe the motivation and design ratio-
nale for Spot, give an overview of the design, provide exam-
ples of Spot’s capabilities, and discuss the current status of
the implementation.

Categories and Subject Descriptors

D SOFTWARE [D.3 PROGRAMMING LAN-

GUAGES]: D.3.2 Language Classifications—Concurrent,

distributed, and parallel languages; D SOFTWARE [D.1

PROGRAMMING TECHNIQUES]: D.1.3 Concurrent
Programming; D SOFTWARE [D.2 SOFTWARE EN-

GINEERING]: D.2.4 Software/Program Verification—
Model checking ; D SOFTWARE [D.2 SOFTWARE

ENGINEERING]: D.2.5 Testing and Debugging

(c) 2014 Association for Computing Machinery. ACM acknowledges that this con-

tribution was authored or co-authored by an employee, contractor or affiliate of the

United States government. As such, the United States Government retains a nonexclu-

sive, royalty-free right to publish or reproduce this article, or to allow others to do so,

for Government purposes only.

HILT 2014, October 18–21, 2014, Portland, OR, USA.

Copyright 2014 ACM 978-1-4503-3217-0/14/10 ...$15.00.

http://dx.doi.org/10.1145/2663171.2663185.

General Terms

Verification; Validation; Safety; Reliability

Keywords

Flight Systems; Avionics; Actors; Message Passing;
Domain-specific Annotations

1. INTRODUCTION
Test and verification are the most costly parts of flight

software development. Automation, such as model check-
ing, can significantly improve software test coverage over
hand-coded tests; but it too can be expensive. To illustrate,
time and cost constraints allowed only four of the 150 soft-
ware modules on board the Curiosity rover to be checked by
the SPIN model checker [2].1 The question is: how can we
improve the reliability of flight software while reducing the
cost?

We have concluded that a significant source of cost lies
in the programming languages used to write flight software
(primarily C, though C++ is used as well), and in particular
two aspects of those languages:

1. Low-level, unsafe programming language constructs.

2. An inability to cleanly express key flight software con-
cepts.

As to the first point, low-level constructs like pointers,
semaphores, and callbacks are both powerful and necessary:
they are the elementary building blocks from which any algo-
rithm or data structure can be constructed. However, these

1Model checking is one of a number of formal methods that
can help ensure program correctness; it works by exploring
all executions of a simplified version of a program, called
a model. Other formal methods include abstract interpre-
tation and theorem proving. SPIN is a widely-used model
checker.

97

constructs are also much too primitive for general use; in-
stead they should be hidden wherever possible behind suit-
able abstractions. Otherwise the code is tedious to write,
unsafe and error-prone, hard to reuse, and impossible to an-
alyze.

Unfortunately C — which was originally designed for pro-
gramming operating systems — often requires the use of
primitive mechanisms like pointer manipulation, with no
satisfactory alternative. C++ has improved capabilities for
abstraction-building, but it is very complex; and still it en-
courages low-level, hard-to-analyze code. The Ada program-
ming language solves many of the expressivity and safety
problems of C and C++, but rewriting of C flight code in
Ada is simply not practical. Further, Ada’s concurrency
model is not ideal for flight code.

As to the second point, we claim that flight software can
be improved by adding a handful of key concepts to the pro-
gramming model. In our view the most important concept
is an exact accounting of state. By state we mean a variable
whose value persists across messages or function calls, such
as the number of bytes in a telemetry buffer.2 By exact, we
mean the compiler can determine the minimum number of
bytes required to represent the state, as well as its location
and actual size.

Knowing this information provides several benefits. As
a concrete example, the SPIN model checker works by sys-
tematically exploring different reachable states of a program.
When it reaches a state it has seen before, it stops and back-
tracks to a different state; there is no use continuing, because
any state reachable from that point has already been seen.
A basic assumption of SPIN, therefore, is that every single

bit of global state in the program is known and accounted for.
If this assumption is violated, then SPIN cannot work prop-
erly; usually it will fail with strange errors or crashes. More-
over, accounting for state in this way is extremely difficult
when the language is as unstructured as C. Additional ben-
efits, such as generation of telemetry communication code,
are discussed later in this paper.

Finally, we believe the two points are really two sides of a
single design philosophy. While it is unrealistic to eliminate
all use of low-level constructs in flight code, if programmers
have good abstractions for the job at hand, then use of these
lower-level techniques will be a last resort, rather than a
first choice. The result should be an improvement in the
three “R’s” of software quality: readability, reliability, and
reusability.

2. SPOT
We are developing a state-aware programming language

called Spot, derived from C. On the one hand, Spot disallows
unsafe uses of low-level constructs like pointers; on the other,
it extends C to provide key abstractions for flight software,
particularly in regard to state and real-time processing.

2.1 Design Rationale
At the heart of Spot’s design is the very practical consid-

eration that, for better or for worse, we are stuck with the
C programming language for flight code at JPL. Therefore,

2Other examples include a control mode or position esti-
mate. We do not mean the state of the bits in a memory
word (though that may well be state in some lower-level
model of a hardware system).

our main goal is to find a minimal set of extensions and re-
strictions to C that can provide the expressivity and safety
guarantees we seek. In particular the language must do two
things:

1. Describe the program state sufficiently that the loca-
tion and size of all state variables can be communicated
to SPIN.

2. Provide a built-in concurrency model, so that a SPIN
model can be automatically constructed.

We discussed point 1 in the introduction. As to point 2,
modeling a concurrent system is extremely difficult if, as
is currently the case in JPL flight code, task creation and
message passing are scattered throughout a C program in
the form of unstructured library calls.3 Model construction
is much easier (indeed, we believe it can be done mostly
automatically) if the language itself provides a structured
concurrency model.

We do not aim to design and implement an entirely new
language from scratch, for several practical reasons. First,
designing a new language (especially a good one!) is ex-
tremely difficult; it is much easier to extend an existing
language. Second, achieving adoption seems much more re-
alistic for a variant of C than for an entirely new language.
Finally, the design and implementation of an entirely new
language is beyond our cost budget. We do believe, how-
ever, that if Spot is successful, its ideas could form the basis
for a new language in the future.

We also believe that any viable solution must maintain
linkage compatibility with existing C code, so that wholesale
rewriting in Spot is not required from the start. The linkage
compatibility must go in both directions, i.e., it must be easy
to link both Spot files into C programs and C files into Spot
programs. That way, Spot can gradually replace C — for
example, on a component-by-component basis — in existing
flight code. We believe that strict adherence to C syntax,
especially in its more ungainly aspects, is not required, so
long as this linkage compatibility exists.4

2.2 Features
We now briefly discuss the major features of Spot.

Actor concurrency. Spot follows the actor model [1]: a
Spot program consists of several modules that interact con-
currently by sending each other messages. A Spot module
is a unit of computation that corresponds to a module in
traditional flight code; it is instantiated at runtime into one
or more module instances that encapsulate some state and
some related operations on that state.

The code snippet shown in Figure 1 illustrates these con-
cepts. Line 1 defines a module Counter, representing a
counter variable together with increment and read opera-
tions on the variable. Line 2 defines a constructor create for
creating instances of the module. Line 3 defines the variable
count and specifies several facts about it: its type is int, its
initial value is 0, and it is part of the state of the Counter

3Our experience has been that constructing a SPIN model
for a single JPL flight module takes roughly three man-
months, and that most of this time is spent identifying the
concurrent tasks and their interactions.
4One major design mistake of C++, in our opinion, is that
it is both too rigid in its adherence to C syntax and not
flexible enough in its linkage idiom. While linking C files to
C++ is straightforward, the opposite direction is not.

98

1 module Counter {

2 constructor create () {}

3 state int count = 0

4 priority P qsize 100

5 message void increment (val int i)

6 priority P

7 {

8 next count = count + i;

9 }

10 message int read ()

11 priority P

12 {

13 return count;

14 }

15 }

Figure 1: Example Spot code.

module. In Spot, state consists of mutable variables defined
inside module definitions, and no other variables. In line 5,
for example, variable i is not state, because it is a constant
local variable. As in Scala, the keyword val denotes a vari-
able that is immutable after initialization (similar to const

in C), while the keyword var denotes a mutable variable.
Global mutable variables are not allowed in Spot.

The rest of the code defines the messages that increment
and read the state of the counter. Message definitions are
given priorities that govern the order in which they are han-
dled. Otherwise a message definition looks much like a C
function definition. A message may be sent by invoking it
on a target module inside a send statement, as shown in
Figure 2. In line 3, the return value of the read message is
transmitted to the caller via an implicit return message and
stored in the variable x. This operation causes the caller to
block and wait for the return value; if more concurrency is
needed, one may use a non-blocking receive or an explicit
callback.

1 var int x;

2 val Counter c = Counter .create ();

3 send c.read () receive x;

4 send c.increment ();

Figure 2: Blocking receive.

Line 8 of Figure 1 shows how state update occurs in Spot.
The keyword next specifies that (1) state is being updated;
and (2) the update is to the next state, that is, the state of
the module that will be seen the next time one of its mes-
sages is invoked. During the current execution, the message
body sees the old value of count; updates done via next are
buffered and applied at the end of message execution.

A message with void return type may update remote
state, so the Spot runtime does not actually send any such
message until the end of the enclosing message. For exam-
ple, in Figure 2, if lines 3 and 4 were swapped, then the
increment message would still be sent last. A message with
non-void return type (e.g., read in Figure 1) may not update
remote state. These rules ensure that no message updates
any state (either locally or remotely) until it is finished ex-
ecuting. They also extend the next semantics to remote

memory access: effectively, every remote update acts upon
the next state of the updated object, while every remote
read sees the current state.
Annotations for correctness and testing. Spot pro-
vides a flexible way to write various kinds of program anno-
tations, including the following:

• Standard C-style assertions.

• Design-by-contract-style preconditions and postcondi-
tions, i.e., assumes clauses stating what is assumed
to be true at the start of a function or message and
guarantees clauses stating what is guaranteed to be
true on exit from a function or message, assuming that
the assumes clauses are satisfied.

• Temporal logic specifications — for example, asser-
tions that a certain value of a state variable must
eventually be achieved — for guiding the SPIN model
checking.

• Annotations that specify tests: for example, test in-
puts and expected results for checking the behavior of
functions, messages, and modules.

The test input sets can be specified either directly, e.g., as a
range of values, or indirectly as one or more conditions. As
an example of a conditional input specification, an annota-
tion might say “check all inputs such that the condition b

holds,” where b is a Boolean function of the inputs.
The syntactic form of a Spot annotation is very simple:

it is just the symbol @ followed by an identifier and an op-
tional expression which, if it appears, must be enclosed in
parentheses. The expression may be arbitrarily complex and
may be (or include) a function call. Very general conditions,
assertions, input ranges, and expected test outputs may be
expressed with this simple syntax.

As in languages such as Java and Scala, the Spot com-
piler just provides the syntax of annotations; their meaning
(generating executable assertions, for example, or generating
tests) is provided by plugin compiler passes or separate an-
alyzers. This approach keeps the annotation language very
flexible and lets it be adapted to new purposes.

1 message void increment (val int i)

2 priority P

3 @assumes (i > 0)

4 private @guarantees (

5 next count == count + i

6)

7 {

8 next count = count + i;

9 }

Figure 3: Example Spot assertions.

Figure 3 shows a simple of example of contract-style as-
sertions in Spot. Here we have annotated the increment

message from Figure 1 with assertions stating that (1) the
value bound to the message parameter i must be greater
than zero and (2) the result of the message is to increase the
value of the state variable count by i. The second anno-
tation is marked private (meaning it is visible only in this

99

translation unit) because it refers to the private state vari-
able count of module Counter. (All state variables in Spot
are implicitly private.) These annotations could generate
executable assertions and/or be checked by SPIN.
Other features. Other features of Spot include the follow-
ing:

• Improved arrays. In Spot, arrays store their dimen-
sions, enabling arrays to be safely passed as message
arguments. Spot also cleanly separates pointer and ar-
ray types: for example, array indexing is allowed, but
pointer indexing and arithmetic are not.

• Value types. Data structures may be created and ini-
tialized together, then treated as immutable values. In
C, structures require assignments and pointer manip-
ulation.

• Domain-specific annotations. Spot supports flight-
specific annotations, for example to guide the gener-
ation of telemetry information. These are discussed
further in Section 3.

Of course genuine arrays and safe references are standard
features of most modern languages; but they are also critical
to making C suitable as a basis for Spot.

2.3 Benefits
The Spot programming model provides several benefits

over writing flight code in plain C. First, by providing
higher-level abstractions such as modules, improved arrays,
and value types, Spot increases productivity and code qual-
ity as explained in Section 1.

Second, Spot’s type system ensures that state is always
passed by value, never by reference, between modules. This
ensures strict partitioning of the memory representing the
state of each module. The partitioning enables easy migra-
tion of modules from one core to another — for example due
to a change in power allocation — even when the cores do
not share the same physical memory. By eliminating global
variables and separating state from non-state memory, Spot
also enables a simple form of memory management: any
memory allocated within a message handler can be auto-
matically deallocated after the handler finishes running.

Third, modules update their state atomically : no other
module may see an inconsistent state (for example, halfway
through an update). Thus Spot messages behave like trans-

actions in a database or other transaction processing system.
As discussed in the next section, this fact enables Spot to
generate all telemetry code for the spacecraft, and much of
the ground code, automatically. It also simplifies aborting
and restarting messages in response to a fault.

Fourth, Spot enables flight code developers who are not
expert model checkers to use SPIN, as it solves two of the
thorniest issues: what is the state, and what is the model
to be checked? Identification of state works as explained
above. The model is the program itself, and the Spot com-
piler produces all the code that SPIN needs to do its work.

Fifth, Spot naturally supports automatic parallelism on
multicore architectures. If the programmer follows simple
rules (such as using value types instead of pointers and mu-
table structures), then the compiler will produce code that
runs a single module in parallel on multiple cores.

Finally, Spot compiles to C and is fully linkage-compatible
with C, as discussed above.

3. DOMAIN-SPECIFIC ANNOTATIONS
As a concrete example of the benefits of Spot, we dis-

cuss domain-specific annotations for handling two kinds of
spacecraft state: telemetry and parameters. Telemetry is
data sent to the ground in real time, so that ground oper-
ations personnel can monitor the state of the system and,
in the case of a mishap, determine what has gone wrong.
Parameters are values that govern spacecraft computations,
for example, an alignment correction for a gyro device. Pa-
rameters are essentially constants, but sometimes they must
be updated from the ground. For example, one might dis-
cover after launch that a gyro has moved and requires an
alignment adjustment.

1 module GnC {

2 @periodic (q, planet)

3 @onchange (planet)

4 state GncVector x

5 ...

6 @param

7 state GncParms z

8 ...

9 }

10

11 type GnCVector = struct {

12 var double[4] q

13 var Planet planet

14 var GncMode mode

15 var int a

16 }

Figure 4: Parameter and telemetry annotations.

Figure 4 illustrates how Spot expresses these concepts.
Lines 1–9 define part of a module called GnC. (GnC stands for
“guidance, navigation, and control.”) In the part of the state
that is shown, there are two variables: a variable x of type
GncVector and a variable z of type GncParms. GncVector

and GncParms are both structure types; the definition of the
GncVector struct is shown in part in lines 11–16. The an-
notations appearing in lines 2–6 use the general annotation
syntax described in Section 2.2. Here, though, the anno-
tations describe telemetry communications and parameters,
instead of providing test inputs or correctness conditions.

The annotations say the following:

• The contents of the structure members q and planet

of x should be sent periodically in telemetry commu-
nications to the ground.

• The contents of the structure member planet of x

should additionally be sent as a telemetry communi-
cation to the ground whenever it changes.

• z is a parameter variable.

Notice that the annotations are on the variables, and the
variables carry their types. Therefore the compiler has all
the information it needs to generate code for transmitting
code to and from the spacecraft either in response to ground
commands (in the case of parameters) or at specified times
or under specified conditions (in the case of telemetry).

In contrast to these simple annotations, the code for
telemetry and parameter communication in state-of-the-art

100

flight systems is a mess: it is complex, ad-hoc, and a bur-
den to read, write, and maintain. Typically it consists of
handwritten XML specifications. Not only is this needlessly
painful, but it forces programmers to maintain essentially
the same information (i.e., the types and sizes of the rele-
vant state variables) in two different places. Primarily this
is because the state information, while implicit in the C
code, is not readily extracted, and so must be specified by
hand all over again. By contrast, once the state is known
and accounted for, the parameter and telemetry code can be
readily generated with a few simple annotations.

We cannot overstate the potential savings from automatic
parameter and telemetry code not only in programming
time, but also in testing time. Furthermore, ground tools
can utilize the information to generate tables needed to dis-
play the data on the ground control displays.

4. IMPLEMENTATION STATUS
We have written a specification for Spot consisting of a

formal syntax and an informal semantic description. We are
implementing a compiler and runtime based on the speci-
fication. Our current implementation contains a complete
lexer and parser, a mostly-complete Spot-to-C code genera-
tor, and enough semantic analysis to support code genera-
tion. We plan to implement a full type checker. The current
runtime runs on Unix-like systems and uses pthreads as the
concurrency mechanism; porting to other systems such as
VxWorks should not be difficult.

We have used the compiler and runtime to compile and
run a number of small Spot modules. We have also proto-
typed the verification methodology (annotations plus SPIN
code generation) for these modules. We have integrated the
annotations into our Spot compiler and are now integrating
the SPIN code generation.

Once we have finished the compiler and runtime, we plan
to translate several modules from the Curiosity flight soft-
ware into Spot. We will then evaluate the efficacy of the
approach. In particular, we plan to investigate two ques-
tions:

1. What are the gains in productivity and safety versus
plain C?

2. What is the performance cost?

Several flight projects (Mars Science Laboratory, Asteroid
Retrieval, and Comet Rendezvous) have expressed interest
in Spot, particularly for developing Guidance, Navigation,
and Control (GNC) systems.

5. CONCLUSION
We have briefly described Spot, a new programming lan-

guage based on C for programming flight software systems.
Spot offers enhanced programmability over plain C, and it
interoperates with legacy C code. By carefully managing
program state, Spot also supports semi-automatic verifica-
tion, automatic memory management, fault tolerance, and
multicore parallelism. We believe that Spot is potentially
useful not just for flight systems, but for any system in which
safety, fault tolerance, or security are essential.

6. ACKNOWLEDGEMENTS
We performed this research at the Jet Propulsion Labora-

tory (JPL), California Institute of Technology. Our funding
came from the Game Changing Development (GCD) pro-
gram at the Space Technology Mission Directorate, National
Aeronautics and Space Administration; and from the Re-
search and Technology Development (R&TD) program at
JPL.

7. REFERENCES
[1] G. Agha. Actors: A Model of Concurrent Computation

in Distributed Systems. MIT Press, 1986.

[2] G. Holzmann. The SPIN Model Checker: Primer and

Reference Manual. Addison-Wesley Publishing
Company, 2003.

101

