e \%'\ ‘.
= FI0. In EISE

Universidad de Puerio Rico
Racinto Universitario de Mayagtiez

Doctoial Program in Compuling and
Information Sciences and Engineering

Session of Theory of Computation
Qualifying Exam — Tuesday, August 18, 2009

Select four out of five problems.

The problems allow you to demonstrate your skill in applying the theoretical tools. Justify
your claims. Your proofs do not need to exhibit full technical detail. However, all relevant

steps have to be presented clearly.

1. (25 total points) Languages
a. (& points) Define language, regular language, and regular expression.

b. For each of the following languages: what is the least class in the language hi-
erarchy in which the language is a member (e.g. regular languages C context-
free languages C Turing-recognizable languages C non-Turing-recognizable
languages)? Show proofs.

i, (10 points) L = {wwPwjw € {0, 1}*}, where w¥ is obtained by reversing
the characters in w.

il. (10 points) L = {x#y|z,y € {0,1}* and = # y}.
2. (85 total points) Grammars
8. (5 points) Define contert-free grammar and pushdown automaton.

b. Let = = {a,b}. For each of the properties below, give a CFG generating the
language of strings over X having the property. Prove that your grammar is
correct,.

i. (10 points) the generated language has twice as many o’s as b's
il. (10 points) the number of a’s and the number of b’s are equal modulus 4.
8. (25 total points) Turing Machines

a. (5 points) Define Turing machine, Turing-recognizable, and Turing-decidable
language.

b. (20 points) A two-dimensional Turing machine has the usual finite control,
but a tape that is a two-dimensional grid of cells, infinite in two directions.

r”/

Docloral Progeam in Lompullng ;md
Information Sciences and Engincering

a.

b.

The input is placed on one row of the grid, with the head at the left end of
the input and the finite control in the start state, as usual. Acceptance is by
entering a final state, also as usual. Prove that the languages accepted by
two-dimensional Turing machines are the same as those accepted by ordinary
TM’s.

4. ‘(25 total points) Finite State Automata
a. (5 points) Define deterministic and non-deterministic finite state automata.

b. (20 points) The subset construction (this is, regarding subsets of states as

states) allows us to convert any n state NFA N to a O(2") state DFA M that
recognizes the same language (i.e. L(N) = L{(M)). Show that this upper
bound is tight in the sense that there is a family of languages L; where for
each i € {1,...} the language L; can be recognized by an O(m) state NFA
N; but a DFA for L; requires Q(2™) states.

Hint f(n) = Q(g(n)) is defined to mean 3¢ > O,ng : Vi > ng : cg(n) <

[f ().

5. (25 total points) NP-completeness

(5 points) Define P, NP, and NP-complete problem.

(20 points) Assume that you only know the following problems are NP-
complete: SAT, 3SAT, VERTEX-COVER, HAMILTONIAN PATH BETWEEN
TWO VERTICES.

Prove that the LONGEST PATH problem is A’P-complete.

Universidad de Puerto Rico
Recinto Universitario de Mayagtez

44 THE THEORY OF NP-COMPLETENESS

Conversely, the construction of C is such that any satisfying truth assign-
. ment for C must correspond 0 an accepting computation of M on x. It
follows that f; (x) has a satisfying truth assignment if and only if x € L.

All that remains to be shown is that, for any fixed language L, f; (x}
can be constructed from x in time bounded by a polynomial function of
n=|x|. Given L, we choose a particutar NDTM M that recognizes L in
time bounded by a polynomia! p {we need not find this NDTM itself in
polynomial time, since we are only proving that the desired transformation
fr exists). Once we have a specific NDTM M and a specific polynomial p,
the construction of the set U of wvariables and collection C of clauses
amounts to little more than filling in the blanks in a standard (though com-
plicated) formuia. The polynomial boundedness of this computation wilt
follow immediately once we show that Length [, (x)] is bounded above by
a polynomial function of n, where Length [7] reflects the length of a string
encoding the instance / under a reasonable encoding scheme, as discussed
in Section 2.1. Such a “‘reasonable’ Length function for SAT is given, for
example, by {U]-JC|. No clause can contain more than 2-|U] literals
(that’s all the literals there are), and the number of symbols required to
describe an individual literal need only add an additional log|U/| factor,
which can be ignored when all that is at issue is polynomial boundedness.
Since r and v are fixed in advance and can contribute only constant factors
to |U| and |C|, we have | U} = O(p(n)D and |C] = O{p(n)}H). Hence
Length [/; 001 = | U|-|C| = O(p{(n)*, and is bounded by a polynomial
function of n as desired.

Thus the transformation #; can be computed by a polynomial time
algorithm (although the particular polynomial bound it obeys will depend on
L and on our choices for M and pj, and we conclude that, for every
L €NP, £, is a polynomial transformation from L to SAT (technically, of
course, from L to Lg,r). It follows, as claimed, that SAT is NP-complete.
n

3

Proving NP-Completeness Results

If every NP-completeness proof had to be as complicated as that for
SATISFIABILITY, it is doubtful thar the class of known NP-complete prob-
lems would have grown as fast as it has. However, as discussed in Section
2.4, once we have proved a single problemm NP-complete, the procedure for
proving additional problems NP-complete is greatly simplified. Given a
problem II € NP, all we need do is show that some already known NP-
complete problem IT' can be transformed to Ii. Thus, from now on, the
process of devising an NP-completeness proof for a decision problem II wilt
consist of the following four steps:

(1) showing that II is in' NP,

(2) selecting a known NP-complete problem IT',

(3) constructing a transformation f from II' to II, and
(4) oproving that f is a (polynomial) transformation.

In this chapter, we intend not only to acquaint readers with the end
results of this process- (the finished NP-completeness proofs) but also to
prepare them for the task of constructing such proofs oa their own. In Sec-
tion 3.1 we present six problems that are commonly used as the ‘“‘known
NP-complete problem’ in proofs of NP-completeness, and we prove that

46 PROVING NP-COMPLETENESS RESULTS

these six are themselves NP-complete. In Section 3.2 we describe three
general approaches for transforming one problem to another, and we
demonstrate their use by proving a wide variety of problems NP-complete.
A concluding section contains some suggested exercises.

3.1 Six Basic NP-Complete Problems

When seasoned practitioners are confronted with a problem I to be
proved NP-complete, they have the advantage of having a wealth of experi-
ence to draw upon. They may well have proved a similar problem II' NP-
complete in the past or have seen such a proof. This will suggest that they
try to prove II NP-complete by mimicking the NP-completeness proof for
[’ or by transforming IT' itself to II. In many cases this may lead rather
easily to an NP-completeness proof for II.

All too often, however, no known NP-complete problem similar to IT
can be found (even using the extensive lists at the end of this book). In
such cases the practitioner may have no direct intuition as to which of the
hupdreds of known NP-complete problems is best suited to serve as the
basis for the desired proof. Nevertheless, experience can still narrow the
choices down to a core of basic problems that have been useful in the past.
Even though in theory gny known NP-complete problem can serve just as
well as any other for proving a new problem NP-complete, in practice cer-
tain problems do seem to be much better svited for this task. The following
six problems are among those that have been used most frequently, and we

suggest that these six can serve as a “‘basic core” of known NP-complete

problems for the beginner.

3-SATISFIABILITY (3SAT))
INSTANCE: Collection C = {¢},6y, . . . , ¢} of clauses on a finite set Uof
variables such that | ¢;|=3for1 € i< m. -
DG%W.ZOZ" Is there a truth assignment for [/ that satisfies all the ¢la

in C?)
3-DIMENSIONAL MATCHING (3DM)

INSTANCE: Aset M S WxXxY, where W X, and Y are disjoint sets
having the same number g of elements. -
QUESTION: Does M contain a matching, that is, a subset M’ C M such
that | M’} = ¢ and no two elements of M’ agree in any coordinate?

VERTEX COVER (V(C)

INSTANCE: A graph G = (V.E) and a positive integer K <{V].
QUESTION: Is there a vertex cover of size K or less for G, that is, a subset
V'€ ¥ such that | V| € K and, for each edge {» 1] € E, at least one of u
and v belongs to V'?

11 SIX BASIC NP-COMPLETE PROBLEMS 47

CLIQUE

INSTANCE: A graph G = (¥,£) and a positive integer J < | V|.
QUESTION: Does G contain a cligue of size J or more, that is, a subset
J' C V such that |¥'| 2 J and every two vertices in ¥* are joined by an
edge in E?

HAMILTONIAN CIRCUIT (HC)

INSTANCE: A graph G = (V,E).

QUESTION: Does G contain 2 Hamiltonian circuit, that is, an ordering
<vva, ..., vg> of the vertices of G, where n=|V|, such that
{v,,v;} € E and [v;,v,q} € E for all i, 1<i<n?

PARTITION .
INSTANCE: A finite set 4 and a “‘size” s{a) € Z* for each a€ 4.
QUESTION: Is there a subset 4’ & A such that

Ysla)= 3 s{a) ?

acA’ agEA-A’

One reason for the popularity of these six problems is that they all ap-
peared in the original list of 21 NP-complete problems presented in [Karp,
1972]. We shall begin our illustration of the techniques for proving NP-
completeness by proving that each of these six problems is NP-complete,
noting, whenever appropriate, variants of these problems whose NP-
completeness follows more or less directly from that of the basic problems.

SATISFIABILITY
}
3SAT
N
3iDM vC

Y ¥\

PARTITION HC CLIQUE

Figure 3.1 Diagram of the sequence of transformations used to prove that the six
basic problems are NP-complete.

Our injtial transformation will be from SATISFIABILITY, since it is
the only “known™ NP-complete problem we have so far. However, as we
proceed through these six proofs, we will be enlarging our collection of
known NP-complete problems, and all problems proved NP-complete before
a problern [1 will be available for use in proving that II is NP-complete.
The diagram of Figure 3.1 shows which problems we will be transforming to
each of our six basic problems, where an arrow is drawn from one problem
to another if the first is transformed to the second. This sequence of

48 PROVING NP-COMPLETENESS RESULTS

transformations is not identical to that used by Karp, and, even when his
sequence coincides with ours, we have sometimes modified or replaced the
original transformation in order to illustrate certain general proof tech-
niques.

3.1.1 3-SATISFIABILITY

The 3-SATISFIABILITY problem is just a restricted version of SAT-
ISFIABILITY in which ali instances have exactly three literals per clause.
Its simple structure makes it one of the most widely used problems for
proving other NP-completeness results. .

Theorem 3.1. 3-SATISFIABILITY is NP-complete.

Prooft It is easy to see that 3SAT € NP since a nondeterministic algorithm

need only guess a truth assignment for the variables and check in polynomi-

al time whether that truth setting satisfies all the given three-literal clauses.
We transform SAT to 3SAT. Let ¥ ={u,u,, ..., u,} be aset of vari-

ables and C={¢,¢5, .. .,¢,} be a set of clauses making up an arbitrary in-

stance of SAT. We shall construct a collection C’ of three-literal clauses on

a set 7" of variables such that C' is satisfiable if and only if C is satisfiable.
The construction of C* will merely replace each individual clause ¢, € C

by an “equivalent™ collection C; of three-literal clauses, based on the origi-

nal variables I/ and some additional variables U; whose use will be limited

to clauses in ;. These will be combined by setting

m ?

3]

=1

U=Uu

and
; m
=G
J=t
Thus we only need to show how C; and U] can be constructed from ¢;.
Let ¢; be given by {2),2,, . . ., z} where the z’s are all literals derived
from the variables in /. The way in which C; and U] are formed depends
on the value of k.

Case 1. k=1. U;={y},y]

Q.wuﬂl *mN—PS..HQh.NTﬁN—Q&—&NwamN—o&mf_\Hm—LN—...W-&.—?MWMW
Case 2. k=2. SIG&. Qn. :N_.Nu .SJ.?_.NH .Mm:
Case 3. k=3, Uj=d,C={ic;}}

3.1 SIX BASIC NP-COMPLETE PROBLEMS 49

Case 4. k>3. S'*uﬁ.mmﬁmhﬁlw— - g.n PP s

ﬁ.-\h_' m*N_eNN-h\m_: U ﬂm\.ﬂ...NTTN-E.“.T:u Hmmm_‘ﬁlﬁu
A (7 WEN)

To prove that this is indeed a transformation, we must show that the
set C’ of clauses is satisfiable if and only if C is. Suppose first that
¢ U—{T,F} is a truth assignment satisfying C. We show that ¢ can be ex-
tended to a truth assignment ¢: U'—{T,F} satisfying C’. Since the variables
in {"—U are partitioned into sets [/; and since the variables in each U/} oc-
cur only in clauses belonging to C;, we need only show how f can be ex-
tended to the sets U; one at a time, and in each case we need only verify
that all the clauses in the corresponding (] are satisfied. We can do this as
follows: If U; was constructed under either Case 1 or Case 2, then the
clauses in C; are already satisfied by ¢, so we can extend ¢ arbitrarily to U],
say by setting '(y)=T for all y€ U]. If U; was constructed under Case 3,
then U] is empty and the single clause in C; is already satisfied by ¢+. The
only remaining case is Case 4, which comresponds to a clause
{z1.22,z} from C with k>3. Since r is a satisfying truth assignment
for C, there must be a least integer / such that the literal z is set true
under ¢. If I is either 1 or 2, then we set r{y) =F for 1<i<k=3. If i is
either k-1 or k, then we set ¢'(y) =T for 1<i<k—3. Otherwise we set
=T for 1<i</-2 and ¢'(y) =F for I-1<i<k-3. Itis easy to veri-
fy that these choices will insure that all the clauses in C; will be satisfied, so
all the clauses in C’ will be satisfied by 7. Conversely, if ¢ is a satisfying
truth assignment for C', it is easy to verify that the restriction of ¢ to the
variables in {/ must be a satisfying truth assignment for €. Thus C' is
satisfiable if and only if C is.

To see that this transformation can be performed in polynomial time, it
suffices to observe that the number of three-literal clauses in C' is bounded
by a polynomial in mn. Hence the size of the 3S8AT instance is bounded
above by a polynomial function of the size of the SAT instance, and, since
all details of the construction itself are straightforward, the reader should
have no difficulty verifying that this is 2 polynomial transformation. ®

The restricted structure of 3SAT makes it much more useful than SAT
for proving NP-completeness results. Any proof based on SAT (except for
the one we have just given) can be converted immediately to one based on
3SAT, without even changing the transformation. In fact, the normaliza-
tion to clauses having the same size often can simplify the transformations
we need to construct and thus make them easier to find. Furthermore, the
very smallness of these clauses permits us to use transformations that would
not work for instances containing larger clauses. This suggests that it would
be still more convenient if we could show that the analogous 2-
SATISFIABILITY problem, in which each clause has exactly mwo literals,
were NP-complete. However, 2SAT can be solved by ‘‘resolution™ tech-

50 PROVING NP-COMPLETENESS RESULTS

niques in time bounded by a polynomial in the product of the number of
clauses and the number of variables in the given instance [Cook, 1971] (see
also [Even, Itai, and Shamir, 1976]}, and hence is in P.

3.1.2 3-DIMENSIONAL MATCHING

The 3-DIMENSIONAL MATCHING problem is a generalization of the
classical “‘marriage problem: Given n unmarried men and n unmarried
women, along with a list of all male-female pairs who would be willing to
marry one another, is it possible to arrange n marriages so that polygarny is
avoided and everyone receives an acceptable spouse? Analogously, in the
3-DIMENSIONAL MATCHING problem, the sets W, X, and Y corre-
spond to three different sexes, and each triple in M corresponds to a 3-way
marriage that would be acceptable to all three participants. Traditionalists
will be pleased to note that, whereas 3DM is NP-complete, the ordinary
marriage problem can be solved in polynomial time (for example, see [Hop-
croft and Karp, 1973)).

Theorem 3.2 3-DIMENSIONAL MATCHING is NP-complete.

Proof: 1t is easy to see that 3DM € NP, since a nondeterministic algorithm
need only guess a subset of g=| W|=[X]=| ¥/ triples from M and check in
polynomial time that no two of the guessed triples agree in any coordinate.

We will transform 3SAT to 3DM. Let U={u;,u;, u,} be the set
of variables and C={c,c;, ..., c,) be the set of clauses in an arbitrary in-
stance of 3SAT. We must construct disjoint sets W, X, and Y, with
|Wl=1X{=|Y]|, and a set A C W x X x ¥ such that M contains a match-
ing if and only if C is satisfiable. ~

The set M of ordered triples will be partitioned into three separate
classes, grouped according to their intended function: “‘truth-setting and
fan-out,” “‘satisfaction testing,” or *‘garbage collection.”

Each truth-setting and fan-out component corresponds to a single vari-
able #€ U, and its structure depends on the total number m of clauses in
C. This structure is illustrated for the case of m=4 in Figure 3.2. In gen-
eral, the truth-setting and fan-out component for a variable involves
“internal” elements &[j1€X and 5,[jl€ Y, 1<i<m, which will not occur
in any triples outside of this component, and ‘‘external” elements
w Ul @l €W, 1<i<m, which will occur in other triples. The triples
making up this component can be divided into two sets:

T = {@ e Ulo,UD: 1< < m)
T = {(ulLal+13,5UD: 1< <m) U {(ulml.ql1l,51mD}

Since none of the internal elements {a,[],5,[/}: 1< < m} will appear in any

3.1 SIX BASIC NP.COMPLETE PROBLEMS 51

Figure 3.2 Truth setting component 7; when m =4 (subscripts have been deleted
for simplicity). Either all the sets of 77 {the shaded seis) or ail the sets
of T¥ (the unshaded sets) must be chosen, leaving uncovered all the
(7] or all the & {1, respectively.

triples outside of T;= 77U T/, it is easy to see thal any matching M’ will
have to include exactly m triples from 7, either all triples in 7] or all triples
in T/. Hence we can think of the component T; as forcing a matching to
make a choice between setting u, true and setting «; false. Thus, in gen-
eral, a matching M’ € M specifies a truth assignment for U, with the vari-
able u, being set true if and only if M'NT; = T}

Each satisfaction testing component in M corresponds to a single clause
¢;€C. It involves only two “internal” elements, 5;[j/1€X and s;liley,
and external elements from {15 [j]:1<i< A}, determined by which
literals occur in clause ¢;. The set of triples making up this component is
defined as follows:

¢, = (Uil sl uwec} U @ l.slD: e}

Thus any matching M € A will have to contain exactly one triple from C;.
This can only be done, however, if some u;[j} {or 7 [j]) for a literal #;€¢;
(@;€c,) does not occur in the triples in T; N M", which will be the case if
and only if the truth setting determined by M’ satisfies clause c;.

52 PROVING NP-COMPLETENESS RESULTS

The construction is completed by means of one large “‘garbage collec-
tion’ component &, involving internal elements g[k1€X and gikl€Y,
1< k< m{n—1), and external elements of the form (] and % [/] from W.
It consists of the following set of triples:

G = {ulanlicd 2l & Ul s kDol kD)
1<k€m(n—1),1<i<n 1< <ml
Thus each pair g[k], g,l&] must be matched with a unique % {j] ot u: 1l
that does not occur in any triples of M'— G. There are exactly m(n—1)
such “‘uncovercd” external elements, and the structure of G insures that
they can always be covered by choosing M"NG appropriately. Thus G
merely guarantees that, whenever a subset of M — G satisfies all the con-
straints imposed by the truth-setting and fan-out components, then that

subset can be extended to a matching for M.
To summarize, we set

W= {412 1<i€<n 1< /<m]
X=4U .w._ U Qm

where
A= {gh1<i<nl<i<m}

Sy = sl 1<j<m}
Gy = {g,1: 1< m(n—1}}

Y= BUS,UG

where
B = {hlL:1<i<n,1<j<m}

Sy = {sUki1gs<m)
G; = {1 i< min-1)}

and

Uclue

=t

n
M=|JT;
]
Notice that every triple in M is an element of WxX x Y as required.
Furthermore, since M contains only
2mn +3m + 2m*n(n—1)

:.muﬁam and since its definition in terms of the given 3SAT instance is quite
direct, it is easy to see that A can be constructed in polynomial time.

U

3.1 SiX BASIC NP-COMPLETE PROBLEMS 53

From the comments made during the description of M, it follows
immediately that M cannot contain a matching unless C is satisfiable. We
now must show that the existence of a satisfying truth assignment for C
implies that M contains a matching.

Let +: U—{T.F} be any satisfying truth assignment for C. We con-
struct a matching M S M as follows: For each clause ¢€C, let
7 € {1, %:1<i<n} N ¢ be a literal that is set true by ¢ (one must exist
since ¢ satisfies ¢,). We then set .

SEACIES ﬂ._c_a (Ul sl | UG
tlu)=F J=t

1(up=T

M= U

where G' is an appropriately chosen subcollection of G that includes all the
g1lk1,22[k], and remaining %] and % [/]. It is easy to verify that such a
G’ can always be chosen and that the resulting set M is a2 matching. ®

In proving NP-completeness results, the following slighily simpler and
more general version of 3DM can often be used in its place:

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with |X|=3g and a coliection T of 3-element
subsets of X. :

QUESTION: Does C contain an exact cover for X, that is, a subcoliection
C' C C such that every element of X occurs in exactly one member of C?

Note that every instance of 3DM can be viewed as an instance of X3C, sim-
ply by regarding it as an unordered subset of WUXU ¥, and the matchings
for that 3DM instance will be in one-to-one correspondence with the exact
covers for the X3C instance. Thus 3DM is just a restricted version of X3C,
and the NP-compieteness of X3C foliows by a trivial transformation from
3DM.

3.1.3 VERTEX COVER and CLIQUE

Despite the fact that VERTEX COVER and CLIQUE are independently
useful for proving NP-completeness results, they are really just different
ways of looking at the same problem. To see this, it is convenient to con-
sider them in conjunction with a third problem, called INDEPENDENT
SET.

An independent set in a graph G={V,E} is a subset ¥"C ¥V such that,
for all u,veV', the edge {u,v} is not in E. The INDEPENDENT SET
problem asks, for 2 given graph G=(¥,E) and a positive integer J<| ¥,
whether G contains an independent set ¥ having | ¥| 2 J. The following
relationships between independent sets, cliques, and vertex covers are easy
1o verify.

54 , PROVING NP-COMPLETENESS RESULTS

Lemma 3.1 For any graph G=(V.E} and subset V'SV, the following
statements are equivalent:

{a) V' is a vertex cover for G.

(b} V-V is an independent set for G.

(€} V-V is a clique in the complement G° of G, where G°=(V E°)
with E¢= {{u,v}: u,v€ V and {u,v}£E}.

Thus we see that, in a rather strong sense, these three problems might
be regarded simply as “‘differenit versions’ of one another. Furthermore,
the relationships displayed in the lemma make it a trivial maiter to
transform any one of the problems (o either of the others,

For example, to transform VERTEX COVER to CLIQUE, let
G=(V,E) and K <|¥| constitute any instance of VC. The corresponding
msm"w:n_m of CLIQUE is provided simply by the graph &° and the integer
J=|V|-K.

This implies that the NP-completeness of all three problems will follow
as an immediate consequence of proving that any one of them is NP-
complete. We choose to prove this for VERTEX COVER.

Theorem 3.3 YERTEX COVER is NP-complete.

Progf It is easy to see that VC € NP since a nondeterministic algorithm
need only guess a subset of vertices and check in polynomial time whether
that subset contains at least one endpoint of every edge and has the ap-
propriate size.

We transform 35AT to VERTEX COVER. Let U={u, 43, ..., u,l
and C={cj,c3....,¢,} be any instance of 3SAT. We must construct a
graph G=(V,E) and a positive integer X <|V| such that G has a vertex
cover of size X or less if and only if C is satisfiable.

As in the previous proof, the construction will be made up of several
components. In this case, however, we will have only truth-setting com-
ponents and satisfaction testing components, augmented by some additional
edges for communicating between the various components.

For each wvariable we€l/, there is a truth-setting component
T;=(V;,E}, with V,={u,%) and E;={{u;,5}}, that is, two vertices joined
by a single edge. Note that any vertex cover will have t0 contain at least
one of ; and &; in order to cover the single edge in E;.

For each clause ¢;€C, there is a satisfaction testing component
S;=(V;,E}), consisting of three vertices and three edges joining them to
form a triangle:

V; = {a k.o, e300
E) = {{a,), i1}, {a, L}, a3l 1), (o i s M)

3.1 SiX BASIC NP-COMPLETE PROBLEMS 55

Note that any vertex cover will have to contain at Jeast two vertices from v
in order to cover the edges in E].

The only part of the construction that depends on which literals occur
in which clauses is the collection of communication edges. These are best
viewed from the vantage point of the satisfaction testing components. For
each clause ¢;€C, let the three literals in ¢; be denoted by x;, y;, and z;.
Then the communication edges emanating from §; are given by:

g = {{a) [/l x) ALty {as Uil 51
The construction of our instance of VC is completed by setling
K=n+2mand G=(V,E), where
n m
v=(¥}u ¥
i=] j=1
and
n m m
E={UEIV(UEIU(UE
=1 J=1 J=t
Figure 3.3 shows an example of the graph obtained when U= {u;,u;,u3,u4}
w:ﬂm n“ A*tmumuuﬂhrﬂmm-t_m umA:.

U Hp My Uy w3y U Uy

TN
e

hnm..: numz a._mNH numuu

a,[1] a,l2]

Figare 3.3 VERTEX COVER instance resulting from 3SAT instance in which
U= mtpuﬂwuﬂucﬂar C= *mﬂ-.ﬂuaﬂ&wamm_;:u ..mawu. Here K=n+2m=8.

It is easy to see how the construction can be accomplished in polyno-
mial time, All that remains to be shown is that C is satisfiable if and only if
G has a vertex cover of size X or less.

First, suppose that V'CV is a vertex cover for G with | V'|<K. By
our previous remarks, ¥’ must contain at least one vertex from each 7, and
at least two vertices from each §,. Since this gives a total of at least
n+2m=X vertices, ¥ must in fact contain exactly one vertex from each
T; and exactly two vertices from each S,. Thus we can use the way in
which V' intersects each truth-setting component {0 obtain a truth assign-
ment & U—{T,F}. We merely set t(u)=T if u€V and 1(u)=F if

56 PROVING NP-COMPLETENESS RESULTS

%€V, To see that this truth assignment satisfies each of the clauses ¢;€C,
noamaaw the three edges in E]'. Only two of those edges can be no<m8n by
vertices from ¥; N V7, so ono of them must be covered by a vertex from
some ¥; that wu_ouwm to ¥”. But that implies that the corresponding literal,
either u, or &, from clause ¢, is true under the truth assignment 7, and
hence clause ¢, is satisfied by r. Because this holds for every ¢;€C, it fol-
lows that ¢ is a satisfying truth assignment for C.

Conversely, suppose that ¢: U—{T,F} is a satisfying truth assignment
for C. The corresponding vertex cover ¥ includes one vertex from each
T, and two vertices from each S, The vertex from T; in V' is i if
t{u) =T and is & if +(u;) = F. This ensures that at Jeast one of the three
edges from each set .m: is covered, because ! satisfies each clause ¢;.
Therefore we ma& o:@ include in V" the endpoints from §; of the oSa_.
two edges in E; (which may or may not also be covered cw vertices from
truth-setting oo_uuonmazv. and this gives the desired vertex cover. B

3.1.4 HAMILTONIAN CIRCUIT

In Chapter 2, we saw that the HAMILTONIAN CIRCUIT problem can
be transformed to the TRAVELING SALESMAN decision problem, so the
NP-completeness of the latter problem will follow immediately once HC has
been proved NP-complete. At the end of the proof we note several variants
of HC whose NP-completeness also follows more or less directly from that
of HC.

For convenience in what follows, whenever <v,v;,...,%,> is a
Hamiltonian circuit, we shall refer to (v, v}, 1€i<n, and {v,,%]} as the
edges *‘in™ that circuit. Our transformation is a combination of two
.Bum“.oammc:m from [Karp, 1972], also described in {Liu and Geldmacher,
1978].

Theorem 3.4 HAMILTONIAN CIRCUIT is NP-complete

Proof: It is easy to see that HC € NP, because a nondeterministic algorithm
need only guess an ordering of the vertices and check in polynomial time
that all the required edges belong to the edge set of the given graph.

We transform VERTEX COVER to HC. Let an arbitrary instance of
VC be given by the graph G = (¥,E) and the positive integer K <{V}. We
must construct a graph G'={¥}",£) such that G’ has a Hamiltonian circuit
if and only if G has a vertex cover of size X or less.

Once more our construction can be viewed in terms of components
connected together by communication links. First, the graph G’ has K
‘‘selector™ vertices a,,4;, . . . ,ax, which will be used to select X vertices
from the vertex set ¥ for G. Second, for each edge in E, G' contains a
“cover-testing” component that will be used to ensure that at least one
endpoint of that edge is among the seiected X vertices. The component for

3.1 SIX BASIC NP-COMPLETE PROBLEMS 57

e={u,v} € E is illustrated in Figure 3.4. It has 12 vertices,
= {(u,e,0,(v,e,):1<i<6}
and 14 edges,
= {{Cu.e.d), (w,e.i+ D}, {(v,e, 0, (,e,i+1)}: 1K <5)
U {{u,e,3),00,e,D}, {(v,6,3),(u,e,1)}}
U {{(z,€,6),(v,6,8)}, {(v,¢.6),(u,e,9)})

(u,e,1) ((v,e,1)
(u,e,2) {v,e,2)
(v.e,3) {v,e,3)
(u,e.4) {v,e.d)
(u.e,5) (v.e,5)
-1 ™
(u,e,6) 8 (vie,6)

Figute 3.4 Cover-testing component for edge e ={u,v} used in transforming
VERTEX COVER to HAMILTONIAN CIRCUIT.

In the completed construction, the only vertices from this cover-testing
component that will be involved in any additional edges are
(u,e,1), (v,e,1), (u,e,6), and {(v,e,6). This wili-imply, as the reader may
readily verify, that any Hamiltonian circuit of &' will have to meet the
edges in E, in exactly one of the three configurations shown in Figure 3.5.
Thus, for example, if the circuit “enters’ this coraponent at (u,e,1), it will
have to “*exit” at {u,e,6) and visit either all 12 wvertices in the component
or just the 6 vertices (u, e, i}, 1<i<6.

Additional edges in our overall construction will serve to join pairs of
cover-testing components or to join a cover-testing component to a selector
vertex. For each vertex v € ¥, let the edges incident on v be ordered (arbi-
trarily) as €,y &(2)s » + - + Culdeg(w)1» Where deg{v) denotes the degree of v in
G, that is, the number of edges incident on v. All the cover-testing com-
ponents corresponding to these edges (having v as endpoint) are joined
together by the following connecting edges:

= _ﬁ*A.c_owt—_quumvuﬁﬂeme_”-ﬂ—-:uhvw" ._. M mA%WA%VW

As shown in Figure 3.6, this creates a single path in G’ that includes exactly
those vertices (x,y,z) having x=v.

58 . PROVING NP-COMPLETENESS RESULTS
lf‘ ,.ll.fv) \\l .\\l
(u,e,1) § {u,e,l) ¢ (v,e.l) (v,e,1)
- (u,e,6) § (u,e.6) ¢ 2 (v,e,6) (v,2,6)
‘S l-‘\ f.- '."
@ b ©

Fignre 3.5 The three possible configurations of a Hamiltonian circuit within the
cover-testing component for edge e = {u, v}, corresponding to the cases
in which (a) v belongs to the cover but v does nat, (b) both u and »
belong to the cover, and {¢) ¥ belongs to the cover but & does not.

The final connecting edges in &' join the first and last vertices from
each of these paths to every one of the selector vertices ay.a3, . . - ,dx.
These edges are specified as follows:

E” = {{an(.e,u D1, (0,8, 1agn1, 6 1: 1SS K, vE v}
The completed graph G’ = (V',E") has

V' = {a:1<i<KlU (Y)
eEE

and

E=(JE)U(UE)UE"
eEE vEV

It is not hard to see that G' can be constructed from G and X in polyno-

mial time.

We claim that G’ has a Hamiltonian civcuit if and only if G has a ver-
tex cover of size K or less. Suppose <y, ¥a, ..., v, >, where n = |V, is
a Hamiltonian circuit for G'. Consider any portion of this circuit that
begins at a vertex in the set {g,,a;,...,ax), ends et a vertex in
{ay,a;,ax}, and that encounters no such vertex internally. Because of
the previously mentioned restrictions on the way in which a Hamiltonian
circuit can pass through a cover-testing component, this portion of the cir-
cuit must pass through a set of cover-testing components corresponding Lo
exactly those edges from E that are incident on some one particular vertex
vEV. Each of the cover-testing components is traversed in one of the
modes (a}, (b}, or (¢) of Figure 3.5, and no vertex from any other cover-
testing component is encountered. Thus the X vertices from
{a,a;.ax} divide the Hamiltonian circuit into X paths, each path

3.1 SIX BASIC NP-COMPLETE PROBLEMS 59

~

ﬂv._.m.._”:_.u.v

At. n-.n:..mv

{v.e,3:6)

?.ni&.c >
(.8 lgegt-1)

@.minnn?:.@

En_:..... 3.6 Path joining all the cover-testing componenis for edges from £ having
vertex ¥ as an endpoint.

-corresponding to a distinct vertex v€ ¥, Since the Hamiltonian circuit must

include ali vertices from every cne of the cover-testing components, and
since” vertices from the cover-testing component for edge e€E can be
traversed only by a path corresponding to an endpoint of e, every edge in E
must have at least one endpoint among those K selected vertices, There-
fore, this set of K vertices forms the desired vertex cover for G.
Conversely, suppose V*C ¥ is a vertex cover for G with |¥*] < K.
We can assume that | ¥*| =X since additional vertices from ¥ cam always
be added and we will still have a vertex cover. Let the elements of ¥* be
labeled as vy,v,, ..., vx. The foliowing edges are chosen to be *‘in’” the
Hamiltonian circuit for G'. From the cover-testing component representing
each edge’e = {u,v] € E, choose the edges specified in Figure 3.5(a}, (b), or
(c) depending on whether {x,v} N V* equals, respectively, {u}, {u,v}, or
{v}. One of these three possibilities must hold since ¥* is a vertex cover
for G. Next, choose all the edges in m..“ for 1€i<K. Finally, choose the

edges
mﬁm-ﬁs. Ne__ :.Tu_.vr “—. IAI _—.JAIN

60 PROVING NP-COMPLETENESS RESULTS

mn_ﬂ*_oﬂﬁma Nt__—&mtmv_q mwwa HM MAR
and
{ay, (v, Evgldeg (vl 6}

We leave to the reader the task of verifying that this set of edges actually
corresponds to a Hamiltonian circuit for G'. ®

Several variants of HAMILTONIAN CIRCUIT are also of interest.
The HAMILTONIAN PATH problem is the same as HC except that we
drop the requirement that the first and last veriices in the sequence be
joined by an edge. HAMILTONIAN PATH BETWEEN TWO POINTS is
the same as HAMILTONIAN PATH, except that two vertices v and v are
specified as part of each instance, and we are asked whether G contains a
Hamiltonian path beginning with u and ending with v. Both of these prob-
jerns can be proved NP-complete using the following simple modification of
the transformation just used for HC. We simply modify the graph G’
obtained at the end of the construction as follows: add three new vertices,
dy. axs1, and axyz, add the two edges {aq.a;} and {ag 41012}, and
replace each edge of the form (a1, (¥, &1 m1> 6)1 BY {ax+1: (¥, Eufueg (i1 O)}-
The two specified vertices for the latter variation of HC are 2o and ax -

All three Hamiltonian problems mentioned so far also remain NP-
complete if we replace the undirected graph G by a directed graph and
replace the undirected Hamiltonian circuit or path by a directed Hamiitonian
circuit or path. Recall that a directed graph G ={V.4) consists of a vertex
set ¥ and a set of ordered pairs of vertices called arcs. A Hamiltonian path
in a directed graph G={V,4) is an ordering of V as <vy,v,...,¥%>,
where n=|V]|, such that (v,v.) € 4 for 1</<n. A Hamiltonian circuit
has the additional requirement that (v,,») € 4. Each of the three

undirected Hamiitonian problems can be transformed to its direcled coun-

terpart simply E replacing each edge {u, v} in the given undirected graph by
the two arcs (u,v) and (v,u). In essence, the undirected versions are
merely special cases of their directed counterparts.

3.1.5 PARTITION

In this section we consider the last of our six basic NP-complete prob-
lems, the PARTITION probiem. It is particularly useful for proving NP-
completeness results for problems involving numerical parameters, such as
lengths, weights, costs, capacities, etc,

Theorem 3.5 PARTITION is NP-complete
ma.% It is easy to see that PARTITION € NP, since a nondeterministic al-
gorithm need only guess a subset 4’ of 4 and check in polynomial time

3.1 SIX BASIC NP-COMPLETE PROBLEMS 61

that the sum of the sizes of the elements in A’ is the same as that for the

clements in 4A—A4".

We transform 3DM to PARTITION. Let the sets W, X,Y, with
|W|=]X|=|¥|=¢,and M & Wx XX Y be an arbitrary instance of 3DM.
Let the elements of these sets be denoted by

&\HTE.%?-...%L
N“*k?kﬂ-...-kﬂ*
Y= c‘._.km....n;‘om

and
a“ms_-sus...-w:*u

where k=|M|. We must construct a set 4, and a size s(a) € Z* for each
a€d, such that 4 contains a subset 4’ satisfying

Y.sle) = ¥ s(a)
atd’ agd—A"
if and only if M contains a matching. .

The set 4 will contain a total of k+2 elements and will be constructed
in two steps. The first k elements of 4 are {a,;: 1<i<k}, where the ele-
ment a; is associated with the triple m,€M. The size s(a;) of g; will be
specified by giving its binary representation, in terms of a string of 0’s and
1’s divided into 3¢ “‘zones® of p = [log,(4+1)] bits each. Each of these
zones is labeled by an element of W U X U Y, as shown in Figure 3.7.

T T
T 1 [] 1 I I

W Wy eae W, Xy Xy o=en X, Fp Yy oo Y,

Figure 3.7 Labeling of the 3¢ *‘zones,” each containing p =[logs{k+1)] bits
of the binary representation for s(a), used in transforming 3DM to
PARTITION.

The representation for s(a;) depends on the corresponding triple
m;= (wrin, Xp(ns Jui) € M (where f,g,and / are just the functions that
give the subscripts of the first, second, and third components for each m;).
It has a 1 in the rightmost bit position of the zones labeled by wy(;), X,
and y,(y and 0°s everywhere else. Alternatively, we can write

uAnhv - N.oGeIHQ: + Nha.qlnsv + N.eaolzav

Since each s{a;) can be expressed in binary with no more than 3pg bits, it

62 PROVING NP-COMPLETENESS RESULTS

is clear that s{a;) can be constructed from the given 3DM instance in poly-
nomial time.

The important thing to observe about this part of the construction is
that, if we sum up all the entries in any zome, over all elemeats of
{a,:1<i<k}, the total can never exceed k=2/—1. Hence, in adding up
¥, s{a) for any subset A’ C {a;: 1<i<k}, there will never be any ‘“‘car-
ries” from one zone to the next. It foilows that if we let

3g—1
B='¥ 2¢
/=0
{which is the number whose binary representation has 2 1 in the rightmost
position of every zone), then any subset 4’ C {a: 1<<i <k} will satisfy

Y s(a) =8
acAd’
if and only if M’ = {m;: a,€ A"} is a matching for M.
The final step of the construction specifies the last two eiements of 4.
These are denoted by b, and &; and have sizes defined by
k
s(b)=21% s(a)} - B

i}

and
k
s(bp = | Y sa)|+ B
=1

Both of these can be specified in binary with no more than (3pg+1) bits
and thus can be constructed in time polynomial in the size of the given
3DM instance.

Now suppose we have a subset 4' € 4 such that

Y s(a) = ¥ sla)

qeA’ aEA—A'
Then both of these sums must be equal to 2X.X, s(a;), and one of the two
sets, A' or A—A4", contains b; but not b;, It foltows that the remaining ele-
ments of that set form a subset of {2;: 1</ <k} whose sizes sum to B, and
hence, by our previous comments, that subset corresponds to a maiching
M in M. Conversely, if M"CM is a matching, then the set
{8} U {a;: m € M} forms the desired set A’ for the PARTITION instance.
Therefore, 3DM « PARTITION, and the theorem is proved. ®

32 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS 63

3.2 Some Techniques for Proving NP-Completeness

The techniques used for proving NP-completeness resuits vary almost
as widely as the NP-complete problems themseives, and we cannot hope to
illustrate them all here, However, there are several general types of proofs
that occur frequently and that can provide a suggestive framework for de-
ciding how to go about proving a new problem NP-complete, We call these
(a) restriction, (b} local replacement, and {c) component design.

In this section we shall indicate what we mean by each of these proof
types, primarily by giving examples. It would be sheer folly to attempt to
define them explicitly. Many proofs can be interpreted in ways that would
place them arbitrarily in any one of the three categories. Other proofs
depend on decidedly problem-specific methods, so that no such limited set
of categories could possibly include them in a natural way. Thus, we cau-
tion the reader nor to interpret this as 2 way to classify 2fl NP-completeness
proofs. Rather, our sole intent is to iliustrate several ways of thinking
about NP-completeness proofs that the authors (and othérs} have found to
be both intuitively appealing and constructive. ,

For brevity in what follows, we shail be omitting from all our proofs
the verification that the given problem is in NP. Each of the problems we
consider is easily seen 10 be solvable in polynomial time by a nondeter-
ministic algorithm, and the reader shoold have no difficulty supplying such
an algorithm whenever required.

3.2.1 Restriction

Proof by restriction is the simplest, and perhaps the most frequently ap-
plicable, of our three proof types. An NP-completeness proof by restriction
for a given problem TI € NP consists simpiy of showing that Tl contains a
known NP-complete problem II' as a special case. The heart of such 2
proof lies in the specification of the additional restrictions to be placed on
the instances of II so that the resulting restricted problem will be identical
to II'. We do not require that the restricted problem and the known NP-
complete problem be exact duplicates of one another, but rather that there
be an “‘obvious™ one-to-one correspondence between their instances that
preserves “yes” and “‘no” answers. This one-to-one correspondence,
which provides the required transformation from IT' 1o II, is usually so ap-
parent that it need not even be given explicitly.

We have already seen several exampies of this type of proof. In Sec-
tion 3.1.2, the problem EXACT COVER BY 3-SETS was shown to be NP-
complete by restricling its instances to 3-sets that contain one element from
a set W, one from a set X, and one from a set Y, where W, X, and Y are
disjoint sets having the same cardinality, thereby obtaining a problemn identi-
cal to the 3DM problem. In Section 3.1.4, DIRECTED HAMILTONIAN

64 PROVING NP-COMPLETENESS RESULTS

CIRCUIT was shown to be NP-complete by restricting its instances to
directed graphs in which each arc («,v) occurs only in conjunction with the
oppositely directed arc (v,u), thereby obtaining a problem identical to the
undirected HAMILTONIAN CIRCUIT problem. .

Thus proofs by restriction can be seen to embody a different way of
looking at things than the standard NP-completeness proofs. Instead of try-
ing to discover a way of transforming a known NP-complete problem to our
target problem, we focus on the target problem itself and attempt to restrict
away its “inessential™ aspects until a known NP-complete problem appears.

We now give a number of additional examples of problems proved
NP-complete by restriction, stating each proof with the brevity it deserves.

{I) MINIMUM COVER
INSTANCE: Collection C of subsets of a set S, positive integer K.
QUESTION: Does C contzin a cover for S of size X or less, that is, a
subset C' C C with {C'| <K and such that {) ¢ =S7?
€c
Proof: Restrict to X3C by allowing only instances having |¢|=3 for all
¢€C and having K= |S|/3.

(2) HITTING SET
INSTANCE: Collection C of subsets of a set §, positive integer X.
QUESTION: Does S contain a hirting set for C of size K or less, that
is, a subset §'C S with |S'| < X and such that $' contains at least
one element from each subset in C?
.uamw Restrict to VC by allowing only instances having |c|=2 for all
ceC.

(3) SUBGRAPH ISOMORPHISM
INSTANCE: Two graphs, G =(V},E}) and H=(V,,E,).
QUESTION: Does G contain a subgraph isomorphic to H, that is, a
subset ¥ G V¥, and a subset E € E; such that | F]=|¥;|,|E|=|E,],
and there exists a one-to-one function f:¥,— V satisfying {u,v} € E;
if and only if {F(e),F(W]}€ET
Proof: Restrict to CLIQUE by allowing only instances for which # is
a complete graph, that is, E; contains all possible edges joining two
members of V.

{4) BOUNDED Umﬁwmm.mwbzz ING TREE
INSTANCE: A graph G=(V¥,E} and a positive integer K< | ¥|~1.
QUESTION: 1Is there a spanning tree for G in which no vertex has
degree exceeding K, that is, a subset £’ € E such that |£'| =] V|-1,
the graph G'=(V,E'} is connected, and no vertex in V¥ is included in
more than X edges from E'?
Proof. Restrict 10 HAMILTONIAN PATH by allowing only instances
in which X =2,

3.2 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS 65

(5) MINIMUM EQUIVALENT DIGRAPH
INSTANCE: A directed graph G=(V.,4) and a positive integer
K< |4l
QUESTION: s there a directed graph G'=(¥,4") such that
A" € A4, |41 £ K, and such that, for every pair of vertices # and v in
¥, G’ comains a directed path from u« 1o v if and only if G contains a
directed path from i 1o v.
Proof Restrict to DIRECTED HAMILTONIAN CIRCUIT by altow-
ing only instances in which G is strongly connected, that is, contains a
path from every veriex u to every vertex v, and X =|¥|. Note that
this is actually a restriction ¢ DIRECTED HAMILTONIAN CIRCUIT
FOR STRONGLY CONNECTED DIGRAPHS, but the NP-
completeness of that problem follows immediately from the construc-
tions we gave for HC and DIRECTED HC.

{6) KNAPSACK
INSTANCE: A finite set U, a “size” s{u) €Z* and 2 *‘value”
v(u) € Z* for each u € U, a size constraint B € Z*, and a value goal
KeZzZt
QUESTION: Is there a subset U’ C U such that

Ys(w)<Band ¥ v(w)2K
uelr uey

Prooft Restrict 10 PARTITION by allowing only instances in which
s(u)=v{u) forall y € U and B=K =%y, .y s(u).

{7} MULTIPROCESSOR SCHEDULING
INSTANCE: A finite set 4 of “tasks,” a “length™ /{a) € Z* for
each g € A, a number m € Z* of “*processors,” and a “‘deadline™
DezZ*. .
QUESTION: Is there a partition 4= A4, UA,U -+ U4, of 4 into
m disjoint sets such that

max] ¥ Ha):1<i<m | <D ?
a€a,

Proof Restrict 10 PARTITION by allowing only instances in which
m=2 and D= "'A%F,, ¢ ((a).

As a final comment, we observe that, of all the approaches o proving
NP-completeness we shall discuss, proof by restriction is the one that would
profit most from an extensive knowledge of the class of known NP-
complete problems — beyond the basic six and Lheir variants. Many prob-
lems that arise in practice are simply more complicaled versions of problems

66 PROVING NP-COMPLETENESS RESULTS

that appear on our lists of NP-complete problems, and the ability to recog-
nize this can often lead t0 a quick NP-completeness proof by restriction.

3.2.2 Local Replacement

In proofs by local replacement, the transformations are sufficiently non-
trivial 10 warrant spelling out in the standard proof format, but they still
tend to be relatively uncomplicated. All we do is pick sorne aspect of the
known NP-compiete problem instance to make up a collection of basic un-
its, and we obtain the corresponding instance of the target problem by re-
placing each basic unit, in a uniform way, with a different structure. The
transformation from SAT to 38AT in Section 3.1.1 was of this type. In that
transformation, the basic units of an instance of SAT were the clauses, and
gach clause was replaced by a collection of clauses according to the same
general rule. The key point to observe is that each replacement constituted
only lccal modification of structure. The replacements were essentially in-
dependent of one another, except insofar as they reflected parts of the origi-
nal instance that were not changed.

Let us flesh these generalities out with some more examples. The fol-
lowing decision problem corresponds to a problem of minimizing the
number of multiplications needed to compute a given collection of products
of elementary terms, where the multiplication operation is assumed to be
associative and commutative:

ENSEMBLE COMPUTATION
INSTANCE: A collection C of subsets of a finite set 4 and a positive in-
teger J.
QUESTION: Is there a sequence
<z1=x1Uyp,z=x2Uys, ..., ;=x;Uy>

of j<J union operations, where each x; and y, is either {a} for some 2 €4

or z, for some k<i, such that x; and y, are disjoint for 1</<J and such

that for every subset c€C there is some 2z, 1€i<, that i identical to ¢ ?

Theorem 3.6 ENSEMBLE COMPUTATION is NP-complete.

Proof We transform VERTEX COVER to ENSEMBLE COMPUTATION.
Let the graph G={(V,E) and the positive integer X < | ¥| constitute an ar-
bitrary instance of VC.

The basic units of the instance of VC are the edges of G. Let a4 be
some new element not in V. The local replacement just substitutes for
each edge (u,v]€E the subset {aq,u,v} € C. The instance of ENSEMBLE
COMPUTATION is completely specified by:

3.2 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS 67

A=Vu _hcu
C = {{agu,v}: {u,vI€E)
J=K+]|E|

It is easy to see that this instance can be comstructed in polynomial time.
We claim that G has a vertex cover of size X or less if’ and only if the
desired sequence of j < J operations exists for C.

First, suppose V' is a veriex cover for G of size K or less. Since we
can add additional vertices 10 V" and it will remain a vertex cover, there is
no loss of generality in assuming that | '] =K, Label the elements of ¥ as
Vi,¥2, . . -, ¥x 8nd label the edges in E as ey,ey, .. ., e,, where m=|E|.
Since V' is a vertex cover, each edge e, contains at least one ¢lement from
V¥'. Thus we can write each ¢; as ¢;= {u;, ¥}, where r[j] is an integer
satisfying 1<r[/1<K. The following sequence of K + |E|=J operations is
easiiy seen to have all the required properties:

<z={agdUln}, za={agtUlvil. ..., ze=lapghUlwg},

= {u Uz, za={udVzgy, . . ., z={ufUz(m>

Conversely, suppose §=<zj=xyUy,...,z=x;Uy;> is the
desired sequence of j < J operations for the ENSEMBLE COMPUTATION
instance. Furthermore, let us assume that S is the shortest such sequence
for this instance and that, among all such minimum sequences, S contains
the fewest possible operations of the form z; = {u} U (v} for u,v €¥. Our
first claim is that § can contain no operations of this fatter form. For sup-
pose that z; = {u} U [v] with #,v€¥ is included. Since {u,v} is not in C
and since § has minimum length, we must have {u,v}€E, and
{ag,u,v} = {agl U z (or z U {ag)) must occur later in S. However, since
{u,v} is a subset of only one member of C, z; cannot be used in any other
operation in this minimum length sequence. It follows that we can replace
the two operations

z={u} U {v} and {agu,v}={ag} Uz

by
z = {agl U {u] and {agu,v}={vjuz

thereby reducing the number of proscribed operations without lengthening
the overall sequence, a contradiction to the choice of 5. Hence § consists
only of operations having one of the two forms, z;={ag} U {u} for u€ ¥ or
{ag.u,v} ={v} U z for {u,v} € E (where we disregard the relative order of
the two operands in each case). Because [C|=]E] and because every
member of C contains three elements, S must contain exactly |E] opera-
tions of the latter form and exactly j—|E| <J—|E}=K of the former.

68 PROVING NP-COMPLETENESS RESULTS

Therefore the set
V' ={ueV: 2,=a,} U {u} is an operation in s}

contains at most X vertices from ¥ and, as can be verified easily from the
construction of C, must be a vertex cover for G. B

Another example of 2 polynomial time transformation using local
replacement, this time from EXACT COVER BY 3-SETS, is the following:

mvPWﬂ.H.HmMOZ INTO TRIANGLES

INSTANCE: A graph G=(V,E), with | V]| =34 for a positive integer ¢.
QUESTION: Is there a partition of ¥ into ¢ disjoint sets ¥, ¥;,....F,
of three vertices each such that, for each ¥; = {vyy, vz, vipih, the three
edges {vm.vim), (v viml, and (vpp, v} all belong 1o £7

Theoremm 3.7 PARTITION INTO TRIANGLES is NP-complete.

Proof We transform EXACT COVER BY 3-SETS to PARTITION INTO
TRIANGLES. Let the set X with |X|=3g and the collection C of 3-
element subsets of X be an arbitrary instance of X3C, We shall construct a

graph G=(V,E), with | ¥|=3g', such that the desired partition exists for -

@G if and only if € contains an exact cover,

The basic units of the X3C instance are the 3-element subsets in C.
The loca! replacement substitutes for each such subset ¢ = {x,y;,z} €C
the collection E; of 18 edges shown in Figure 3.8. Thus G=(V,E} is
defined by

ici
V=xu{} (alL1<s<9)
i=1
lei
E=UE

Notice that the only vertices that appear in edges belonging to more than a
single E;, are those that are in the set X. Notice also that
{v] = ri+32 =34+9]C| so that g'= g+3]C}. It is not hard to see
that this instance of PARTITION INTO TRIANGLES can be constructed in
polynomial time from the X3C instance.

If 1,67, ..., ¢, are the 3-element subsets from C in any exact cover
for X, then the corresponding partition V = VU V,U --- U Vpof Vis
given by taking

{a;111,4;(21,x;), {a;[4),0;[5},5;}
ﬁnmmqu-h._ﬁmw.ﬁ_.w. *Sﬂw”_.n...mm“_.hﬁmo:
from the vertices meeting E; whenever ¢, ={x;,y;,z] is in the exact cover,

3.2 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS 69

a.(3] a.19]

a;(1] a,;(51 a; (81

X Vi Z;

Figure 3.8 Local replacement for ¢; = (x.y,2} € C for transforming X3C o
PARTITION INTO TRIANGLES.

and by taking .
HﬁmmwuuQLHMu..EMHw:e #Qh_ﬁh.”—-a-._ﬂmu—-hnm—..m.._“—u nh.._”daﬁ_.mmu_aﬁmﬁWHw

from the vertices meeting E; whenever ¢; is nor in the exact cover. This
ensures that each element of X is included in exactly one 3-vertex subset in
the partition.

Conversely, if V = V,U¥,U -- - UV, is any partition of G into trian-
gles, the corresponding exact cover is given by choosing those ¢ €C such
that {;(31,4;(61,4,[91} = ¥; for some j, 1<j<q’. We leave to the reader
the straightforward task of verifying that the two partitions we have con-
structed are as claimed. ®

Both examples we have just seen represent what might be called
““pure” local replacement proofs. The structure of the target instance was
completely determined by the structure of the given problem instance and
the local replacements. it is often advantageous 10 augment this with a lim-
ited amount of additional structure that acts as an “‘enforcer,”? imposing
certain additional restrictions on the ways in which a “‘yes’ answer to the
target instance can be obtained. For a target problem having the form
“Given an instance /, does there exist an X; having the desired property?””
the enforcer portion of I acts to limit the possible X;’s so that the remain-
ing choices all mirror the choices available in the original probiem instance,
whereas that portion of J obtained by applying local replacement to the ori-
ginal instance provides the means for making those choices and for ensuring
that they have the desired properties. The two elements b, and b, in the

+ A piciuresque term suggested by Szymanski [1978].

70 PROVING NP-COMPLETENESS RESULTS

NP-completeness proof for PARTITION acted as such an enforcer. We
give two further examples of local replacement proofs using enforcers,
beginning with that for the foilowing scheduling problem:

SEQUENCING WITHIN INTERVALS

INSTANCE: A finite set T of *“‘tasks” and, for each r€T, an integer
“rejease time »* r{1) >0, a “deadline’ d{t)€Z*, and a “‘length” /(1) €Z*.
QUESTION: Does there exist a feasible schedule for T, that is, a function
o T— Z+ such that, for each t€T, o() = r(8), o ()+1(2) € d(2), and, if
'€ T—{1}, then either a{)+1{tY < o(?) or o(¢') 2 o () +H)? (The task
t is “exectted™ from time o (£} to time o (2)+I1(z), cannot start executing
until time r{z}, must be completed by time 4(r), and its execution cannot
overlap the execution of any other task (')

Theorem 3.8 SEQUENCING WITHIN INTERVALS is NP-complete.
Prooft We transform PARTITION to this problem. Let the finite set 4 and
given size s{ag) for each a€A constitute an arbitrary instance of PARTI-
TION, and et B=7,,¢, s(a).

The basic units of the PARTITION instance are the individual elements
a€A. The local replacement for each a€Ad is a single task 1, with
r{t,)} =0, d(t,) = B+1, and i{z,) =s{a). The “‘enforcer” is a single task 7
with r(7) ={B/2], d(D) =[(B+1)/2}, and /(7}=1. Clearly, this instance
can be constructed in polynomial time from the PARTITION instance.

The restrictions imposed on feasible schedules by the enforcer are two-
fold. First, it ensures that a feasible schedule cannot be constructed when-
éver B is an odd integer (in which case the desired subset for the PARTI-
TION instance cannot exist), because then we would have r(7) =d(7}, so
that 7 couid not possibly be scheduled. Thus from now on, let us assume
that B is even. In this case the second restriction comes to the forefront.
Since B is even, r{T)=8/2 and 4(D=r(7)+1, so that any feasible
schedule must bhave o{7)=B/2. This divides the time available for
scheduling the remaining tasks into two separate blocks, each of total length
B/2, as illustrated in Figure 3.9. Thus the scheduling problem is turned
into 2 problem of selecting subsets, those that are scheduled before 7 and
those that are scheduled after 7. Since the total amount of time available in
the two blocks equals the total length B of the remaining tasks, it follows
that each block must be filled up exactly. However, this can be done if and
only if there is a subset 4'C 4 such that

Ts(a)=B2= 3 s(a)
Pryy a€A—A'
Thus the desired subset 4’ exists for the instance of PARTITION if and
only if a feasible schedule exists for the comresponding instance of
SEQUENCING WITHIN INTERVALS. =

3.2 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS 71

>N|m
>N|u,

B+1

Figure 3.9 Scheduie “‘enforced” by the transformation from PARTITION to
SEQUENCING WITHIN INTERVALS.

Our final example of the use of an enforcer in a local replacement proof
involves the following probiem of diagnostic testing:

MINIMUM TEST COLLECTION .

INSTANCE: A finite set 4 of ‘‘possible diagnoses,”” a collection C of sub-
sets of A, representing binary “tests,” and a positive integer J<|C|.
QUESTION: Is there 2 subcollection C' € C with |C'] < J such that, for
every pair 4;,a; of possible diagnoses from A, there is some test cel for
which {{a,,a;}N¢] = 1 (that is; a test ¢ that “distinguishes™ between g; and

a;)?

Theorem 3.9 MINIMUM TEST COLLECTION is NP-complete,

Proof We transform 3DM to this problem. Let the sets W, X, Y, with
|W|=]X]=|Y}=g, and the collection M & W x X X Y constitute an arbi-
trary instance of 3DM.

The basic units of the 3DM instance are the ordered triples in M, The
local replacement substitutes for each m={w,x,y}€M the subset
{w,x,y} € C. The enforcer is provided by three additional elements,
Wo, Xg, and yg, not belonging to WUXUY, and two additional tests,
Wulws) and Xu{xp}. The complete MINIMUM TEST COLLECTION
instance is defined by:

A= WU XVUYU{wy, x yol
C ={{w,x,0kw,x, €M} U { WU {woh, X U {x5})
J=g+2

It is easy to see that this instance can be constructed in polynomial time
from the given 3DM instance.

Once again the eriforcer places certain limitations on the form of the
desired entity (in this case, the subcollection C' of tests). First, C' must
contain both Wuf{w,} and Xulxgl, since they are the only tests that

72 PROVING NP-COMPLETENESS RESULTS

distinguish y, from wy and x,. Then, since wp, xo, and y, are not contained
in any other tests in C, each element of WU XU Y must be distinguished
from the appropriate one of wg, Xg, of y¢ by being included in some addi-
tional test ¢ € C'—{Wu{wol,Xulxpl]. At most J—2=g such additional
tests can be included. Because each of the remaining tests in C contains
exactly one member from each of W, X, and Y, and because W, X, and ¥
are disjoint sets, having g members each, it foliows that any such additional
g tests in C' must correspond to g triples that form a matching for M.
Conversely, given any matching for M, the corresponding ¢ tests from C
can be used to complete the desired collection of J=g+2 tests. Thus M
contains a matching if and only if the required subcollection of tests from C
exists. B

Although the enforcers in both our examples are quite simple, the
reader should be placed on notice that this need not aiways be the case. A
particularly complicated enforcing structure is used in the NP-completeness
proof for PLANAR DIRECTED HAMILTONIAN PATH in {Garey, John-
son, and Stockmeyer, 1976]. Other relatively complicated enforcers can be
found in [Liu and Geldmacher, 19781, [Garey, Johnson, and Sethi, 1976],
and [Garey, Graham, Johnson, and Knuth, 1978].

3.2.3 Component Design

Our last type of proof, and the one that tends to be the most complicat-
ed, is component design. The NP-completeness proofs given in Section 3.1
for 3-DIMENSIONAL MATCHING, VERTEX COVER, and HAMIL-
TONIAN CIRCUIT are typical examples of this type of preof.

The basic idea is to use the constituents of the target problem instance
to design certain “‘components’ that can be combined to “‘realize’ in-
stances of the known NP-complete problem. In these three examples, there
are twp basic types of components, ones that can be viewed as ‘‘making
choices” (for example, selecting vertices, choosing truth values for vari-
ables) and ones for ‘““testing properties™ (for example, checking that eacly
edge is covered, checking that each clause is satisfied). These components
are joined together in a target instance in such a way that the choices are
communicated to the property testers, and the property testers then check
whether the choices made satisfy the required constraints. Interactions
between components occur both through direct connections (such as the
edges linking the truth setting components to the satisfaction testing com-
ponents in the transformation from 3SAT to VC} and throngh global con-
straints (such as the overall bound K in the transformation from 35AT to
vC, which, together with the structure of the componenis, ensures that
each truth setting component contains exactly one vertex from the cover
and that each satisfaction testing component contains exactly two vertices
from the cover).

32 SOME TECHNIQUES FOR PROVING NP-COMPLETENESS 73

More generally, any proof in which the constructed instance can be
viewed as a collection of components, each performing some function in
terms of the given instance, can be regarded as a component design proof.
The generic transformation used to prove Cook’s Theorem in Chapter 2isa
good example of this, with each of the six clause groups being one type of
component.

Since component design proofs tend to be rather lengthy and since we
have aiready given a number of examples of such proofs, we shall confine
ourselves to a single additional example in this section. (More can be
found in [Sethi, 1975], [Even, Itai, and Shamir, 19761, {Garey, Johnson,
and Tarjan, 1976] and [Stockmeyer, 1973].) This final example is quite
different from the standard ones, and illustrates an approach that has been
useful for transforming CLIQUE to several other problems. The target
problem is a scheduling problem related to the problem of SEQUENCING
WITHIN INTERVALS proved NP-complete in the preceding subsection.

MINIMUM TARDINESS SEQUENCING

INSTANCE: A set T of “tasks.” each t€7 having “length” 1 and a
:nmm_n:_:m: d()EZT, a partial order < on T, and a non-negative integer
K<|T). ;

QUESTION: Is there a “‘schedule” o:T—{0,1,...,{T]—1] such that
o (D) £o(¢) whenever t# t', such that o(1) <o(r) whenever t< ', and
such that |{z€T: o (D +1>d(D} < K?

Theorem 3,10 MINIMUM TARDINESS SEQUENCING is NP-complete.
Proof Let the graph G =(V,E) and the positive integer J<|¥| constitute
an arbitrary instance of CLIQUE. The corresponding instance of
MINIMUM TARDINESS SEQUENCING has task set T=VUE,
K = |E|—{7(J=1)/2), and partial order and deadlines defined as follows:

t< ' %> tEV,I'EE, and vertex tis an endpoint of edge ¢'

JOU+1)/2 if1€E
d) = | |v|+|E| ifrew

Thus the “‘component™ corresponding to each vertex is a single task with
deadtine | V| +]E|, and the “‘component™ corresponding to each edge is a
single task with deadline J{J+1)/2. The task corresponding to an edge is
forced by the partial order to occur after the tasks corresponding (o its two
endpoinis in the desired schedule, and only edge tasks are in danger of be-
ing tardy (being completed after their deadlines).

It is convenient to view the desired schedule schematically, as shown in
Figure 3.10. We can think of the portion of the schedule before the edge
task deadline as our “‘clique selection component.” There is room for
J(J+1)/2 tasks before this deadline. In order i0 have no more than the

74 PROVING NP-COMPLETENESS RESULTS

specified number of tardy tasks, at least J(J—1)/2 of these “‘early” tasks
must be edge tasks. However, if an edge task precedes this deadlipe, then
s0 must the vertex tasks corresponding to its endpoints. The minimum
possible number of vertices that can be involved in J(J—1)/2 distinct edges
is J (which can happen if and only if those edges form a complete graph on
those J vertices). This implies that there must be at least J vertex tasks
among the ““early’ tasks. However, there is room for at most

F+D/D-GUT-1D/2) = T

vertex tasks before the edge task deadline. Therefore, any such schedule
- must have axactly J vertex tasks and exactly J(J-1)/2 edge tasks before this
deadline, and these must correspond to a J-vertex clique in ¢, Conversely,
if G contains a complete subgraph of size J, the desired scheduie. can be
constructed as in Figure 3.10. = _

Cligue Clique
vertices edges
"

J JU-D218 [v]=d | |El-7T-1)/2
Vertex | Edge |Vertex Edge
tasks tasks tasks tasks’

0 JU+D VI+E|
2

—— Time —>»

Figure 3.10 Diagram of the desired schedule for an instance of MINIMUM
TARDINESS SEQUENCING corresponding to a CLIQUE of stze J.

3.3 Some Suggested Exercises

In this section we present the definitions of twelve NP-complete E.oc..

lems and leave to the reader the task of proving that they are NP-complete.
None of these problems requires a complicated proof, so we encourage the
reader to attempt them all. For the purposes of these exercises, only those
“known’® NP-complete problems mentioned in Section 3.1 should be used.
As a hint for how to proceed, we have grouped the problems according to
our own preferred proof technique, but the reader should feet free to ignore
these hints whenever an alternative approach seems worthy of pursuit.
Those desiring additional (or more difficult) exercises can choose from the
lists included in the Appendix, keeping in mind that these lists contain
some problems for which only quite elaborate proofs are known.

.3 SOME SUGGESTED EXERCISES 15

hmhs_.nb.ﬁa R i ._\
Lo ‘. _— '

1. LONGEST PATH —

INSTANCE: Graph G={V,E), positive integer X <| V.
QUESTION: Does G contain a simple path (that is, a path anoocannﬁm no
vertex more than once) with K or more edges?

2. SET PACKING
INSTANCE: Collection C of finite sets, positive integer K <} C/.
QUESTION: Does C contair X disjoint sets?

3. PARTITION INTO HAMILTONIAN SUBGRAPHS
INSTANCE: Graph G={V,E), positive integer X <| V|.
QUESTION: Can the vertices of G be partitioned into k<X disjoint sets
Vi.Va, - - ., ¥ such that, for 1</<k, the ncwmq»v_._ induced by ¥; contzins
a Iwau_mos.mn circuit?

4. LARGEST €COMMON SUBGRAPH
INSTANCE: Graphs Gy={V},E;) and Gy=(V;,E;), positive integer X.
QUESTION: ‘Do there exist subsets E{CE; and " E;C E; such that
[Eil=|E3j] 2 KX and such that the two subgraphs Gj= (V,E}) and
G4 = (V3 ,E) are isomorphic?

5. MINIMUM SUM OF SQUARES

INSTANCE: Finite set 4, “‘size™ s{a) € Z* for each g€ 4, positive integers

K and J.
QUESTION: Can the elements of 4 be partitioned into K disjoint sets

L3 2
ApAz, .. Aesuchthat ¥ (E s(a))’ €

=l ag4;

Local Replacement

6. FEEDBACK VERTEX SET
INSTANCE: Directed graph G = {¥,4), positive integer K <| ¥ _
QUESTION: Is there 2 subset VGV such that | V'] K and such that every
directed circuit in G includes at least one vertex from V'?

7. EXACT COVER BY 4-SETS
INSTANCE: Finite set X with |X]=4g, ¢ an integer, and a collection C of
4-eiement subsets of X,
QUESTION: Is there a subcollection €'GC such that every element of X
oceurs in exactly one member of C'?

8. DOMINATING SET
INSTANCE: Graph G =(V,E), positive integer X <| V|,
QUESTION: Is there a subset ¥'C ¥ such that | V'] <K and such that every
vertex ¥ € V—V"is joined 10 at least one member of ' by an edge in £7

9. STEINER TREE IN GRAPHS
INSTANCE: Graph G=(V,E), subset R C ¥, positive integer K < | V]-1.
QUESTION: Is there z subiree of G that includes all the vertices of R and
that contains no more than K edges?

AN
G PR, fn CISE

Lntvorsity of Pucrto Rico

© Doctoral Program in Computing and
Information Sciences and Engincering

Universidad de Puerio Rico
Recinto Universitario de Mayaglez

Session of Analysis of Algorithms
Qualifying Exam — Thursday, August 20, 2009

Select four out of five problems.

Problem 1. Prove that any comparison sort algorithm requires £ (nlogn) comparisons in
the worst case by using the decision tree model. (25 pts)

Problem 2, Consider a sequence of » bits {assume that n >= 4 is a power of 4). We wish to
encrypt this sequence of bits as follows. Divide the sequence into 4 groups of /4 bits, Each
of these groups is then encrypted rwice using the same algorithm. After the 4 groups are
encrypted twice, an operation consisting of » operations is performed to produce the
encrypted version of the original sequence.
a) Find the recurrence relation T(n) that gives the number of operations required to
encrypt a sequence of » bits. (15 pts)

b) Use the result of a) and the master theorem to give a bound on the recurrence T(n).
(10 pts)

Problem 3. Given a directed graph, the tramsitive closure problem is to determine, for all
pairs of nodes u and v, if there exists a path from u to v. Consider the following idea for
how to solve the transitive closure problem: a) Use the adjacency matrix representation for
the graph, where A[i,j] equals 1 if i=j or if there is an edge from node i to node j, and 0
otherwise; b) Note that A*=AA (multiply the matrix A by itself) gives a matrix in which
the (i,j) entry is positive if there is a path of length 2 or less from i to j, and is 0 otherwise;
¢) Similarly, note that A™ (the product of A with itself n-1 times) is a matrix such that if
entry (i, j) is positive, then there is a path of length n-1 from i to j, otherwise there is not
one. Since n-1 is the maximum length of any loop-free path, we have now computed the
transitive closure. Now please answer the following questions based on above idea:
a) Compute A' A®and A’ for the given graph. (9 pts)

O—E——O

b) Describe an algorithm (write the pseudo code) to calculate A" (8 pts)

¢} What is the running time of your algorithm from part (b)? (8 pts)

«,
ot 7
Aoh, o
TonS 970
FEAAN 7

Ea

N)
S Pho, In CISE
Linivorsity of Fuerto Rico

Doctoral Program in Computing and
Information Sciences and Engineering

Universidad de Puerto Rico
Recinto Universitario de Mayagtiez

Problem 4. Let A be an array containing n elements, all distinct. The successor of an
element x in A is the element y such that x is smaller than y but no element z is strictly
between x and y. Every element except the maximum has a successor.

a) Explain how to find the successor of x in O(n) time whether A is a sorted atray or
not. (8 pts)

b) Explain how to find the successor of x in O(log n) time if A is sorted. Would you
recommend presorting A to make finding the successor easier? (9 pts)

¢) Suppose you have a table allowing you to find the successor of any element in O(1)
time. Explain how to sort A in O(n) time. (8 pts)

Problem 5. Let S be a set of n items. Each item has two attributes, a height, h, and a
weight, w. The items are stored in a suitable data structure, outlined below, which seeks to

support the following operations in O(log?*n) time:

1) insert (e): inserts item e in the data structure.

2) report (h,, h,, w,, w,): returns an item e with attributes (h, w), where h, sh = A,and

W, s W s w,, if there is any such e, and returns NIL otherwise.

The data structure consists of a 2-3 tree T with height as the key. At each internal node v a
subsidiary 2-3 tree S, is stored. The subsidiary tree S, uses weight as the key and stored
copies of the items located in the subtree of T rooted at v.

Questions:

1) The storage used by the above data structure is one of @(#),8(nlogn), and O(n*);
which one is it? Justify your answer. (10pts)

2) Explain how to perform operation (2) in O(log® #)time, and operation (1) in
O(log® n) time if there is no restructuring of T. (15 pts)

)

T()-.Q

R)
ﬂs ’I’I)ﬂ n CISF

University of Puerio Rice

Dactoral Prograin in Compuling and
Information Sciences and Engineering

...;

Universidad de Pyerto Rico
Recinto Universitario de Mayagilez

Session of Computer Architectures and Systems
Qualifying Exam - Friday, August 21, 2009

Select four out of five problems.

Problem 1.
SPARC is a processor architecture classified as RISC (Reduced Instruction Set Computer).

a) What characteristics of SPARC earn it the classification as a RISC architecture? (5
points)

b) What characteristics of SPARC are not consistent with the concept of reduced instruction
set computers? (5 points)

¢) Name one contemporary computer architecture that is not a RISC architecture and
explain why is not? (5 points)

d) A non RISC architecture could operate at clock speeds similar to a RISC architecture.
However, a RISC architecture usually has higher performance. Why is this possible? (5
points)

e¢) Given the performance advantage of RISC architectures why are most contemporary high
performance computers run with non RISC processors? (5 points)

Problem 2.
Consider a pipeline execution unit of 5 stages as described below:

Instruction Fetch (IF)
* Brings the instruction to be executed from memory into the CPU.
Instruction decodelregister fetch (ID)

decodes the instruction,

reads the content of the registers specified as source operands,
sign-extends the immediate operands,

calculates the branch target address.

Executionleffective address (EX)

* load/stores — calculates the effectives address
* arithmetic/logic —execute the operation

Memory access (MEM)

Load — reads from the effective memory location
* Store - stores on the effective memory location

* o & @

Write-back (WB)
¢ Writes the result in the destination register if it is an arithmetic/logic or load
instruction.

. G ﬂ ¥ om0 in CISE

T &
% "9"‘6"‘)
50 0,
rn;‘q’\ u'ff!}
A

Universidad de Fuerto Rico

University of Puorto Wico L |
Recinto Universitario de Mayagtiez

Dactoral Program in Compuling and
Information Sciences and Engincering

The memory has only one read/write port {only one memory operation at a time). Consider the
following sequence of SPARC instructions:

add %r13, %r20, %r15

Id [%r15 + %r20}, %r13

or %r21, %13, %r13

sub % 115, %r21, %r22

add %r21, %13, %r21

Show the instruction flow in the following tables:

a) Pipelined unit without data forwarding b) Pipelined unit with data forwarding (12.5
(12.5 points). points).
Cycles IF 1D EX |MEM | WB Cycles | IF ID EX | MEM | WB

1 1

2 2

3 3

4 4

5 5

8 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 16

16 16

17 17

18 18

19 19

20 20

7—(3 £

(__/ I’Ilﬂ in CISE

Liniversify of Puorte Iico

Doctoral Proglam in Computmg and
Information Scicnces and Ingincering

Universidad de Puerto Rico
Recinto Universitario de Mayagtiez

Problem 3.
a) Write the program below in SPARC machine code in the space provided to the left. (20

points)

500 1d [%6r2+%10],%r10

st %r10, [%12-8]

1d [%r2+4],%r11

st %orl 1, [%r2-64]

addec %110, %rl1,%:10

bne -5

subce %r2,%r0,%10

b) Assuming %12=524, describe what the above program does when it actually runs. (5 points)

Problem 4.

in the context of a virtual memory system answer the following with as much detail as possible:
a) What is a virtual address? (2 points)

b) What is a physical address? (2 points)

c) How is the mapping of virtual to physical addresses accomplished? (5 points)

d) What is a page fault? How is it determined? How is it resolved? (6 points)

e} What is a translation lookaside buffer (TLB)? What is its benefit? (5 points)

f) What is fragmentation? For which technology does it represent a problem? (5 points)

Problem §.

The state diagram below corresponds to the state sequence of two instructions with opcodes 10
and 11 respectively. Consider an implementation of this state diagram with the
microprogrammed control unit shown on the last page. The control unit can be modified as
needed. However, you must show the changes in the diagram.

State Diagrar

’.o‘o‘\ 3
s i A, U
T

]
) :j’% Ore PO in CISE

Unifversity of Puorio Rico

Docloral Program in Compuiing and
Information Sciences and Engincering

Universidad de Pusrto Rico
Recinto Universitario de Mayagtlez

a) Indicate the encoding of the Encoder unit (S points).
b) On the table below indicate de values of each control signal for each of the states (20
points).

State | S1 | SO | Inv | NS2 | NS1 [NSO | PLS | PL4 | PL3 | PL2 | PL1 | PLO
6
7
8
9
23
25
45
46

] 1T 0 I i 1 T
auyadig T T 0 1 1 I
Jeposuz |]] 1 o 10T
1uawayy 1 T 0 0 1 1
auadig) T 1 T o T
J23uatuaIo I 1 0 T] T
aunadig 0 T 1 0 6 T
Japosug] 0 0 0 0 T
Ajuaadau] T T 4 T T]
suiadid 0 T X o I 0
é 1 0 X 1]]
Japooug .0 0 X]]]
JopaAu] uppIsRg DA TN] SIS OSN TSN ESN
J0J08[eS SSaIpPY 81glS XeN

01d-61d Sleubs _ezwo m
: - , w m R m _ A , /
Igisibey auedi4 | |

SPARC; Registros

SPARC: Registros de Nvimeros Enteros

PC - Program Gaunter
nPG + Next Prograr Counter
:m.-ffns.micﬂon Rsﬁlsre.r .
'Y< Miftiply Step Register
“TBR -'Tr'up Hase Regﬁfar
o WIM - Windoiw ovalli Hagk
| GWP': Cuirent Window Polnter
_ PSl'?'-:F.r:dr.:enn.:f an.:!ua Reglster
.| r0:r31 Ittaggor Raglsters -
: ni-_fs_f -'Fi:u'!{ng ﬁt_ﬂrn. R_:eg!.l tars

r0-r7 {g0-g?) - registros globales
r8-r15 (00-07) - registrbs de satida
r16-r23 {i0-17) - registros focales

r24-r31 {i0-7) - registros de entrada

FEPOIN R SRR gy

s SR
: ‘:: SPARC: Formatos de Instrucciones

y & - Floating Polnt

§ 2 - Data Movement

'_ SPARC: .For"matq.s" de Instrucciones -

- branches
= gathi
: 313029 2828

seensenPsesbBEES

N 3 SPARC: Claves para Formatos de :

LT SRR 3 A 1, A . »
La fustrucoiones SI_ ARC: Memoria Primaria

op = opcods fonmate 1
" "op? - optoda formato 2
+. 4p2»opoods formato 3
r81 <repiatro fients 4
82 regialre fuants 2:
- rd = regisire desting
" 8immid » nimete Inmadlato con slgno
" 14 regilatro o valor Inmsdiate
o b=bpcode prra puiito flolante
“disp22 - deaplazariento de 22 bita
o disp30~ depplazammients de 30 hits
a+aniwl bit para branches
. tond - aslatclén da condiclén para bradich

o byfés

v Tamaftos:
- Bytas (8 bité)
+ Hulfwerd {18 vits}
. Won {92 bity)
« Doublevord (84 bits)

« Big-endlan
" Address Data

sressobseRed

0 Do
n n La localizacién 300 tiene

3 o ¢lvalorde DORGC70A
3 oA

L
Bo
.
K
-
Bl
.
L«
s
Tl

ITXS

§ e SPARC: Instrucciones Avitméticasy ~ § R+ SPARC: Instrucciones Aritméticas y
- : Ldgicas : :

‘Magmnle sp3 &]eaning

: add
© addwith Gy .
3 ::::::::w"h cariy I f.o - 5 set condition cods bit(Sw1 permite alterer CG)
and bliwise o - Ee " X
wind bliwlse -) » Efemplos de ""assembler”;

151

add %eT, %r3, %rb 7
aubes %, 30, %t 4
aub %2, %3, Yy 2

Igh Iogiui by 52 or almm13 -
shifi dght uritlimetle by 82 o1 sldun]

. SPARC: Ejemplos de Instrucciones H SPARC:
5% Aritméticas y Logicas . . g3 Otras Instrucciones Aritméticas

" l_\!neniunl'c' n).'l B hleanh\g

wnted 40 tiddes - 100008 “tagied add and macmy e
taddesty 100010 . -£addoc and trap on overfiow
Tsubed’ 108001 - - ‘tagged subatract ard modify lec
“| tsubecty 100011 - taubec dnd trap on dverflow
mulsce’ 100E01° - minddply itepand modlly Ieé
Bl 051050 vmsigned Integer multuply

.| mut 081611 " slgned integer niultuply

diy 081110 “ynsigned integer divide

sdlv - 051111 algued integer divide

‘add %.r-!. %rf, Wl X
: después . B2

antes 40
wub¥rd, - 12, %rs ’
B danpuds 40

antag « 128

. wta%rl, %5, %rd
.. X dezpis <128

E 8-
3
E.»
E o

-
K
2B
-
-t

»
k&
-t
£

— _ —
K s SPARC. taddcc ¥ taddecty ' : SPARC: umul y smul
o . : .

"

B8 taddcc reallza una suma gomo addec pero ol §# . umul multiplica dos operandos de 32 bits -
Be- overﬁow blt qua se genéra. as un tagged overftow &% ygeneraun resultado de 64 bits.
-"que se fetemina como slgus: ke
e v Yirdersfxrs?d
» v=1gelbifio0de cuafqufera de fog operendos fuenles y |
" a8 d.'sunto do coro o fa"suma genera un overflow arilmdtico b « Yird £ raf X slmm13 (slgn exiendad)
e v=_0pa,ra cudlquitr ofra eéndicién E % - Los condition codes N y Z se modifican
e I E» de acuerdo al resultad de rd.
: & laddoely vpera como laddee sl v=0, pero sl v=1 »)) ’ " :
entonces preduce un trap, la suma no ocurre v fos

E-& : .
5 p “+ smul es slmtlar a umul excaptc 1
- conditlon codes no se alteran. . sm) l caplo Gue ‘as

E.» operandos se consfderan con signos

e

‘o_ '

§ * SPARC: Instrucciones load/store -SPARC: Instrucciones loadistore

PYEEY
v

Maeronle; “opX . - Mesning .

XXX ELED

- | Hdshy - 01001 - Logd skanéd byle :
© Wiol0 Load sigied halfword
001000 . Load vord
- 400001 - 'Loaﬂunslsuldby\‘a
* 5000010 " Load unslguul hglfword
0L 'Imddnnh!ewnrd
", " Store byte .
00100 g:zgﬂ:mﬂ . : = Efsmpios de "usaml.:!_ar".'
1i . Btore doubleword . 8 4 n
- Bwap reglater with memory word - 1d [%e5 + %rB), %rd
ST T, : L 101 [%e6 « 12], %ot a2
ek S, [r3a200) . 3] 300 3]

. Localizacitn efeotiva: .
Fre1] + [rs2) Jel contenido de ral + el contenldo de rs2
fraf] + sinmi3 fol conlende da rat + vafer Inmadiato slmm13

sssabe

»

Bloomtd

E-®
R-¥
»

‘; SPARC: Instruccmnes de Brinco
instrucclén:) (15 loc78 ool) §# - Porcédigos condlclonales de enteros
o ntes 380)) ‘I ’

1d (4 5 S, ord B .
P+ KBl e apie 380 : §.4 + Porcédigos condigionales de punto
o e fotante
. ntes asa £
1d [%r4 - 12), %rt . -
. © despuds 380 E® . por cddigos condiclonales de

. Coprocesador

. " antes 380
s, [%r0 + 300} .»
. despuds - 360 : B>
) »

. b + SPARC: Instrucciones de Brinco por _ : - SP‘AR(. Instrucciones de Brinco
- : Cédigos Condicionales de Enteros

Mpimenic - coud . Meaning .~ .
000 . Brincaslenipre < -
rinéa nunea <
Iriica sl 5o Iguat -
hrca sl guat . :
- Brldts s} miyor .. wotiZor (Rxor Vj} B 1« Lefocalizacikin sfectiva del brinco es PG * 4°disp22
7 Hriien ¥l menor o kguat Zor (Nxor V)| s
. ‘Brinca B mayor g iguat nok (Nxor ¥) - {PGwpPC,
1 " Biinca sl mends . Tt NEOEY R-® oPCRPCs 4diaplly
;333::%12'&1??’3“@ Menn| - g empion do ‘assembler's
L “‘g - Instrucsién dlap22
‘matN g ® e +300
TN . A breg, &, 126 «120 {awf}
11 Brlnu.dﬁverﬂow-o By k. & .
: Briceadlpverfiowal - - v . Y

B s - SPARC: Instrucciones de Brinco _ B SPARC Ejemplas de Instmccmnes de
B8 Condicional . * Brinco Condiclonal
. < Bla=1 (el annul bit} ¥ se da el hﬂm:olllm!mcclﬁnquan!guanl " .

. hraru:h (-] i]uwta y luegh se brinca. : .
b : o nPG {rormaiments PG + JJ, PPC 5 PG+ 4*disp22? B Lo Instrocctén Brlnca No brinca

PC PG PG nPC
31 awi y ho'&s da & brinés la rnalml:eiﬁn qua sljue #f branch 89

.anula (no's« ejacuta) y xo ajacuta la qua sigue .

ﬁc-'Pme,"n'Pc'-Fcuz

1000 ba 4300 1000 1004 1000 1004

1004 1300 1004 1008

1300 1304 Japs 1012

8 n-Oy wo da el brfncn la instrucelon q,uo elyjue ol branch sa
fecuta y luagc so brinca.

PC = nPC (Aormuiments PG + d,l, APC = PG+ 4*disp22

1a=0'y no #& da al brinco la [nainieelén qus aljus el branchss -
feouta ¥ 10ag [qie f wigue a ssln .

4000 brieg, a, 120 4000 4004 000 4004
Abp4 3880 ACADDD 4008
3BBD 3884 608 4042

Na b4 efecta

[osssnsesse

|+ SPARC: Orden de ejecucion de DCTI

-Cuandola Inslmcclén que slgua a un brinco : B [cuefi2CTiH0 16 CTI 60

Incondicional es una ingtrucclon de bringo (una . R 4 - — - "

‘Instrucelén de bringo no puede sogulr una de P zg‘ Unesnd. | DETI faken "'“'m'm'_“’ .
e 1Uncond, | Brce(i=n) intaken | 12,164044;..

‘brinco condiclional) B® |3 [periuncond:| Breefa=1) untaken | 12,16,44,48, ... (40 a0ulied)

DCT1 Uncond. | B*A¢=I) $3,16,60,64, ... 140 avrulled)

.La secuencla de gecucion de'instrucclones Bw| 5 [Baw=3) |anyCTI 1240,44, ... (16 annylied)

depende de la combinacién-de Instrusciones CTI ; j Bee bem - 13, unpredictable

‘{sontrol tansfer instructions) ;

Qrder of Execution

BA “» DA FBAoCBA
Boo —» Blos, FBfec, 0 CBecs
‘_’-Dc-n ungord, = . GALL, JMPL, RETT, 0 B*A (con a=0)
E# D0Twen - CALL, JMPL RETT, B'A (con axD), 0 @' takan
0 :

Lo
g

* SPARC: Instrucciones de Subrufinas ¥ "‘ ' SPARC: Instruccién call

Muqiiﬁill('.'.:up:. 61)3_ E Memtug

Coall, - o Al Brlnurguurdnl’cenﬂs Operacitn:

Jmpl. . 100 111000 Brlneaygu.nrdnl’(!:nrd

ris=PC
' . . PG =nPC

. ulas instrucciones de subirutinias son de tipo “delayag”

: : nPGC = PC + 4°d/sp30

Efemnplo de “assemblar"
call 4008

fosovsvvansed

SPARC: Ejemplos de Instrucciones de
Subrutinas

PARC: Instruccién jmpl

.

instrucclén

FETTEY

antes
- caill 4003
Opérdclon: despuss
" rdmpg

FCRnPe

anlas
Impt %14, %rs, %
daspuds
. .PPG= 78T +rs20 181+ simmi13
antes
- - Ejaniplos de “a3sembler”
Cjmpls M % Wt "
gl A A2 (Rclurnfmmluhmuljm) B

Jmspl %rd, 12, %0
denpudn

ERRE R

FRYT TS EIEERT I

&3 ' .
SPARC: Instrucciones Save y Restore

s [Finosonte ot o3 3 31 302y 2624 - 918 1413 12 I

L CWPRCWP-IY” (n\lm ventunu)

_ridoral+im2 of rdmrsl4aimmi’
ar WIM{CWP- l)-l

Dverﬁow n'np

v W ‘l"liiﬂll HWIMCWP-D=0,

Lok tagietros fulnluhla 1 f ala
vantana orlglnnl aia quiapunia o1 CWP lnlu dola cjlcuclﬁn de
Ies Inatiuociones Sava or Reatore,

Teeseees

El raglatro desllino de [a 154 de suma ala
‘nusvé ventaha a que apunta el CWP como cohascusnsia de fa
ajacucldn de 1as instrutclonea $Save or Restore.

| restore . . 10111101 HWIM{CWNIM
; - e 'CWP-CWPHl (venunlde uhrno) X
: ; rdzpalera2 or rdzralasimmid
| IWIMCWP-1a
" Underflow trap -

+ Laoparacidn de suma no se lieva a cabs al scurre ol trap.

Ejomplos de Assamblar:
save Yrd, %, Yirl
. rastore %rd, -30, %rt

YTy

P'A'RC.‘ Ejémpios de Instrucciones Save y \, SPARC I nstmccwnes de trap por
8 &' Restore si no Ocuire Underflow o Overflow B Cadigos Condtcwnales de Enfteros

: il p!
0. Brirch ninon
i ol o

Instriscelén

- Z
antes nok {Z or (N xor Y))
dor N aer'¥):

not (N xor V)

T Nwmer Y|

oot (Cor)|

©or £y

not C

S 4

notN’

aave %rd, %rs, %rd
P deapuéa

antes

&ws§§§$§a

rastora ¥rd, « 12, s
: despuds

9‘ N
X Brinusin erﬂnw'=0 not ¥
i Brlnu slnv:rilnw-l Y

v e

B % SPARC: Instrucciones de Trap
e+ Condicional
-

g tosoitware_{rap#
[}

. SPARC. Trap Base Reg:ster (TBR)

Trap #) {4 [asirucclones) -
Trap ¥l (4
Treap 1 (4 Inktrucelones)

Trap #2153 (4 hnlrncdnnn)
Trap #2154 (4 Indtrucclopes)
* [Trap #2535 (4 Insfrucelones)|

| s SPARC: Instruccion de Retorno de
g Trap - rett

. 1‘:‘_ “la Instruccion rett débe ser precedida por
una instruccién fmpi (formando un DGTI}

Jmpt %rtY, %re } vigJo PG
Reti %rfd: . } vigjo nFG

e

Jmpl %r18, %rd)} viglo nPC
Reft Wrig + 4 } vlejo nPG+4

+ Untrap podria oclsionar otro trap.

TTITITLIL,

' : SPARC: Instrucciones de Trap

§ * Condicional

~ Slla comﬂcldn L5 c[arta y'no exlaten Interrupls o traps deo
mayor pricrdad L& 8@ geriera un trap.
St [a condictén nu se da |a Instrucelén se comporta como
un NOP,

- Guando &0 da el trap, en e campo it del Trap Base Repiater
{TBR) 8¢ aacribae 128 més los 7 bite manos elgnificativos
de rs1 + rs2 & ret + iImm7 {sligne extendido).

Una vor &0 genera of trap el preceaador entra en modo
supsivisor, Inhakilita los traps (ET=0}, dgcrementa el CWP
{nueva vantana), y guarde &l PC en sl registro r7 y ol nPG
on ri8; Entancas ol PCeTER y nPC=TBR+4

sovssBseIbRbGE

@

) : SPARC: Instruccion de Retorno de

.

e
g
B

31301 54 1018 141312

Muempnfc op opd ﬁlwulng

| rete L1 ot UWIM(CWP 1)'0

| WCE Naraloul of rdmygl4simmi3] -
“ptatare s de PS
. ET w1 (edable frap)’

[seossosvsesss

@

: SPARC: Instruccién sethi

!\!peﬁ)onk.: op apt Meumng

selhl 0% 100" - Carga valor [omediate de 13 bitaen -

. los 22 bis mis stgnlﬁeallvoe derd, Loy
restanes 10 bit meénos signlficativos se -
tompn o valorde &, :

Efomplo:

!mlrue.;slﬁn it

antea ACCIDSEGh
a4th] AFFFFFh, %r1

después FFFFFCO0h

SPARC: Sintetizacién de Insirucciones -

* rot q Jmpl. %r5, %i21, %ro

ove Wl or %0, %rl, %r6

B »

IR
*

C; 'Sin't?iii#r}ién de Modos de

. : Acceso a Operandos . .

o inmediate’

-Indexad

. oo

 add %#5, %r2t, %r0

add %r5, +34, %3
10 %rs, %rat, %r2
Id _%rs',. A8, %r8
st ‘5/nr'5:.'%}0,"%r6' _
st %0, 1004, %i6.

bak30ps

ol

