Properties of functions

Lecture 13
ICOM 4075
Further concepts

Definition: Let R be a relation that is a function.

Given a subset C of A, the set

$$R(C) = \{b \in B: b = R(a) \text{ some } a \in C\}$$

is called **image of C under R**

The set $R(A)$ is called **range** of R

Given a subset D of B, the set

$$R^{-1}(D) = \{a \in A: (a, b) \in R \text{ for some } b \in D\}$$

is called **pre-image of D under R**

R is said to be **onto** if $B = R(A)$
Let’s illustrate image and pre-image with Venn diagrams

Image \(R(\mathcal{C}) \):

Pre-image \(R^{-1}(\mathcal{D}) \):
Illustration with sets

Let’s consider floor : Real \rightarrow Integer

• Let $C = \{-1.2, 2.3, 4.01, 10.7\}$

 Then,

 $$\text{floor}(C) = \{-2, 2, 4, 10\}$$

 is the image of C under floor.

• Let $D = \{1, 2\}$. Then,

 $$\text{floor}^{-1}(D) = \{x : x \text{ real and } 1 \leq x < 3\} = [1, 3).$$

• Since $\text{floor}(\text{Real}) = \text{Integers}$, floor is onto.
Let’s consider $R(n, 6) = n \mod 6$

- Let $C = \{0, 2, 4, 6, 8, 10, 12\}$

 Then,

 $R(C) = \{0, 2, 4\}$

 is the image of C.

- Let $D = \{0, 3\}$

 $R^{-1}(D) = \{x: x$ natural and $x = 6k$ or $x = 6k+3\}$

- $R(\text{natural}) = \{0, 1, 2, 3, 4, 5\}$ (not onto)
Properties of the composition of functions

The composition of two functions f and g, when possible, is a function

The composition of functions is:

— Associative
This is, $(f \circ g) \circ h = f \circ (g \circ h)$

— Non-commutative
This is, in general, $f \circ g \neq g \circ f$
The identity function

Definition: Let A be a set. The identity function over A is defined as the function $id_A: A \to A$, $id_A(x) = x$.

The identity is always defined and composing a function with an identity returns the function.

—This is, if $f: A \to B$ is a function, then $f \circ id_A = id_B \circ f = f$
f: $A \rightarrow B$ and its two compositions with the identity:
Injections

Definition: A function $f : A \rightarrow B$ is said to be **injective** (or one-to-one) if it associates different elements in A with different elements in B

More formally, f is injective if and only if

$$a \neq b \text{ implies } f(a) \neq f(b)$$

Observation: Don’t confuse this property with property b) in the definition of function
In injective function, for all a, b: $f(a) \neq f(b)$.

In non-injective function, there is a, b such that $f(a) = f(b)$.
Examples

Injective
The mathematical formula \(f(x) = 5x + 3 \) is an injective function, with type
\[f: \text{Real} \rightarrow \text{Real} \]
The graph of this function is a straight line with slope 5. Thus, each \(x \) is associated with a unique value \(y = 5x + 3 \)

Note: Any function whose graph is a straight line with slope different from zero, is injective

Not injective
The function floor is not injective
A counterexample is enough to prove this claim:
Let \(a = 3.5 \) and \(b = 3.7 \). Then \(a \neq b \) but
\[
\text{floor}(3.5) = \text{floor}(3.7) = 3
\]
Bijections and inverses

Definition: A function that is **injective and onto** is said to be a **bijection**

Definition: Let $f: A \rightarrow B$ be a function. Then, the relation $\text{Inv} = \{(y, x): y = f(x)\}$, is called **inverse relation** of f

Property: Let f be a bijection. Then, the inverse relation of f is also a function. This function is called **inverse of f** and it is denoted f^{-1}
Examples

The mathematical formula \(f(x) = 5x + 3 \) is a bijective function, since it is injective and onto (\(f(\text{Real}) = \text{Real} \))

The function floor is not bijective since it is not injective

Is onto because for each \(y \), there is always an \(x \) such that \(y = 5x + 3 \)
Tracing back an output

Given the **output** of a function, can you determine **what was the input**?

An example: The function is \(f(x) = 5x + 3 \). Assume that \(y=18 \) is an output. What is \(x \)? The answer is easy to compute:

\[
5x + 3 = 18, \\
5x = 15, \text{ and thus,} \\
x = 3
\]

A counterexample: \(\text{floor}(x) = 2 \), What is \(x \)? It is not possible to answer this question. There are infinitely many choices for \(x \). The input is not retrievable from the output (unless it has been stored separately).
Finding inverses

Finding the inverse of a mathematical function (this is, a formula) may be involved. The next example illustrate a generic method for computing the inverse of a function.

Illustration: Find the inverse of $f(x) = 5x + 3$

Method: Make $y = 5x + 3$ and clear y. This yields

$$x = \frac{(y - 3)}{5}$$

The inverse is $f^{-1}(y) = \frac{(y - 3)}{5}$
Property of inverse functions

Property: Let \(f : A \rightarrow B \) be a bijection. Then, the composition of \(f \) and its inverse is an identity function. This is,

\[
f \circ f^{-1} = \text{id}_B \quad \text{and} \quad f^{-1} \circ f = \text{id}_A
\]

This property may be used to check the correctness of the inverse formula. For example:

To verify that the inverse of \(f(x)=5x+3 \) is \(f^{-1}(y)=(y-3)/5 \) we do:

\[
\begin{align*}
 f \circ f^{-1}(y) &= f((y-3)/5) = 5((y-3)/5) + 3 = y = \text{id}_B \\
 f^{-1} \circ f(x) &= f^{-1}(5x + 3) = ((5x+3) - 3)/5 = x = \text{id}_A
\end{align*}
\]
Given natural numbers n, a and b we define:

$$f: \{0,1,\ldots,n-1\} \rightarrow \{0,1,\ldots,n-1\},$$

$$f(x) = ax + b \mod n$$

Is f a bijection?

Let’s check a couple of examples:

- Let $n = 5$, $a = 2$ and $b = 3$. The table of values of $f(x) = 2x + 3 \mod 5$ is

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

As the table shows, the function $f(x) = 2x + 3 \mod 5$ is indeed a bijection.
More examples (cont.)

- Let \(n = 6, a = 2, \) and \(b = 3. \) The function is now \(f(x) = 2x + 3 \mod 6 \)

The table of values is

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

This function **is not a bijection**

Theorem: Given natural numbers \(n, a \) and \(b, \) the function

\[
f: \{0, \ldots, n-1\} \rightarrow \{0, \ldots, n-1\}
\]

\(f(x) = ax + b \mod n \)

is a bijection if and only if \(\gcd(a, n) = 1 \)

In the examples:
First example \(\gcd(2, 5) = 1 \)
Second example \(\gcd(2, 6) = 2 \)
Thus, given natural numbers n, a and b such that $\gcd(a, n) = 1$, the mapping $f(x) = ax + b$ is invertible. Let’s compute the inverse:

Let’s put $y = ax + b \mod n$

Step 1: $y - b = ax \mod n$

Step 2: ????????

Problem is we cannot divide by a. However, as we will see next, the condition $\gcd(a, n) = 1$ ensures the existence of a number c in $\{1, \ldots, n-1\}$ such that $c \cdot a = 1 \mod n$
Compute the inverse of $f(x) = 2x + 3 \mod 5$

Step 1: $y = 2x + 3 \mod 5$

Step 2: $y - 3 = 2x \mod 5$

Step 3: Find c in $\{1, 2, 3, 4\}$ such that

$$c \cdot 2 = 1 \mod 5$$

Let’s do this by exhaustion: $1 \cdot 2 = 2 \mod 5,$

$$2 \cdot 2 = 4 \mod 5, \quad 3 \cdot 2 = 1 \mod 5 \rightarrow \text{stop the search: } c = 3.$$

Step 4: Multiply both sides by $c = 3$

$$2 \cdot (y - 3) = 2 \cdot 2x \mod 5 = x \mod 5$$

The inverse is $f^{-1}(y) = 2(y - 3) \mod 5$
Composition of injective and/or onto mappings

The injectivity and surjectivity of functions is preserved under composition. This is:

• If f and g are injective, then $g \circ f$ is injective

• If f and g are onto, then $g \circ f$ is onto

• If f and g are bijective, the $g \circ f$ is bijective
Summary

- Image, pre-image of sets
- Onto functions
- Composition of functions
- Identity map
- Injections, bijections and inverses
- Finding inverses
- Composition of injective, onto, and bijective mappings
Exercises

1. Find an inductive constructor for each of the following sets:
 a) \{x \text{ natural: } \text{ceil}(x/2) \text{ is even}\}
 b) \{x \text{ natural: } x \text{ mod } 6 = 1\}
Exercises

2. Let $T = (V, E)$ be a tree. Consider the function defined by $f(v) = \text{set of all descendents of } v$.
 a. Write the type of f
 b. Show that f is a bijection
 c. Define the inverse of f. This is, give its type and formula.

3. Let S be a nonempty set. Consider the function defined by $f(A) = \text{list of elements in } A$, where A is a finite subset of S.
 a) Write the type of f.
 b) Show that f is injective but not onto
 c) Show that if f is defined as: $f(A) = \text{list of elements in } A$, where A is a finite bag of elements in S, then f is a bijection.
 d) Define the inverse of f, when f is defined as in c)
Exercises

4. Let S be a set and A and B finite subsets of S. Consider the functions:
 I. \(\text{sum(numbers)} = \) sum of the numbers
 II. \(\text{count(A)} = \) number of elements in A
 III. \(\text{int(A, B)} = \) intersection of A and B
 IV. \(\text{uni(A, B)} = \) union of A and B
 V. \(\text{dif(A, B)} = \) difference of A and B

Then,

a) Write the type of each of the previous functions

b) Express each the counting rules for
 \(A \cup B, A \cup B \cup C, A - B, \) and \(A - (B \cap C) \)
 as compositions of the previous functions

c) For each of these compositions: are they injective? Are they onto?