Building Fault-Tolerant Consistency Protocols for an Adaptive Grid Data-Sharing Service

Gabriel Antoniu, Jean-François Deverge, Sébastien Monnet

PARIS Research Group
IRISA/INRIA
Rennes, France

Workshop on Adaptive Grid Middleware - AGridM 2004
September 2004, Juan-Les-Pins
Context: Grid Computing

- Target architecture: cluster federations (e.g. GRID 5000)
- Target applications: distributed numerical simulations (e.g. code coupling)
- Problem: the right approach for data sharing?

Solid mechanics

Optics

Dynamics

Thermodynamics

Satellite design
Current Approaches: Explicit Data Management

- Explicit data localization and transfer
 - GridFTP [ANL], MPICH-G2 [ANL]
 - Security, parallel transfer
 - Internet Backplane Protocol [UTK]

- Limitations
 - Application complexity at large-scale
 - No consistency guarantees for replicated data
Handling Consistency: Distributed Shared Memory Systems

- Features:
 - Uniform access to data via a global identifier
 - Transparent data localization and transfer
 - Consistency models and protocols

- But:
 - Small-scale, static architectures

- Challenge on a grid architecture:
 - Integrate new hypotheses!
 - Scalability
 - Dynamic nature
 - Fault tolerance

Node 0

Migration?
Replication?

Node 1
Case Study:
Building a Fault-Tolerant Consistency Protocol

- Starting point: a home-based protocol for entry consistency
 - Relaxed consistency model
 - Explicit association of data to locks
 - MRSW: Multiple Reader Single Writer
 - acquire(L)
 - acquireRead(L)
 - Implemented by a home-based protocol

![Diagram of Home node and Client nodes]
Home Based Protocol

Cluster A

Client A

acquire

lock

read x

data x

w(x)

Home

acquire

lock

read x

data x

w(x)

release

Cluster B

Client B

lock

read x

data x

w(x)

release
Inspired by CLRC[LIP6, Paris] and H2BRC[IRISA, Rennes]
Problem: Critical Entities May Crash

How to support home crashes on a grid infrastructure?
Idea: Use Fault-Tolerant Components

- Replicate critical entities on a group of nodes
- Group of nodes managed using the *group membership* abstraction
- Rely on *atomic multicast*
- Example architecture: A. Schiper[EPFL]
Approach: Decoupled Design

- Consistency protocol layer and fault-tolerance layer are separated

- Interaction defined by a junction layer
Consistency/Fault-Tolerance Interaction

- Critical consistency protocol entities implemented as fault-tolerant node groups
- Group management using traditional group membership and group communication protocols
- Junction layer handles
 - Group self-organization
 - Configuration of new group members
Replicate Critical Entities Using Fault-Tolerant Components

- Rely on replication techniques and group communication protocols used in fault-tolerant distributed systems
Replicate Critical Entities Using Fault-Tolerant Components

- Rely on replication techniques and group communication protocols used in fault-tolerant distributed systems
The JuxMem Framework

- DSM systems: consistency and transparent access
- P2P systems: scalability and high dynamicity
- Based on JXTA, P2P framework [Sun Microsystems]
Implementation in JuxMem

- Data group ≈ GDG + LDG

Juxmem group

Cluster group A

Cluster group B

Cluster group C

Virtual architecture

Physical architecture
Preliminary Evaluation

- Experiments
 - Allocation cost depending on replication degree
 - Cost of the basic data access operations
 - read/update
- Testbed: *paraci* cluster (IRISA)
 - Bi Pentium IV 2.4 Ghz, 1 Go de RAM, Ethernet 100
 - Emulation of 6 clusters of 8 nodes
Allocation Process

1. Discover \(n \) providers according to the specified replication degree

2. Send an allocation request to the \(n \) discovered providers

3. On each provider receiving an allocation request:
 - Instantiate the protocol layer and the fault-tolerant building blocs
Preliminary Evaluation: Allocation Cost

![Graph showing latency (msecs) vs. GDG and LDG group sizes (GDGxLDG)]
Cost of Basic Primitives: read/update

![Graph showing the cost of basic primitives for different LDG sizes. The graph compares read and update operations for 16K and 4M data sizes.]
Conclusion

- Handling consistency of mutable, replicated data in a volatile environment
- Experimental platform for studying the interaction fault-tolerance <-> consistency protocols
Future Work (AGRIDM 2003)

- Consistency protocols in a dynamic environment
- Replication strategies for fault tolerance
- Co-scheduling computation and data distribution
- Integrate high-speed networks: Myrinet, SCI.
Future Work (AGridM 2003)

- Consistency protocols in a dynamic environment
- Replication strategies for fault tolerance
- Co-scheduling computation and data distribution
- Integrate high-speed networks: Myrinet, SCI.
Future Work (AGridM 2004)

- **Goal:** build a Grid Data Service
 - Experiment various implementations of fault-tolerant building blocks (atomic multicast, failure detectors, ...)
 - Parametrizable replication techniques
 - Experiment various consistency protocols with various replication techniques
 - Experiment with realistic grid applications at large scales

- **GDS (Grid Data Service) project of ACI MD:**

 http://www.irisa.fr/GDS