Lexical Analysis

Lecture 3-4
Course Administration

- PA1 due September 15 11:59:59 PM
- Read Chapters 1-3 of Red Dragon Book
- Continue Learning about Flex or JLex
Outline

• Informal sketch of lexical analysis
 - Identifies tokens in input string

• Issues in lexical analysis
 - Lookahead
 - Ambiguities

• Specifying lexers
 - Regular expressions
 - Examples of regular expressions
Recall: The Structure of a Compiler

Today we start Optimization

Source \rightarrow \text{Lexical analysis} \rightarrow \text{Tokens} \rightarrow \text{Parsing} \rightarrow \text{Interm. Language} \rightarrow \text{Code Gen.} \rightarrow \text{Machine Code}
Lexical Analysis

• What do we want to do? Example:

 if (i == j)
 z = 0;
 else
 z = 1;

• The input is just a sequence of characters:
 \tif (i == j)\n \tz = 0;\n \n \text{else}\n \tz = 1;

• Goal: Partition input string into substrings
 - And classify them according to their role
What’s a Token?

- Output of lexical analysis is a stream of tokens
- A token is a syntactic category
 - In English:
 noun, verb, adjective, ...
 - In a programming language:
 Identifier, Integer, Keyword, Whitespace, ...
- Parser relies on the token distinctions:
 - E.g., identifiers are treated differently than keywords
Tokens

- Tokens correspond to **sets of strings**.

- Identifier: *strings of letters or digits, starting with a letter*

- Integer: *a non-empty string of digits*

- Keyword: “else” or “if” or “begin” or ...

- Whitespace: *a non-empty sequence of blanks, newlines, and tabs*

- OpenPar: *a left-parenthesis*
Lexical Analyzer: Implementation

- An implementation must do two things:
 1. Recognize substrings corresponding to tokens
 2. Return the value or lexeme of the token
 - The lexeme is the substring
Example

- Recall:
 \[
 \text{tif}\ (i == j)\ \text{\textbackslash n\ \textbackslash t\ tz} = 0;\ \text{\textbackslash n\ telse}\ \text{\textbackslash n\ \textbackslash t\ tz} = 1;
 \]

- **Token-lexeme** pairs returned by the lexer:
 - (Whitespace, “\t”)
 - (Keyword, “if”)
 - (OpenPar, “(“)
 - (Identifier, “i”)
 - (Relation, “==“)
 - (Identifier, “j”)
 - ...

Prof. Necula CS 164 Lecture 3
Lexical Analyzer: Implementation

• The lexer usually discards “uninteresting” tokens that don’t contribute to parsing.

• Examples: Whitespace, Comments

• Question: What happens if we remove all whitespace and all comments prior to lexing?
Lookahead.

- Two important points:
 1. The goal is to partition the string. This is implemented by reading left-to-right, recognizing one token at a time

 2. “Lookahead” may be required to decide where one token ends and the next token begins
 - Even our simple example has lookahead issues
 i vs. if
 = vs. ==
Next

• We need
 - A way to describe the lexemes of each token
 - A way to resolve ambiguities
 • Is if two variables i and f?
 • Is == two equal signs = =?
Regular Languages

• There are several formalisms for specifying tokens

• *Regular languages* are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations
Languages

Def. Let Σ be a set of characters. A *language over* Σ is a set of strings of characters drawn from Σ.

(Σ is called the *alphabet*)
Examples of Languages

• Alphabet = English characters
• Language = English sentences

• Not every string on English characters is an English sentence

• Alphabet = ASCII
• Language = C programs

• Note: ASCII character set is different from English character set
Notation

• Languages are sets of strings.

• Need some notation for specifying which sets we want

• For lexical analysis we care about regular languages, which can be described using regular expressions.
Regular Expressions and Regular Languages

• Each regular expression is a notation for a regular language (a set of words)

• If A is a regular expression then we write $L(A)$ to refer to the language denoted by A
Atomic Regular Expressions

• Single character: ‘c’
 \[L(\text{‘c’}) = \{ \text{“c”} \} \] (for any \(c \in \Sigma \))

• Concatenation: \(AB \) (where \(A \) and \(B \) are reg. exp.)
 \[L(AB) = \{ ab \mid a \in L(A) \text{ and } b \in L(B) \} \]

• Example: \(L(\text{‘i’ ‘f’}) = \{ \text{“if”} \} \)
 (we will abbreviate ‘i’ ‘f’ as ‘if’)
Compound Regular Expressions

- **Union**

\[L(A \mid B) = \{ s \mid s \in L(A) \text{ or } s \in L(B) \} \]

- **Examples:**

 ‘if’ | ‘then’ | ‘else’ = \{ “if”, “then”, “else” \}

 ‘0’ | ‘1’ | … | ‘9’ = \{ “0”, “1”, …, “9” \}

 (note the … are just an abbreviation)

- **Another example:**

 (‘0’ | ‘1’) (‘0’ | ‘1’) = \{ “00”, “01”, “10”, “11” \}
More Compound Regular Expressions

• So far we do not have a notation for infinite languages

• Iteration: A^*

$$L(A^*) = \{ "" \} \cup L(A) \cup L(AA) \cup L(AAA) \cup ...$$

• Examples:

‘0’* = { “”, “0”, “00”, “000”, …}

‘1’ ‘0’* = { strings starting with 1 and followed by 0’s }

• Epsilon: ε

$$L(\varepsilon) = \{ "" \}$$
Example: Keyword

- Keyword: “else” or “if” or “begin” or ...

‘else’ | ‘if’ | ‘begin’ | …

(Recall: ‘else’ abbreviates ‘e’ ‘l’ ‘s’ ‘e’)
Example: Integers

Integer: *a non-empty string of digits*

digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
number = digit digit*

Abbreviation: \(A^+ = A A^* \)
Example: Identifier

Identifier: strings of letters or digits, starting with a letter

letter = ‘A’ | ... | ‘Z’ | ‘a’ | ... | ‘z’
identifier = letter (letter | digit)*

Is (letter* | digit*) the same?
Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

(' ' | '\t' | '\n')+
Example: Phone Numbers

- Regular expressions are all around you!
- Consider (510) 643-1481

\[
\Sigma = \{ 0, 1, 2, 3, \ldots, 9, (,), - \}
\]

\[
\text{area} = \text{digit}^3
\]

\[
\text{exchange} = \text{digit}^3
\]

\[
\text{phone} = \text{digit}^4
\]

\[
\text{number} = \text{'}(\text{'}\text{area}\text{'}\text{')}\text{exchange}\text{'}-\text{'}\text{phone}\text{'}
\]
Example: Email Addresses

- Consider necula@cs.berkeley.edu

\[
\Sigma = \text{letter} \mid \text{.} \mid \text{@} \\
\text{name} = \text{letter}^+ \\
\text{address} = \text{name} \text{‘@’ name (‘.’ name)}^*
\]
Summary

• Regular expressions describe many useful languages

• Next: Given a string s and a rexp R, is

$$s \in L(R)?$$

• But a yes/no answer is not enough!
• Instead: partition the input into lexemes

• We will adapt regular expressions to this goal
Outline

• Specifying lexical structure using regular expressions

• Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)

• Implementation of regular expressions
 \(\text{RegExp} \rightarrow \text{NFA} \rightarrow \text{DFA} \rightarrow \text{Tables} \)
Regular Expressions => Lexical Spec. (1)

1. Select a set of tokens
 - Number, Keyword, Identifier, ...

2. Write a R.E. for the lexemes of each token
 - Number = digit+
 - Keyword = ‘if’ | ‘else’ | ...
 - Identifier = letter (letter | digit)*
 - OpenPar = ‘(‘
 - ...

Regular Expressions => Lexical Spec. (2)

3. Construct \(R \), matching all lexemes for all tokens

\[
R = \text{Keyword} \mid \text{Identifier} \mid \text{Number} \mid \ldots
= R_1 \mid R_2 \mid R_3 \mid \ldots
\]

Facts: If \(s \in L(R) \) then \(s \) is a lexeme
- Furthermore \(s \in L(R_i) \) for some “i”
- This “i” determines the token that is reported
Regular Expressions => Lexical Spec. (3)

4. Let the input be \(x_1 \ldots x_n \)

 \((x_1 \ldots x_n \) are characters in the language alphabet)

 • For \(1 \leq i \leq n \) check

 \(x_1 \ldots x_i \in L(R) \) ?

5. It must be that

 \(x_1 \ldots x_i \in L(R_j) \) for some \(i \) and \(j \)

6. Remove \(x_1 \ldots x_i \) from input and go to (4)
Lexing Example

\[R = \text{Whitespace} \mid \text{Integer} \mid \text{Identifier} \mid '+' \]

- Parse "f +3 +g"
 - "f" matches \(R \), more precisely \text{Identifier}
 - "+" matches \(R \), more precisely '+'
 - ...
 - The token-lexeme pairs are
 (Identifier, "f"), ('+', '+'), (Integer, "3")
 (Whitespace, " "), ('+', '+'), (Identifier, "g")

- We would like to drop the \text{Whitespace} tokens
 - after matching \text{Whitespace}, continue matching
Ambiguities (1)

• There are ambiguities in the algorithm
• Example:
 \[R = \text{Whitespace} \mid \text{Integer} \mid \text{Identifier} \mid '+' \]
• Parse “foo+3”
 - “f” matches \(R\), more precisely \text{Identifier}
 - But also “fo” matches \(R\), and “foo”, but not “foo+”
• How much input is used? What if
 • \(x_1 \ldots x_i \in L(R)\) and also \(x_1 \ldots x_K \in L(R)\)
 - “Maximal munch” rule: Pick the longest possible substring that matches \(R\)
More Ambiguities

\[R = \text{Whitespace} \mid \text{‘new’} \mid \text{Integer} \mid \text{Identifier} \]

- Parse “new foo”
 - “new” matches \(R \), more precisely ‘new’
 - but also Identifier, which one do we pick?

- In general, if \(x_1 \ldots x_i \in L(R_j) \) and \(x_1 \ldots x_i \in L(R_k) \)
 - Rule: use rule listed first (j if \(j < k \))

- We must list ‘new’ before Identifier
Error Handling

\[R = \text{Whitespace} | \text{Integer} | \text{Identifier} | '+' \]

- Parse “=56”
 - No prefix matches \(R \): not “=“, nor “=5“, nor “=56“

- Problem: Can’t just get stuck …

- Solution:
 - Add a rule matching all “bad” strings; and put it last

- Lexer tools allow the writing of:
 \[R = R_1 | ... | R_n | \text{Error} \]
 - Token \text{Error} matches if nothing else matches
Summary

• Regular expressions provide a concise notation for string patterns

• Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors

• Good algorithms known (next)
 - Require only single pass over the input
 - Few operations per character (table lookup)
Finite Automata

- Regular expressions = specification
- Finite automata = implementation

- A finite automaton consists of
 - An input alphabet Σ
 - A set of states S
 - A start state s
 - A set of accepting states $F \subseteq S$
 - A set of transitions $state \xrightarrow{\text{input}} state$
Finite Automata

- Transition
 \[s_1 \rightarrow^a s_2 \]
- Is read
 In state \(s_1 \) on input “a” go to state \(s_2 \)
- If end of input (or no transition possible)
 - If in accepting state => accept
 - Otherwise => reject
Finite Automata State Graphs

- A state
- The start state
- An accepting state
- A transition
A Simple Example

• A finite automaton that accepts only “1”

• A finite automaton accepts a string if we can follow transitions labeled with the characters in the string from the start to some accepting state
Another Simple Example

- A finite automaton accepting any number of 1’s followed by a single 0
- Alphabet: \{0,1\}

Check that “1110” is accepted but “110…” is not
And Another Example

- Alphabet \(\{0,1\} \)
- What language does this recognize?
And Another Example

- Alphabet still \{ 0, 1 \}

- The operation of the automaton is not completely defined by the input
 - On input “11” the automaton could be in either state
Epsilon Moves

- Another kind of transition: ε-moves

- Machine can move from state A to state B without reading input
Deterministic and Nondeterministic Automata

• Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves

• Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

• Finite automata have finite memory
 - Need only to encode the current state
Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input

- NFAs can choose
 - Whether to make ε-moves
 - Which of multiple transitions for a single input to take
Acceptance of NFAs

- An NFA can get into multiple states

- Input: 1 0 1

- Rule: NFA accepts if it can get in a final state
NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)

- DFAs are easier to implement
 - There are no choices to consider
NFA vs. DFA (2)

- For a given language the NFA can be simpler than the DFA

- DFA can be exponentially larger than NFA
Regular Expressions to Finite Automata

- High-level sketch

![Diagram]

1. Regular expressions
2. NFA
3. DFA
4. Lexical Specification
5. Table-driven Implementation of DFA
Regular Expressions to NFA (1)

• For each kind of rexp, define an NFA
 - Notation: NFA for rexp A

• For ε

• For input a
Regular Expressions to NFA (2)

- For AB

- For $A \mid B$
Regular Expressions to NFA (3)

• For A^*
Example of RegExp -> NFA conversion

- Consider the regular expression
 \[(1 \mid 0)^*1\]
- The NFA is
Next

- Regular expressions
- Lexical Specification

NFA

DFA

Table-driven Implementation of DFA
NFA to DFA. The Trick

• Simulate the NFA
• Each state of DFA
 = a non-empty subset of states of the NFA
• Start state
 = the set of NFA states reachable through ε-moves from NFA start state
• Add a transition $S \xrightarrow{a} S'$ to DFA iff
 - S' is the set of NFA states reachable from the states in S after seeing the input a
 - considering ε-moves as well
NFA -> DFA Example

Prof. Necula CS 164 Lecture 3
NFA to DFA. Remark

• An NFA may be in many states at any time

• How many different states?

• If there are N states, the NFA must be in some subset of those N states

• How many non-empty subsets are there?
 - $2^N - 1 =$ finitely many
Implementation

• A DFA can be implemented by a 2D table T
 - One dimension is “states”
 - Other dimension is “input symbols”
 - For every transition $S_i \xrightarrow{a} S_k$ define $T[i,a] = k$

• DFA “execution”
 - If in state S_i and input a, read $T[i,a] = k$ and skip to state S_k
 - Very efficient
Table Implementation of a DFA

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>U</td>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>
Implementation (Cont.)

- NFA -> DFA conversion is at the heart of tools such as flex or jlex

- But, DFAs can be huge

- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations
PA2: Lexical Analysis

- Correctness is job #1.
 - And job #2 and #3!

- Tips on building large systems:
 - Keep it simple
 - Design systems that can be tested
 - Don’t optimize prematurely
 - It is easier to modify a working system than to get a system working