
CPU Design6

A s we saw in Chapter 4, a CPU contains three main sections: the register sec-
tion, the arithmetic/logic unit (ALU), and the control unit. These sections work to-
gether to perform the sequences of micro-operations needed to perform the
fetch, decode, and execute cycles of every instruction in the CPU’s instruction set.
In this chapter we examine the process of designing a CPU in detail.

To demonstrate this design process, we present the designs of two CPUs,
each implemented using hardwired control. (A different type of control, which
uses a microsequencer, is examined in Chapter 7.) We start by analyzing the
applications for the CPU. For instance, will it be used to control a microwave oven
or a personal computer? Once we know its application, we can determine the
types of programs it will run, and from there we can develop the instruction set
architecture (ISA) for the CPU. Next, we determine the other registers we need to
include within the CPU that are not a part of its ISA. We then design the state dia-
gram for the CPU, along with the micro-operations needed to fetch, decode, and
execute each instruction. Once this is done, we define the internal data paths and
the necessary control signal. Finally, we design the control unit, the logic that
generates the control signals and causes the operations to occur.

In this chapter we present the complete design of two simple CPUs, along
with an analysis of their shortcomings. We also look at the internal architecture
of the Intel 8085 microprocessor, whose instruction set architecture was intro-
duced in Chapter 3.

6.1 Specifying a CPU
The first step in designing a CPU is to determine its applications.
We don’t need anything as complicated as an Itanium microproces-
sor to control a microwave oven; a simple 4-bit processor would 
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SECTION 6.1 SPECIFYING A CPU 215

be powerful enough to handle this job. However, the same 4-bit
processor would be woefully inadequate to power a personal com-
puter. The key is to match the capabilities of the CPU to the tasks it
will perform.

Once we have determined the tasks a CPU will perform, we must
design an instruction set architecture capable of handling these tasks.
We select the instructions a programmer could use to write the appli-
cation programs and the registers these instructions will use.

After this is done, we design the state diagram for the CPU. 
We show the micro-operations performed during each state and the
conditions that cause the CPU to go from one state to another. A CPU
is just a complex finite state machine. By specifying the states and
their micro-operations, we specify the steps the CPU must perform 
in order to fetch, decode, and execute every instruction in its instruc-
tion set.

Execute

Decode

FETCH

Figure 6.1
Generic CPU state diagram
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216 CHAPTER 6 CPU DESIGN

In general, a CPU performs the following sequence of operations:

• Fetch cycle: Fetch an instruction from memory, then go to the de-
code cycle.

• Decode cycle: Decode the instruction—that is, determine which in-
struction has been fetched—then go to the execute cycle for that 
instruction.

• Execute cycle: Execute the instruction, then go to the fetch cycle
and fetch the next instruction.

A generic state diagram is shown in Figure 6.1 on page 215. Note
that the decode cycle does not have any states. Rather, the decode
cycle is actually the multiple branches from the end of the fetch rou-
tine to each individual execute routine.

6.2 Design and Implementation of a Very Simple CPU
In this section, we specify and design a Very Simple CPU, probably the
simplest CPU you will ever encounter. This CPU isn’t very practical,
but it is not meant to be. The sole application of this CPU is to serve
as an instructional aid, to illustrate the design process without bur-
dening the reader with too many design details. In the next section,
we design a more complex CPU, which builds on the design methods
presented here.

6.2.1 Specifications for a Very Simple CPU
To illustrate the CPU design process, consider this small and some-
what impractical CPU. It can access 64 bytes of memory, each byte be-
ing 8 bits wide. The CPU does this by outputting a 6-bit address on its
output pins A[5..0] and reading in the 8-bit value from memory on its
inputs D[7..0].

This CPU will have only one programmer-accessible register, an
8-bit accumulator labeled AC. It has only four instructions in its in-
struction set, as shown in Table 6.1.

Instruction Instruction Code Operation

ADD 00AAAAAA AC←AC � M[AAAAAA]

AND 01AAAAAA AC←AC ∧ M[AAAAAA]

JMP 10AAAAAA GOTO AAAAAA

INC 11XXXXXX AC←AC � 1

Table 6.1
Instruction set for the Very Simple CPU
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As noted earlier, this is a fairly impractical CPU for several reasons.
For example, although it can perform some computations, it cannot
output the results.

In addition to AC, this CPU needs several additional registers to
perform the internal operations necessary to fetch, decode, and exe-
cute instructions. The registers in this CPU are fairly standard and are
found in many CPUs; their sizes vary depending on the CPU in which
they are used. This CPU contains the following registers:

• A 6-bit address register, AR, which supplies an address to mem-
ory via A[5..0]

• A 6-bit program counter, PC, which contains the address of the
next instruction to be executed

• An 8-bit data register, DR, which receives instructions and data
from memory via D[7..0]

• A 2-bit instruction register, IR, which stores the opcode portion
of the instruction code fetched from memory

A CPU is just a complex finite state machine, and that dictates the 
approach we take in designing this CPU. First, we design the state dia-
gram for the CPU. Then we design both the necessary data paths and
the control logic to realize the finite state machine, thus implement-
ing the CPU.

6.2.2 Fetching Instructions from Memory
Before the CPU can execute an instruction, it must fetch the instruc-
tion from memory. To do this, the CPU performs the following se-
quence of actions.

1. Send the address to memory by placing it on the address pins
A[5..0].

2. After allowing memory enough time to perform its internal de-
coding and to retrieve the desired instruction, send a signal to
memory so that it outputs the instruction on its output pins.
These pins are connected to D[7..0] of the CPU. The CPU reads
this data in from those pins.

The address of the instruction to be fetched is stored in the program
counter. Since A[5..0] receive their values from the address register,
the first step is accomplished by copying the contents of PC to AR.
Thus the first state of the fetch cycle is

FETCH1: AR←PC

Next, the CPU must read the instruction from memory. The CPU
must assert a READ signal, which is output from the CPU to memory,
to cause memory to output the data to D[7..0]. At the same time, the
CPU must read the data in and store it in DR, since this is the only 
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register used to access memory. By waiting until one state after
FETCH1, the CPU gives memory the time to access the requested data
(which is an instruction in this case). The net result is, at first,

FETCH2: DR←M

In fact, there is another operation that will be performed here. We
must also increment the program counter, so FETCH2 should actually
be as follows:

FETCH2: DR←M, PC←PC � 1

See Practical Perspective: Why a CPU Increments PC During the Fetch
Cycle for the reasoning behind this.

Finally, there are two other things that the CPU will do as part of
the fetch routine. First, it copies the two high-order bits of DR to IR. As
shown in Table 6.1, these two bits indicate which instruction is to be
executed. As we will see in the design of the control logic, it is neces-
sary to save this value in a location other than DR so it will be avail-
able to the control unit. Also, the CPU copies the six low-order bits of
DR to AR during the fetch routine. For the ADD and AND instructions,
these bits contain the memory address of one of the operands for the
instruction. Moving the address to AR here will result in one less state
in the execute routines for these instructions. For the other two in-
structions, it will not cause a problem. They do not need to access
memory again, so they just won’t use the value loaded into AR. Once
they return to the FETCH routine, FETCH1 will load PC into AR, over-
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PRACTICAL PERSPECTIVE: Why a CPU Increments PC During the Fetch Cycle

To see why a CPU increments the program counter during FETCH2, consider what
would happen if it did not increment PC. For example, assume that the CPU fetched
an instruction from location 10. In FETCH1, it would perform the operation AR←PC
(which has the value 10). In FETCH2, it would fetch the instruction from memory 
location 10 and store it in DR. Presumably the CPU would then decode the instruc-
tion and execute it, and then return to FETCH1 to fetch the next instruction. How-
ever, PC still contains the value 10, so the CPU would continuously fetch, decode,
and execute the same instruction!

The next instruction to be executed is stored in the next location, 11. The CPU
must increment the PC some time before it returns to the fetch routine. To make this
happen, the designer has two options: have every instruction increment the PC as
part of its execute routine, or increment the PC once during the fetch routine. The
latter is much easier to implement, so CPUs take this approach.
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writing the unused value. These two operations can be performed in
one state as

FETCH3: IR←DR[7..6], AR←DR[5..0]

The state diagram for the fetch cycle is shown in Figure 6.2.

Fig-
ure
6.2

6.2.3 Decoding Instructions
After the CPU has fetched an instruction from memory, it must deter-
mine which instruction it has fetched so that it may invoke the correct
execute routine. The state diagram represents this as a series of
branches from the end of the fetch routine to the individual execute
routines. For this CPU, there are four instructions and thus four exe-
cute routines. The value in IR, 00, 01, 10, or 11, determines which ex-
ecute routine is invoked. The state diagram for the fetch and decode
cycles is shown in Figure 6.3 on page 220.

6.2.4 Executing Instructions
To complete the state diagram for this CPU, we must develop the state
diagram for each execute routine. Now we design the portion of the
state diagram for each execute routine and the overall design for the
CPU. The state diagrams for the individual execute routines are fairly
simple, so they are only included in the diagram of the finite state 
machine for the entire CPU.

6.2.4.1 ADD Instruction
In order to perform the ADD instruction, the CPU must do two things.
First, it must fetch one operand from memory. Then it must add this
operand to the current contents of the accumulator and store the re-
sult back into the accumulator.
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FETCH1

FETCH2

FETCH3

Figure 6.2
Fetch cycle for the Very Simple CPU
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To fetch the operand from memory, the CPU must first make its
address available via A[5..0], just as it did to fetch the instruction
from memory. This is done by moving the address into AR. However,
this was already done in FETCH3, so the CPU can simply read the value
in immediately. (This is the time savings mentioned earlier.) Thus,

ADD1: DR←M

Now that both operands are within the CPU, it can perform the
actual addition in one state.

ADD2: AC←AC � DR

These two operations comprise the entire execute cycle for the ADD
instruction. At this point, the ADD execute cycle would branch back to
the fetch cycle to begin fetching the next instruction.

6.2.4.2 AND Instruction
The execute cycle for the AND instruction is virtually the same as that
for the ADD instruction. It must fetch an operand from memory, mak-
ing use of the address copied to AR during FETCH3. However, instead
of adding the two values, it must logically AND the two values. The
states that comprise this execute cycle are
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IR = 10

IR = 11

IR = 01

FETCH1

FETCH3

IR = 00

ADD AND JMP INC

Execute Execute Execute Execute

Cycle Cycle Cycle Cycle

FETCH2

Figure 6.3
Fetch and decode cycles for the Very Simple CPU
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AND1: DR←M

AND2: AC←AC ∧ DR

6.2.4.3 JMP Instruction
Any JMP instruction is implemented in basically the same way. The ad-
dress to which the CPU must jump is copied into the program counter.
Then, when the CPU fetches the next instruction, it uses this new ad-
dress, thus realizing the JMP.

The execute cycle for the JMP instruction for this CPU is quite
trivial. Since the address is already stored in DR[5..0], we simply copy
that value into PC and go to the fetch routine. The single state which
comprises this execute cycle is

JMP1: PC←DR[5..0]

In this case, we actually had a second choice. Since this value was
copied into AR during FETCH3, we could have performed the opera-
tion PC←AR instead. Either is acceptable.

6.2.4.4 INC Instruction
The INC instruction can also be executed using a single state. The CPU
simply adds 1 to the contents of AC and goes to the fetch routine. The
state for this execute cycle is

INC1: AC←AC � 1

The state diagram for this CPU, including the fetch, decode, and exe-
cute cycles, is shown in Figure 6.4 on page 222.

6.2.5 Establishing Required Data Paths
The state diagram and register transfers specify what must be done in
order to realize this CPU. Now we must design the CPU so that it actu-
ally does these things. First, we look at what data transfers can take
place and design the internal data paths of the CPU so this can be
done. The operations associated with each state for this CPU are

FETCH1: AR←PC

FETCH2: DR←M, PC←PC � 1
FETCH3: IR←DR[7..6], AR←DR[5..0]

ADD1: DR←M

ADD2: AC←AC � DR

AND1: DR←M

AND2: AC←AC ∧ DR

JMP1: PC←DR[5..0]
INC1: AC←AC � 1
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(If this looks like RTL code, you’re headed in the right direction!) Note
that memory supplies its data to the CPU via pins D[7..0]. Also recall
that the address pins A[5..0] receive data from the address register, so
the CPU must include a data path from the outputs of AR to A.

To design the data paths, we can take one of two approaches. The
first is to create direct paths between each pair of components that
transfer data. We can use multiplexers or buffers to select one of sev-
eral possible data inputs for registers that can receive data from more
than one source. For example, in this CPU, AR can receive data from PC
or DR[5..0], so the CPU would need a mechanism to select which one
is to supply data to AR at a given time. This approach could work for
this CPU because it is so small. However, as CPU complexity increases,
this becomes impractical. A more sensible approach is to create a bus
within the CPU and route data between components via the bus.
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FETCH1

FETCH2

FETCH3

ADD1 AND1 JMP1 INC1

ADD2 AND2

IR = 00

IR = 01 IR = 10 IR = 11

Figure 6.4
Complete state diagram for the Very Simple CPU
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To illustrate the bus concept, consider an interstate highway 
that is 200 miles long and has about as many exits. Assume that each
exit connects to one town. When building roads, the states had two
choices: They could build a separate pair of roads (one in each direc-
tion) between every pair of towns, resulting in almost 40,000 roads, or
one major highway with entrance and exit ramps connecting the
towns. The bus is like the interstate highway: It consolidates traffic
and reduces the number of roads (data paths) needed.

We begin by reviewing the data transfers that can occur to deter-
mine the functions of each individual component. Specifically, we look
at the operations that load data into each component. It is not neces-
sary to look at operations in which a component supplies the data or
one of the operands; that will be taken care of when we look at the
component whose value is being changed. First we regroup the opera-
tions, without regard for the cycles in which they occur, by the regis-
ter whose contents they modify. This results in the following:

AR: AR←PC; AR←DR[5..0]
PC: PC←PC � 1; PC←DR[5..0]
DR: DR←M

IR: IR←DR[7..6]
AC: AC←AC � DR; AC←AC ∧ DR; AC←AC � 1

Now we examine the individual operations to determine which
functions can be performed by each component. AR, DR, and IR always
load data from some other component, made available by the bus, so
they only need to be able to perform a parallel load. PC and AC can
load data from external sources, but they both need to be able to in-
crement their values. We could create separate hardware that would
increment the current contents of each register and make it available
for the register to load back in, but it is easier to design each register
as a counter with parallel load capability. In that way, the increment
operations can be performed solely within the register; the parallel
load is used to implement the other operations.

Next, we connect every component to the system bus, as shown in
Figure 6.5 on page 224. Notice that we have included tri-state buffers
between the outputs of the registers and the system bus. If we did not
do this, all the registers would place their data onto the bus at all
times, making it impossible to transfer valid data within the CPU. Also,
the outputs of AR are connected to pins A[5..0], as required in the CPU
specification. At this point, the CPU does not include the control unit,
nor the control signals; we will design those later. Right now our goal
is to ensure that all data transfers can occur. Later we will design the
control unit to make sure that they occur properly.
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Figure 6.5
Preliminary register section for the Very Simple CPU
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Now we look at the actual transfers that must take place and
modify the design accordingly. After reviewing the list of possible op-
erations, we note several things:

1. AR only supplies its data to memory, not to other components. It
is not necessary to connect its outputs to the internal bus.

2. IR does not supply data to any other component via the internal
bus, so its output connection can be removed. (The output of IR
will be routed directly to the control unit, as shown later.)

3. AC does not supply its data to any component; its connection to
the internal bus can also be removed.

4. The bus is 8 bits wide, but not all data transfers are 8 bits; some
are only 6 bits and one is 2 bits. We must specify which registers
send data to and receive data from which bits of the bus.

5. AC must be able to load the sum of AC and DR, and the logical
AND of AC and DR. The CPU needs to include an ALU that can
generate these results.

The first three changes are easy to make; we simply remove the
unused connections. The fourth item is more of a bookkeeping matter
than anything else. In most cases, we simply connect registers to the
lowest order bits of the bus. For example, AR and PC are connected to
bits 5..0 of the bus, since they are only 6-bit registers. The lone excep-
tion is IR. Since it receives data only from DR[7..6], it should be con-
nected to the high-order 2 bits of the bus.

Now comes the tricky part. Since AC can load in one of two val-
ues, either AC � DR or AC ∧ DR, the CPU must incorporate some arith-
metic and logic circuitry to generate these values. (Most CPUs contain
an arithmetic/logic unit to do just that.) In terms of the data paths, the
ALU must receive AC and DR as inputs, and send its output to AC.
There are a couple of ways to route the data to accomplish this. In this
CPU we hardwire AC as an input to and output from the ALU, and route
DR as an input to the ALU via the system bus.

At this point the CPU is capable of performing all of the required
data transfers. Before proceeding, we must make sure transfers that
are to occur during the same state can in fact occur simultaneously.
For example, if two transfers that occur in the same state both require
that data be placed on the internal bus, they could not be performed
simultaneously, since only one piece of data may occupy the bus at a
given time. (This is another reason for implementing PC←PC � 1 by
using a counter for PC; if that value was routed via the bus, both oper-
ations during FETCH2 would have required the bus.) As it is, no state
of the state diagram for this CPU would require more than one value
to be placed on the bus, so this design is OK in that respect.

The modified version of the internal organization of the CPU is
shown in Figure 6.6. The control signals shown will be generated by
the control unit.

SECTION 6.2 DESIGN AND IMPLEMENTATION OF A VERY SIMPLE CPU 225

00-173 C06 pp3  10/25/00  11:10 AM  Page 225



6.2.6 Design of a Very Simple ALU
The ALU for this CPU performs only two functions: adds its two inputs
or logically ANDs its two inputs. The simplest way to design this ALU
is to create separate hardware to perform each function and then use
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Final register section for the Very Simple CPU
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a multiplexer to output one of the two results. The addition is imple-
mented using a standard 8-bit parallel adder. The logical AND opera-
tion is implemented using eight 2-input AND gates. The outputs of the
parallel adder and the AND gates are input to an 8-bit 2 to 1 multi-
plexer. The control input of the MUX is called S (for select). The circuit
diagram for the ALU is shown in Figure 6.7.

6.2.7 Designing the Control Unit Using Hardwired Control
At this point it is possible for the CPU to perform every operation nec-
essary to fetch, decode and execute the entire instruction set. The
next task is to design the circuitry to generate the control signals to
cause the operations to occur in the proper sequence. This is the con-
trol unit of the CPU.

There are two primary methodologies for designing control units.
Hardwired control uses sequential and combinatorial logic to generate
control signals, whereas microsequenced control uses a lookup mem-
ory to output the control signals. Each methodology has several de-
sign variants. This chapter focuses on hardwired control; microse-
quenced control is covered in Chapter 7.

This Very Simple CPU requires only a very simple control unit.
The simplest control unit has three components: a counter, which con-
tains the current state; a decoder, which takes the current state and
generates individual signals for each state; and some combinatorial
logic to take the individual state signals and generate the control sig-
nals for each component, as well as the signals to control the counter.
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These signals cause the control unit to traverse the states in the
proper order. A generic version of this type of hardwired control unit
is shown in Figure 6.8.

For this CPU, there are a total of 9 states. Therefore, a 4-bit
counter and a 4-to-16-bit decoder are needed. Seven of the outputs of
the decoder will not be used.

The first task is to determine how best to assign states to the out-
puts of the decoder, and thus values in the counter. The following
guidelines may help.

1. Assign FETCH1 to counter value 0 and use the CLR input of the
counter to reach this state. Looking at the state diagram for this
CPU, we see that every state except FETCH1 can only be reached
from one other state. FETCH1 is reached from four states, the last
state of each execute routine. By allocating FETCH1 to counter
value 0, these four branches can be realized by asserting the CLR
signal of the counter, which minimizes the amount of digital logic
needed to design the control unit.

2. Assign sequential states to sequential counter values and use the
INC input of the counter to traverse these states. If this is done,
the control unit can traverse these sequential states by asserting
the INC signal of the counter, which also reduces the digital logic
needed in the control unit. This CPU would assign FETCH2 to
counter value 1 and FETCH3 to counter value 2. It would also as-
sign ADD1 and ADD2 to consecutive counter values, as well as
AND1 and AND2.

3. Assign the first state of each execute routine based on the instruc-
tion opcodes and the maximum number of states in the execute
routines. Use the opcodes to generate the data input to the counter
and the LD input of the counter to reach the proper execute rou-
tine. This point squarely addresses the implementation of in-
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Generic hardwired control unit
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struction decoding. Essentially, it implements a mapping of the
opcode to the execute routine for that instruction. It occurs ex-
actly once in this and all CPUs, at the last state of the fetch cycle.

To load in the address of the proper execute routine, the control
unit must do two things. First, it must place the address of the first
state of the proper execute routine on the data inputs of the counter.
Second, it must assert the LD signal of the counter. The LD signal is
easy; it is directly driven by the last state of the fetch cycle, FETCH3 for
this CPU. The difficulty comes in allocating counter values to the states.

Toward that end, consider the list of instructions, their first
states, and the value in register IR for those instructions, as shown in
Table 6.2. The input to the counter is a function of the value of IR. The
goal is to make this function as simple as possible. Consider one pos-
sible mapping, 10IR[1..0]. That is, if IR � 00, the input to the counter
is 1000; for IR � 01, the input is 1001, and so on. This would result in
the assignment shown in Table 6.3.

Although this would get to the proper execute routine, it causes a
problem. Since state ADD1 has a counter value of 8, and state AND1 has
a counter value of 9, what value should we assign to ADD2 and how
would it be accessed from ADD1? This could be done by incorporating
additional logic, but this is not the best solution for the design.

Looking at the state diagram for this CPU, we see that no execute
routine contains more than two states. As long as the first states of
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Instruction First State IR

ADD ADD1 00

AND AND1 01

JMP JMP1 10

INC INC1 11

Table 6.2
Instructions, first states, and opcodes for the Very Simple CPU

IR[1..0] Counter Value State

00 1000 (8) ADD1

01 1001 (9) AND1

10 1010 (10) JMP1

11 1011 (11) INC1

Table 6.3
Counter values for the proposed mapping function
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the execute routines have counter values at least two apart, it is possi-
ble to store the execute routines in sequential locations. This is ac-
complished by using the mapping function 1IR[1..0]0, which results in
counter values of 8, 10, 12, and 14 for ADD1, AND1, JMP1, and INC1,
respectively. To assign the execute routines to consecutive values, we
assign ADD2 to counter value 9 and AND2 to counter value 11.

Now that we have decided which decoder output is assigned to
each state, we can use these signals to generate the control signals
for the counter of the control unit and for the components of the rest
of the CPU. For the counter, we must generate the INC, CLR, and LD
signals. INC is asserted when the control unit is traversing sequential
states, during FETCH1, FETCH2, ADD1, and AND1. CLR is asserted at
the end of each execute cycle to return to the fetch cycle; this happens
during ADD2, AND2, JMP1, and INC1. Finally, as noted earlier, LD is as-
serted at the end of the fetch cycle during state FETCH3. Note that
each state of the CPU’s state diagram drives exactly one of these three
control signals. The circuit diagram for the control unit at this point is
shown in Figure 6.9.
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Hardwired control unit for the Very Simple CPU
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These state signals are also combined to create the control signals
for AR, PC, DR, IR, M, the ALU, and the buffers. First consider register AR. 
It is loaded during states FETCH1 (AR←PC) and FETCH3 (AR←DR[5..0]).
By logically ORing these two state signals together, the CPU generates
the LD signal for AR. It doesn’t matter which value is to be loaded into
AR, at least as far as the LD signal is concerned. When the designers cre-
ate the control signals for the buffers, they will ensure that the proper
data is placed on the bus and made available to AR. Following this pro-
cedure, we create the following control signals for PC, DR, AC, and IR:

PCLOAD � JMP1
PCINC � FETCH2
DRLOAD � FETCH1 ∨ ADD1 ∨ AND1
ACLOAD � ADD2 ∨ AND2
ACINC � INC1
IRLOAD � FETCH3

The ALU has one control input, ALUSEL. When ALUSEL � 0, the
output of the ALU is the arithmetic sum of its two inputs; if ALUSEL � 1, 
the output is the logical AND of its inputs. Setting ALUSEL � AND2
routes the correct data from the ALU to AC when the CPU is executing
an ADD or AND instruction. At other times, during the fetch cycle and
the other execute cycles, the ALU is still outputting a value to AC.
However, since AC does not load this value, the value output by the
ALU does not cause any problems.

Many of the operations use data from the internal system bus.
The CPU must enable the buffers so the correct data is placed on the
bus at the proper time. Again, looking at the operations that oc-
cur during each state, we can generate the enable signals for the buf-
fers. For example, DR must be placed onto the bus during FETCH3
(IR←DR[7..6], AR←DR[5..0]), ADD2 (AC←AC � DR), AND2 (AC←AC ∧ DR)
and JMP1 (PC←DR[5..0]). (Recall that the ALU receives DR input via the
internal bus.) Logically ORing these state values produces the DRBUS
signal. This procedure is used to generate the enable signals for the
other buffers as well:

MEMBUS � FETCH2 ∨ ADD1 ∨ AND1
PCBUS � FETCH1

Finally, the control unit must generate a READ signal, which is
output from the CPU. This signal causes memory to output its data
value. This occurs when memory is read during states FETCH2, ADD1,
and AND1, so READ can be set as follows:

READ � FETCH2 ∨ ADD1 ∨ AND1

The circuit diagram for the portion of the control unit that gener-
ates these signals is shown in Figure 6.10. This completes the design
of the Very Simple CPU.
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6.2.8 Design Verification
Now that we have designed the CPU, we must verify that it works
properly. To do so, we trace through the fetch, decode, and execute cy-
cles of each instruction. Consider this segment of code, containing
each instruction once:

0: ADD4
1: AND5
2: INC
3: JMP 0
4: 27H
5: 39H

The CPU fetches, decodes, and executes each instruction follow-
ing the appropriate state sequences from the state diagram:

ADD4: FETCH1→FETCH2→FETCH3→ADD1→ADD2
AND5: FETCH1→FETCH2→FETCH3→AND1→AND2
INC: FETCH1→FETCH2→FETCH3→INC1
JMP 0: FETCH1→FETCH2→FETCH3→JMP1

Table 6.4 shows the trace of the execution of one iteration of this
program. We can see that the program processes every instruction cor-
rectly. Initially all registers contain the value 0.
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6.3 Design and Implementation of a Relatively Simple CPU
The CPU designed in the previous section is named appropriately: It is
indeed very simple. It illustrated design methods that are too simple
to handle the complexity of a larger CPU. This section presents the de-
sign of a more complex, but still relatively simple CPU. This CPU has a
larger instruction set with more complex instructions. Its design fol-
lows the same general procedure used to design the Very Simple CPU.
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Instruction State Active Signals Operations Performed Next State

ADD 4 FETCH1 PCBUS, ARLOAD AR←0 FETCH2

FETCH2 READ, MEMBUS, DR←04H, PC←1 FETCH3
DRLOAD, PCINC

FETCH3 DRBUS, ARLOAD, IR←00, AR←04H ADD1
IRLOAD

ADD1 READ, MEMBUS, DR←27H ADD2
DRLOAD

ADD2 DRBUS, ACLOAD AC←0 � 27H � 27H FETCH1

AND 5 FETCH1 PCBUS, ARLOAD AR←1 FETCH2

FETCH2 READ, MEMBUS, DR←45H, PC←2 FETCH3
DRLOAD, PCINC

FETCH3 DRBUS, ARLOAD, IR←01, AR←05H AND1
IRLOAD

AND1 READ, MEMBUS, DR←39H AND2
DRLOAD

AND2 DRBUS, ALUSEL, AC←27H ∧ 39H � 31H FETCH1
ACLOAD

INC FETCH1 PCBUS, ARLOAD AR←2 FETCH2

FETCH2 READ, MEMBUS, DR←C0H, PC←3 FETCH3
DRLOAD, PCINC

FETCH3 DRBUS, ARLOAD, IR←11, AR←00H INC1
IRLOAD

INC1 ACINC AC←21H � 1 � 22H FETCH1

JMP 0 FETCH1 PCBUS, ARLOAD AR←3 FETCH2

FETCH2 READ, MEMBUS, DR←80H, PC←4 FETCH3
DRLOAD, PCINC

FETCH3 DRBUS, ARLOAD, IR←10, AR←00H JMP1
IRLOAD

JMP1 DRBUS, PCLOAD PC←0 FETCH1

Table 6.4
Execution trace
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6.3.1 Specifications for a Relatively Simple CPU
Chapter 3 introduced the instruction set architecture for the Rela-
tively Simple CPU. This CPU can access 64K bytes of memory, each 
8 bits wide, via address pins A[15..0] and bidirectional data pins
D[7..0].

Three registers in the ISA of this processor can be directly con-
trolled by the programmer. The 8-bit accumulator, AC, receives the re-
sult of any arithmetic or logical operation and provides one of the
operands for arithmetic and logical instructions, which use two
operands. Whenever data is loaded from memory, it is loaded into the
accumulator; data stored to memory also comes from AC. Register R is
an 8-bit general purpose register. It supplies the second operand of all
two-operand arithmetic and logical instructions. It can also be used to
temporarily store data that the accumulator will soon need to access.
Finally, there is a 1-bit zero flag, Z, which is set whenever an arith-
metic or logical instruction is executed.

The final component of the instruction set architecture for this
Relatively Simple CPU is its instruction set, shown in Table 6.5.
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Instruction 
Instruction Code Operation

NOP 0000 0000 No operation

LDAC 0000 0001 � AC←M[�]

STAC 0000 0010 � M[�]←AC

MVAC 0000 0011 R←AC

MOVR 0000 0100 AC←R

JUMP 0000 0101 � GOTO �

JMPZ 0000 0110 � IF (Z�1) THEN GOTO �

JPNZ 0000 0111 � IF (Z�0) THEN GOTO �

ADD 0000 1000 AC←AC � R, IF (AC � R � 0) THEN Z←1 ELSE Z←0

SUB 0000 1001 AC←AC � R, IF (AC � R � 0) THEN Z←1 ELSE Z←0

INAC 0000 1010 AC←AC � 1, IF (AC � 1 � 0) THEN Z←1 ELSE Z←0

CLAC 0000 1011 AC←0, Z←1

AND 0000 1100 AC←AC ∧ R, IF (AC ∧ R � 0) THEN Z←1 ELSE Z←0

OR 0000 1101 AC←AC ∨ R, IF (AC ∨ R � 0) THEN Z←1 ELSE Z←0

XOR 0000 1110 AC←AC ⊕ R, IF (AC ⊕ R � 0) THEN Z←1 ELSE Z←0

NOT 0000 1111 AC←AC ′, IF (AC ′ � 0) THEN Z←1 ELSE Z←0

Table 6.5
Instruction set for a Relatively Simple CPU
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As in the Very Simple CPU, this Relatively Simple CPU contains
several registers in addition to those specified in its instruction set ar-
chitecture. Differences between these registers and those of the Very
Simple CPU are italicized:

• A 16-bit address register, AR, which supplies an address to memory
via A[15..0]

• A 16-bit program counter, PC, which contains the address of the
next instruction to be executed or the address of the next required
operand of the instruction

• An 8-bit data register, DR, which receives instructions and data from
memory and transfers data to memory via D[7..0]

• An 8-bit instruction register, IR, which stores the opcode fetched
from memory

• An 8-bit temporary register, TR, which temporarily stores data dur-
ing instruction execution

Besides the differences in register size, there are several differences
between the registers for this CPU and the Very Simple CPU. These
changes are all necessary to accommodate the more complex instruc-
tion set.

First of all, notice that the program counter can hold not only the
address of the next instruction, but also the address of the next
operand. In the Very Simple CPU, the only operand is an address that
is fetched along with the opcode. The Relatively Simple CPU uses 8-bit
opcodes and 16-bit addresses. If the opcode and address were packed
into one word, it would have to be 24 bits wide. For instructions that
do not access memory, the 16-bit address portion of the instruction
code would be wasted. To minimize unused bits, the CPU keeps each
word/byte 8 bits wide, but uses multiple bytes to store the instruction
and its address. Part of the time the PC will be pointing to the memory
byte containing the opcode, but at other times it will be pointing to
the memory bytes containing the address. This may seem a bit confus-
ing, but it will become clearer during the design of this CPU.

The Very Simple CPU could not output data. The Relatively Sim-
ple CPU provides this capability, and it does so by making data avail-
able on the bidirectional pins D[7..0]. For this design, this data is pro-
vided solely from DR.

Most CPUs have more than one internal register for manipulating
data. For this reason, the Relatively Simple CPU includes a general pur-
pose register, R. Internal registers improve the performance of the CPU
by reducing the number of times memory must be accessed. To illus-
trate this, consider the ADD instruction of the Very Simple CPU. After
fetching and decoding the instruction, the CPU had to fetch the
operand from memory before adding it to the accumulator. The Rela-
tively Simple CPU adds the contents of register R to AC, eliminating the
memory access and reducing the time needed to perform the addition.
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Most CPUs have several general purpose registers; this CPU has only
one to illustrate the use of general purpose registers while still keep-
ing the design relatively simple.

Most CPUs contain internal data registers that cannot be accessed
by the programmer. This CPU contains temporary register TR, which it
uses to store data during the execution of instructions. As we will see,
the CPU can use this register to save data while it fetches the address
for memory reference instructions. Unlike the contents of AC or R,
which are directly modified by the user, no instruction causes a per-
manent change in the contents of TR.

Finally, most CPUs contain flag registers, or flags, which show
the result of a previous operation. Typical flags indicate whether or
not an operation generated a carry, the sign of the result, or the parity
of the result. The Relatively Simple CPU contains a zero flag, Z, which
is set to 1 if the last arithmetic or logical operation produced a result
equal to 0. Not every instruction changes the contents of Z in this and
other CPUs. For example, an ADD instruction sets Z, but a MOVR (move
data from R into AC ) instruction does not. Most CPUs contain condi-
tional instructions that perform different operations, depending on
the value of a given flag. The JMPZ and JPNZ instructions for this CPU
fall into this category.

6.3.2 Fetching and Decoding Instructions
This CPU fetches instructions from memory in exactly the same way
as the Very Simple CPU does, except at the end of the fetch cycle. Here
IR is 8 bits and receives the entire contents of DR. Also, AR←PC, 
instead of DR[5..0] because that is the next address it would need to
access. The fetch cycle thus becomes

FETCH1: AR←PC

FETCH2: DR←M, PC←PC � 1
FETCH3: IR←DR, AR←PC

The state diagram for this fetch cycle is exactly the same as that of the
Very Simple CPU shown in Figure 6.2.

We also follow the same process for decoding instructions that
we used for the Very Simple CPU. Here, IR is 8 bits wide and there will
be more possible branches. The state diagram for the fetch and de-
code cycles is shown in Figure 6.11.

There is one particularly unusual feature of the state diagram in
Figure 6.11. Two of the instructions, JMPZ and JPNZ, have two differ-
ent execute routines. These conditional instructions will be executed
in one of two ways, depending on the value of Z. Either they will jump
to address � or they will not. Each execute routine implements one of
these two possibilities; the value of Z determines which is selected.
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6.3.3 Executing Instructions
The final task in creating the state diagram for this CPU is to prepare
the state diagrams for the execute routines. As before, we develop
them individually and combine them into a final state diagram.

6.3.3.1 NOP Instruction
The NOP is the easiest instruction to implement. The CPU does noth-
ing and then goes to the fetch routine to fetch the next instruction.
This could be accomplished either by having the fetch routine branch
back to its own beginning or by creating a single state that does noth-
ing as the execute routine. In this CPU we use the latter approach. The
state diagram for this execute routine contains the single state

NOP1: (No operation)
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6.3.3.2 LDAC Instruction
LDAC is the first of the multiword instructions in this CPU. It contains
three words: the opcode, the low-order half of the address, and the
high-order half of the address. The execute routine must get the ad-
dress from memory, then get data from that memory location and load
it into the accumulator.

Remember that, after the instruction has been fetched from
memory, the program counter contains the next address in memory. If
the instruction consisted of a single byte, the PC would contain the 
address of the next instruction. Here, however, it contains the address
of the first operand, the low-order half of the address �. This CPU uses
this value of PC to access the address.

First the CPU must get the address from memory. Since the ad-
dress of the low-order half of address � was loaded into AR during
FETCH3, this value can now be read in from memory. The CPU must
also do two other things at this time: Because the CPU has read in the
data whose address is stored in PC, it must increment PC, and because
it will need to get the high-order half of the address from the next
memory location, it must also increment AR. The CPU could simply 
increment PC now and then load it into AR during the next state, but in-
crementing AR now will reduce the number of states needed to execute
the LDAC instruction. Thus the first state of this execute routine is

LDAC1: DR←M, PC←PC � 1, AR←AR � 1

Having fetched the low-order half of the address, the CPU now
must fetch the high-order half. It must also save the low-order half
somewhere other than DR; otherwise it will be overwritten by the
high-order half of address �. Here we make use of the temporary reg-
ister TR. Again, the CPU must increment PC or it will not have the cor-
rect address for the next fetch routine. The second state is

LDAC2: TR←DR, DR←M, PC←PC � 1

Now that the CPU contains the address, it can read the data from
memory. To do this, the CPU first copies the address into AR, then
reads data from memory into DR. Finally, it copies that data into the
accumulator and branches back to the fetch routine. The states to per-
form these operations are

LDAC3: AR←DR,TR

LDAC4: DR←M

LDAC5: AC←DR

6.3.3.3 STAC Instruction
Although the STAC instruction performs the opposite operation of
LDAC, it duplicates several of its states. Specifically, it fetches the
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memory address in exactly the same way as LDAC; states STAC1, STAC2,
and STAC3 are identical to LDAC1, LDAC2, and LDAC3, respectively.

Once AR contains the address, this routine must copy the data
from AC to DR, then write it to memory. The states that comprise this
execute routine are

STAC1: DR←M, PC←PC � 1, AR←AR � 1
STAC2: TR←DR, DR←M, PC←PC � 1
STAC3: AR←DR,TR

STAC4: DR←AC

STAC5: M←DR

At first glance, it may appear that STAC3 and STAC4 can be combined
into a single state. However, when constructing the data paths later in
the design process, we decided to route both transfers via an internal
bus. Since both values cannot occupy the bus simultaneously, we
chose to split the state in two rather than create a separate data path.
This process is not uncommon, and the designer should not be con-
cerned about needing to modify the state diagram because of data
path conflicts. Consider it one of the tradeoffs inherent to engineering
design.

6.3.3.4 MVAC and MOVR Instructions
The MVAC and MOVR instructions are both fairly straightforward. The
CPU simply performs the necessary data transfer in one state and goes
back to the fetch routine. The states that comprise these routines are

MVAC1: R←AC

and

MOVR1: AC←R

6.3.3.5 JUMP Instruction
To execute the JUMP instruction, the CPU fetches the address just as it
did for the LDAC and STAC instructions, except it does not increment
PC. Instead of loading the address into AR, it copies the address into
PC, so any incremented value of PC would be overwritten anyway. This
instruction can be implemented using three states.

JUMP1: DR←M, AR←AR � 1
JUMP2: TR←DR, DR←M

JUMP3: PC←DR,TR

6.3.3.6 JMPZ and JPNZ Instructions
The JMPZ and JPNZ instructions each have two possible outcomes, de-
pending on the value of the Z flag. If the jump is to be taken, the CPU
follows execution states exactly the same as those used by the JUMP
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instruction. However, if the jump is not taken, the CPU cannot simply
return to the fetch routine. After the fetch routine, the PC contains the
address of the low-order half of the jump address. If the jump is not
taken, the CPU must increment the PC twice so that it points to the next
instruction in memory, not to either byte of �. The states to perform the
JMPZ instruction are as follows. Note that the JMPZY states are executed
if Z � 1 and the JMPZN states are executed if Z � 0.

JMPZY1: DR←M, AR←AR � 1
JMPZY2: TR←DR, DR←M

JMPZY3: PC←DR, TR

JMPZN1: PC←PC � 1
JMPZN2: PC←PC � 1

The states for JPNZ are identical but are accessed under opposite con-
ditions—that is, JPNZY states are executed when Z � 0 and JPNZN states 
are traversed when Z � 1.

JPNZY1: DR←M, AR←AR � 1
JPNZY2: TR←DR, DR←M

JPNZY3: PC←DR, TR

JPNZN1: PC←PC � 1
JPNZN2: PC←PC � 1

6.3.3.7 The Remaining Instructions
The remaining instructions are each executed in a single state. For
each state, two things happen: The correct value is generated and
stored in AC, and the zero flag is set. If the result of the operation is
0, Z is set to 1; otherwise it is set to 0. Since this happens during a sin-
gle state, the CPU cannot first store the result in AC and then set Z: It
must perform both operations simultaneously. For now we simply
specify the states and defer the implementation until later in the de-
sign process. The states for these execute routines are as follows.

ADD1: AC←AC � R, IF (AC � R � 0) THEN Z←1 ELSE Z←0
SUB1: AC←AC � R, IF (AC � R � 0) THEN Z←1 ELSE Z←0
INAC1: AC←AC � 1, IF (AC � 1 � 0) THEN Z←1 ELSE Z←0
CLAC1: AC←0, Z←1
AND1: AC←AC ∧ R, IF (AC ∧ R � 0) THEN Z←1 ELSE Z←0
OR1: AC←AC ∨ R, IF (AC ∨ R � 0) THEN Z←1 ELSE Z←0
XOR1: AC←AC ⊕ R, IF (AC ⊕ R � 0) THEN Z←1 ELSE Z←0
NOT1: AC←AC ′, IF (AC ′ � 0) THEN Z←1 ELSE Z←0

The state diagram for this entire CPU is shown in Figure 6.12.
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Complete state diagram for the Relatively Simple CPU

00-173 C06 pp3  10/25/00  11:10 AM  Page 241



6.3.4 Establishing Data Paths
As with this Very Simple CPU, the Relatively Simple CPU uses an inter-
nal data bus to move data between components. First we regroup the
data transfers by destination.

AR: AR←PC; AR←AR � 1; AR←DR,TR

PC: PC←PC � 1; PC←DR,TR

DR: DR←M, DR←AC

IR: IR←DR

R: R←AC

TR: TR←DR

AC: AC←DR; AC←R; AC←AC � R; AC←AC � R;
AC←AC � 1; AC←0; AC←AC ∧ R; AC←AC ∨ R;
AC←AC ⊕ R; AC←AC ′

Z: Z←1; Z←0 (both conditional)

From these operations, we select the functions of each component:

• AR and PC must be able to perform a parallel load and increment.
Both registers receive their data from the internal bus.

• DR, IR, R, and TR must be able to load data in parallel. For now each
register will receive its data from the internal bus. As we will see
later in the design process, this will not work and more than one
connection will have to be changed.

• AC will require a lot of work, as will Z. This CPU will utilize an ALU
to perform all of these functions. The ALU will receive AC as one in-
put and the value on the internal bus as the other input. AC will al-
ways receive its input from the ALU. The CPU will also use the out-
put of the ALU to determine whether or not the result is 0 for the
purpose of setting Z.

Although the CPU could use a register with parallel load, incre-
ment, and clear signals for AC, we will only use a register with parallel
load and have the ALU create values AC � 1 and 0 when necessary.
This is done to facilitate the proper setting of Z. The Z flag is imple-
mented as a 1-bit register with “parallel” load.

Now we connect every component to the system bus, including
tri-state buffers where necessary. We also connect output pins A[15..0]
and bidirectional pins D[7..0]. The preliminary connections are shown
in Figure 6.13.

Next we modify the design based on the following considerations.

1. As in the Very Simple CPU, AR and IR of the Relatively Simple CPU
do not supply data to other components. We can remove their
outputs to the internal bus.

2. Pins D[7..0] are bidirectional, but the current configuration does
not allow data to be output from these pins.
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3. The 16-bit bus is not fully used by all registers. We must specify
which bits of the data bus are connected to which bits of the 
registers.

4. Register Z is not connected to anything.

To address the first point, we simply remove the unused connec-
tions. The second point is also straightforward: A standard way to im-
plement bidirectional pins is to use a pair of buffers, one in each di-
rection. One buffer is used to input data from the pins and the other
outputs data to the pins. The two buffers must never be enabled si-
multaneously. This configuration is shown in Figure 6.14.

Unlike the Very Simple CPU, it is not a trivial matter to assign
connections between the registers and the bits of the data bus in the
Relatively Simple CPU. AR and PC are 16-bit registers connected to a
16-bit bus, so they present no problem. The remaining 8-bit registers
can be connected to bits 7..0 of the bus. Although this configuration
allows almost every individual transfer to take place, it causes prob-
lems for several states:

• During FETCH3, the CPU must transfer IR←DR and AR←PC simulta-
neously. As configured, both transfers would need to use bits 7..0
of the internal bus at the same time, which is not allowable. Since IR
receives data only from DR, it is possible to establish a direct path
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Figure 6.14
Generic bidirectional data pin
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from the output of DR to the input of IR, allowing IR←DR to occur
without using the internal bus. This allows the CPU to perform both
operations simultaneously. We can also disconnect the input of IR
from the internal bus, since it no longer receives data from the bus.

• During LDAC2 and several other states, TR←DR and DR←M need to
use the bus simultaneously. Fortunately, TR also receives data only
from DR, so the CPU can include a direct path from the output of DR
to the input of TR, just as we did for IR. The input of TR is also dis-
connected from the internal bus.

• During LDAC3 and several other states, DR and TR must be placed
on the bus simultaneously, DR on bits 15..8 and TR on bits 7..0.
However, DR is connected to bits 7..0 of the bus. One way to handle
this is simply to connect the output of DR to bits 15..8 instead of
bits 7..0, but that would cause a problem during LDAC5 and other
states, which need DR on bits 7..0. Another solution, implemented
here, is to route the output of DR to both bits 15..8 and bits 7..0.
Separate buffers with different enable signals must be used because
DR should not be active on both halves of the bus simultaneously.

Finally, we must connect register Z. Reviewing the states and their
functions, we see that Z is only set when an ALU operation occurs. It is
set to 1 if the value to be stored in AC (which is the output of the ALU)
is 0; otherwise it is set to 0. To implement this, we NOR together the
bits output from the ALU. The NOR will produce a value of 1 only if all
bits are 0; thus the output of the NOR gate can serve as the input of Z.
This is why we implemented the increment and clear operations via the
ALU, rather than incorporating them directly into the AC register.

Figure 6.15 on page 246 shows the internal organization of the
CPU after incorporating these changes.

6.3.5 Design of a Relatively Simple ALU
All data that is to be loaded into AC must pass through the ALU. To de-
sign the ALU, we first list all transfers that modify the contents of AC.

LDAC5: AC←DR

MOVR1: AC←R

ADD1: AC←AC � R

SUB1: AC←AC � R

INAC1: AC←AC � 1
CLAC1: AC←0
AND1: AC←AC ∧ R

OR1: AC←AC ∨ R

XOR1: AC←AC ⊕ R

NOT1: AC←AC ′
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An arithmetic/logic unit (ALU) can be designed just as its name
implies: We can design one section to perform the arithmetic instruc-
tions and another section to perform the logical instructions. A multi-
plexer selects data from the correct section for output to AC.

First we design the arithmetic section. To do this, we rewrite the
arithmetic instructions to indicate the source of their operands:

LDAC5: AC←BUS

MOVR1: AC←BUS

ADD1: AC←AC � BUS

SUB1: AC←AC � BUS

INAC1: AC←AC � 1
CLAC1: AC←0

Each of these instructions can be implemented by using a paral-
lel adder with carry in by modifying the input values, rewriting each
operation as the sum of two values and a carry:

LDAC5: AC←0 � BUS � 0
MOVR1: AC←0 � BUS � 0
ADD1: AC←AC � BUS � 0
SUB1: AC←AC � BUS ′ � 1
INAC1: AC←AC � 0 � 1
CLAC1: AC←0 � 0 � 0

Note that subtraction is implemented via two’s complement addition,
as described in Chapter 1. For now we design the data paths; we im-
plement the control logic later in the design process.

The first input to the parallel adder is either the contents of AC
or 0. The ALU can use a multiplexer to select one of these two values
and pass it to one input of the parallel adder. Similarly, the ALU uses a
multiplexer to send BUS, BUS ′, or 0 to the second input. The ALU could
also use a multiplexer to supply the carry input, but that would be
overkill. We simply use a control input to directly generate this value.

The logical operations are relatively straightforward. Since there
are four logical operations, we use an 8-bit 4 to 1 multiplexer. The in-
puts to the MUX are AC ∧ BUS, AC ∨ BUS, AC ⊕ BUS, and AC ′.

Finally, a multiplexer selects the output of either the parallel
adder or the logic multiplexer to output to AC. The entire ALU design
is shown in Figure 6.16 on page 248.

6.3.6 Designing the Control Unit Using Hardwired Control
The Relatively Simple CPU has a total of 37 states, making it too com-
plex to implement efficiently using the same design as the Very Simple
CPU’s control unit. Instead of using one register to generate the state,
this control unit uses two registers and combines their outputs to 
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generate the state value. One value is the opcode of the instruction.
The other is a counter to keep track of which state in the fetch or exe-
cute routine should be active.

The opcode value is relatively easy to design. The opcode is
stored in IR, so the control unit can use that register’s outputs as in-
puts to a decoder. Since the instruction codes are all of the form 0000
XXXX, we only need to decode the four low-order bits. We NOR together
the four high-order bits to enable the decoder. Then the counter can be
set up so that it only has to be incremented and cleared, and never
loaded; this greatly simplifies the design. These components, and the
labels assigned to their outputs, are shown in Figure 6.17.

The fetch routine is the only routine that does not use a value
from the instruction decoder. Since the instruction is still being
fetched during these states, this decoder could have any value during
the instruction fetch. Just as with the Very Simple CPU, this control
unit assigns T0 to FETCH1, since it can be reached by clearing the time
counter. We assign T1 and T2 to FETCH2 and FETCH3, respectively.

The states of the execute routines depend on both the opcode
and time counter values. T3 is the first time state of each execute rou-
tine, T4 is the second, and so on. The control unit logically ANDs the
correct time value with the output of the instruction multiplexer cor-
responding to the proper instruction. For example, the states of the
LDAC execute routine are

LDAC1 � ILDAC ∧ T3
LDAC2 � ILDAC ∧ T4
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LDAC3 � ILDAC ∧ T5
LDAC4 � ILDAC ∧ T6
LDAC5 � ILDAC ∧ T7

The complete list of states is given in Table 6.6 on page 250.
Having generated the states, we must generate the signals to

supply the CLR and INC inputs of the time counter. The counter is
cleared only at the end of each execute routine. To do this, we logi-
cally OR the last state of each execute routine to generate the CLR in-
put. The INC input should be asserted at all other times, so it can be
implemented by logically ORing the remaining states together. As an
alternative, the INC input can be the complement of the CLR input,
since, if the control unit is not clearing the counter, it is incrementing
the counter.

Following the same procedure we used for the Very Simple CPU,
we generate the register and buffer control signals. Table 6.7 on page
251 shows the values for the buffers and AR. The remaining control
signals are left as design problems for the reader.
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Finally, we generate the ALU control signals in the same manner.
For example, ALUS1 � ADD1 ∨ SUB1 ∨ INAC1 and ALUS4 � SUB1 ∨ INAC1.
The remaining control signals are left as exercises for the reader.

6.3.7 Design Verification
To verify the design of this CPU, the designer should prepare a trace
of the execution, as was done for the Very Simple CPU. For the JMPZ
and JPNZ instructions, the trace should show the execution under all
possible circumstances, in this case Z � 0 and Z � 1. This is left as an
exercise for the reader.

To perform the trace, students may use the RS-CPU simulator
package. This package is a Java applet that can be run using any stan-
dard Web browser with Java enabled. Using this package, the reader
can enter a program and step through the fetch, decode, and execu-
tion of the individual instructions. The package may be accessed at
the textbook’s companion Web site, along with its instructions.
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State Function State Function

FETCH1 T0 JMPZY1 IJMPZ ∧ Z ∧ T3

FETCH2 T1 JMPZY2 IJMPZ ∧ Z ∧ T4

FETCH3 T2 JMPZY3 IJMPZ ∧ Z ∧ T5

NOP1 INOP ∧ T3 JMPZN1 IJMPZ ∧ Z′ ∧ T3

LDAC1 ILDAC ∧ T3 JMPZN2 IJMPZ ∧ Z′ ∧ T4

LDAC2 ILDAC ∧ T4 JPNZY1 IJPNZ ∧ Z ∧ T3

LDAC3 ILDAC ∧ T5 JPNZY2 IJPNZ ∧ Z ∧ T4

LDAC4 ILDAC ∧ T6 JPNZY3 IJPNZ ∧ Z ∧ T5

LDAC5 ILDAC ∧ T7 JPNZN1 IJPNZ ∧ Z′ ∧ T3

STAC1 ISTAC ∧ T3 JPNZN2 IJPNZ ∧ Z′ ∧ T4

STAC2 ISTAC ∧ T4 ADD1 IADD ∧ T3

STAC3 ISTAC ∧ T5 SUB1 ISUB ∧ T3

STAC4 ISTAC ∧ T6 INAC1 IINAC ∧ T3

STAC5 ISTAC ∧ T7 CLAC1 ICLAC ∧ T3

MVAC1 IMVAC ∧ T3 AND1 IAND ∧ T3

MOVR1 IMOVR ∧ T3 OR1 IOR ∧ T3

JUMP1 IJUMP ∧ T3 XOR1 IXOR ∧ T3

JUMP2 IJUMP ∧ T4 NOT1 INOT ∧ T3

JUMP3 IJUMP ∧ T5

Table 6.6
State generation for a Relatively Simple CPU
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6.4 Shortcomings of the Simple CPUs
The CPUs presented in this chapter were designed as educational
tools. Although they share many features with commonly used micro-
processors, they are not representative of the current state of CPU de-
sign. Several common features were excluded from the Very Simple
and Relatively Simple CPUs in an attempt to incorporate the essential
features without overwhelming the reader. Consider the feature sets
of these CPUs to be the result of an engineering education design
tradeoff.

Following are some of the features found in many CPUs that are
not present in either of the CPUs developed in this chapter.

6.4.1 More Internal Registers and Cache
One of the best ways to improve the performance of a microprocessor
is to incorporate more storage within the CPU. Adding registers and
cache makes it possible to replace some external memory accesses
with much faster internal accesses.

To illustrate this, consider the ADD instructions for the Very Sim-
ple and Relatively Simple CPUs. The ADD instruction for the Very Sim-
ple CPU adds the contents of the accumulator to that of a memory lo-
cation. It requires two states: one to read the value from memory
(ADD1), and another to add the two values and store the result in the
accumulator (ADD2). The Relatively Simple CPU, however, adds the
contents of the accumulator and register R. Because the CPU does not
access memory, it executes the ADD instruction in a single state
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Signal Value

PCBUS FETCH1 ∨ FETCH3

DRHBUS LDAC3 ∨ STAC3 ∨ JUMP3 ∨ JMPZY3 ∨ JPNZY3

DRLBUS LDAC5 ∨ STAC5

TRBUS LDAC3 ∨ STAC3 ∨ JUMP3 ∨ JMPZY3 ∨ JPNZY3

RBUS MOVR1 ∨ ADD1 ∨ SUB1 ∨ AND1 ∨ OR1 ∨ XOR1

ACBUS STAC4 ∨ MVAC1

MEMBUS FETCH2 ∨ LDAC1 ∨ LDAC2 ∨ LDAC4 ∨ STAC1 ∨ STAC2 ∨
JUMP1 ∨ JUMP2 ∨ JMPZY1 ∨ JMPZY2 ∨ JPNZY1 ∨ JPNZY2

BUSMEM STAC5

ARLOAD FETCH1 ∨ FETCH3 ∨ LDAC3 ∨ STAC3

ARINC LDAC1 ∨ STAC1 ∨ JUMP1 ∨ JMPZY1 ∨ JPNZY1

Table 6.7
Control signal values for a Relatively Simple CPU
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(ADD1). Removing memory accesses from other instructions by using
internal registers reduces the time needed to execute the instructions
in a similar manner.

Having more registers within the CPU also improves performance
in programs that have subroutines. Consider a program for a CPU with
no internal data registers, other than an accumulator. Assume this pro-
gram invokes a subroutine, and this subroutine must receive six data
values from the main program as passed parameters. The main pro-
gram would have to write those six values to predetermined memory
locations. The subroutine would have to read the values from memory
and write its results back to memory. Finally, the main program would
have to read the results from memory. If the CPU contained enough
registers, the main program could store the parameters in its internal
registers. The subroutine would not need to access memory because
the CPU already contained the data in its registers. On completion, the
main program would receive the results via the registers. Overall, a
large number of memory accesses are thus avoided.

As processors have become more complex, designers have 
included more storage within the CPU, both in registers and in-
ternal cache memory. See Historical Perspective: Storage in Intel 
Microprocessors.
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HISTORICAL PERSPECTIVE: Storage in Intel Microprocessors

Since the introduction of its first microprocessor in 1971, Intel has steadily in-
creased the number of general purpose registers in its microprocessors. The 4004,
Intel’s first microprocessor, had no general purpose registers per se, although a
complete 4-chip computer, consisting of the 4001, 4002, 4003, and 4004 chips, in-
cluded 16 RAM locations that were used as registers. Its successors, the 8008,
8080, and 8085, incorporated six general purpose registers, as well as an accumu-
lator, within the processor chip itself. The 8086 microprocessor has eight general
purpose registers, as do the 80286, 80386, and 80486 microprocessors. The Pen-
tium microprocessor also has 8 internal general purpose registers, but they are 32
bits wide, as opposed to the 16 bits of its predecessors. Intel’s most recent micro-
processor (as of this writing), the Itanium microprocessor, has 128 general purpose
integer registers and an additional 128 general purpose floating point registers.

Intel first introduced cache memory into its Pentium microprocessor, starting
with 16K of cache memory. It soon increased this to 32K, and further increased the
amount in later processors. The Itanium microprocessor contains three levels of
cache with over 4 MB of cache memory.
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6.4.2 Multiple Buses Within the CPU
Buses are efficient media for routing data between components within
a CPU. However, a bus may only contain one value at any given time.
For that reason, most CPUs contain several buses. Multiple buses 
allow multiple data transfers to occur simultaneously, one via each
bus. This reduces the time needed to fetch, decode, and execute in-
structions, thus improving system performance.

Consider the register section of the Relatively Simple CPU, shown
in Figure 6.15. Most data transfers are routed via the 16-bit bus; every
register except IR either outputs data to or inputs data from the bus.
However, most of these components never need to communicate with
each other. For example, it is possible to route data from R to AR, but
it is never necessary to do so. If multiple buses were used, compo-
nents that transfer data among themselves could be connected to
more than one bus, or there could be connections established between
buses. For the Relatively Simple CPU, one bus could be set up for ad-
dress information and another for data. One possible configuration,
which uses three buses, is shown in Figure 6.18 on page 254.

Another benefit of multiple buses is the elimination of direct
connections between components. Recall that the Relatively Simple
CPU included direct connections from DR to TR and IR so that multiple
data transfers could occur simultaneously during FETCH3, LDAC2,
STAC2, JUMP2, JMPZY2, and JPNZY2. As the number of registers within
the CPU increases, this becomes increasingly important.

6.4.3 Pipelined Instruction Processing
In the CPUs developed in this chapter, one instruction is fetched, de-
coded, and executed before the next instruction is processed. In
pipelining, instructions are processed like goods on an assembly line.
While one instruction is being decoded, the next instruction is
fetched, and while the first instruction is being executed, the second
is decoded and a third instruction is fetched. Overlapping the fetch,
decode, and execute of several instructions allows programs to be ex-
ecuted more quickly, even though each individual instruction requires
the same amount of time.

Although this process has some problems, particularly with con-
ditional and unconditional jump instructions, it offers significant in-
creases in performance. Pipelining is discussed in detail in Chapter 11.

6.4.4 Larger Instruction Sets
Having a larger number of instructions in a processor’s instruction set
generally allows a program to perform a function using fewer instruc-
tions. For example, consider a CPU that can logically AND two values
and complement one value, but cannot logically OR two values. To
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perform a logical OR of two values, A and B, it would perform the fol-
lowing instructions:

Complement A
Complement B
AND A and B
Complement the result

If this CPU contained an OR instruction, only one instruction would be
needed instead of four.

There is considerable debate over how many instructions a CPU
should have. As the number of instructions increases, so does the time
needed to decode the instructions, which limits the clock speed of the
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CPU. This is the basis of the complex versus reduced instruction set
computing debate, which is examined more closely in Chapter 11.

6.4.5 Subroutines and Interrupts
Almost all CPUs have hardware to handle subroutines, typically a
stack pointer, and instructions to call and return from the subroutine.
Most CPUs also have interrupt inputs to allow external hardware to in-
terrupt the current operations of the CPU. This is useful for such
things as updating the computer’s display, since it is preferable for the
CPU to perform useful work and to be interrupted when the screen
must be refreshed, rather than spending time polling the screen con-
troller to determine whether it needs to be updated. Interrupts are de-
scribed in more detail in Chapter 10.

6.5 Real World Example: Internal Architecture 
of the 8085 Microprocessor

In Chapters 3 and 4, we examined the instruction set architecture of
the 8085 microprocessor and a computer based on this microproces-
sor. In this section, we look inside the 8085 and compare its organiza-
tion to that of the Relatively Simple CPU.

The internal organization of Intel’s 8085 microprocessor is shown
in Figure 6.19. (Note that some elements of the design, such as internal
control signals, are present but not shown in the figure.) As with the
other CPUs described so far, the 8085 contains a register section, an ALU
and a control unit. Note that the interrupt control and serial I/O control
blocks are not exclusively a part of any one section. In fact, part of these
blocks are components of the control unit and the rest of the blocks are
parts of the register section. Let’s look at these sections in some detail.

The easiest component to examine is the 8085’s ALU. It performs
all arithmetic, logic, and shift instructions, making its result available
to the registers via the 8-bit internal data bus. Control signals from
the control unit, not shown in Figure 6.19, select the function to be
performed by the ALU.

The register section contains the user-accessible registers speci-
fied in the 8085’s instruction set architecture: A, B, C, D, E, H, L, SP, and
the flags. This section also contains the microprocessor’s instruction
register and program counter, a temporary register that it uses to input
data to the ALU, and an address latch, which is equivalent to the AR
register in the Relatively Simple CPU. Although not shown in Figure
6.19, two additional temporary registers are used by the microproces-
sor to store data during the execution of an instruction. They serve the
same purpose as the TR register in the Relatively Simple CPU.

Although not registers, the address and data/address buffers are
included in the register section. Under certain conditions, the 8085
does not access the system address and data buses. During these
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Figure 6.19
Internal organization of the 8085 microprocessor (MCS 80/85™ Family User’s Manual.
Reprinted by permission of Intel Corporation, Copyright Intel Corporation 1979.)
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times, it must tri-state its connections to these buses; this is the func-
tion of these buffers. This happens when the computer is performing
a DMA transfer, described in detail in Chapter 10. In addition, the
data/address buffers determine whether data is input to or output
from the CPU, just as was done with the Relatively Simple CPU.

The interrupt control block contains the interrupt mask register.
The user can read the value from this register or store a value into
that register, so it is included in the microprocessor’s instruction set
architecture and its register section. The serial I/O control block also
contains a register to latch serial output data.

The registers communicate within the CPU via the 8-bit internal
data bus. Although it is not very clear in Figure 6.19, the connection
from the register array (the block containing registers B, C, D, E, H, L,
SP, and PC) is wide enough for one register to place data onto the bus
while another register reads the data from the bus, as when the in-
struction MOV B,C is executed. When data is read from memory, such
as during an instruction fetch, or from an I/O device, the data is
passed through the data/address buffer on to the internal data bus.
From there, it is read in by the appropriate register.

The control section consists of several parts. The timing and con-
trol block is equivalent to almost the entire control unit of the Rela-
tively Simple CPU. It sequences through the states of the microproces-
sor and generates external control signals, such as those used to read
from and write to memory. Although not shown, it also generates all
of the internal control signals used to load, increment and clear regis-
ters; to enable buffers; and to specify the function to be performed by
the ALU.

The instruction decoder and machine cycle encoding block takes
the current instruction (stored in the instruction register) as its input
and generates state signals that are input to the timing and control
block. This is similar to the function performed by the 4-to-16 decoder
in the control unit of the Relatively Simple CPU, as shown in Figure
6.17. Essentially, it decodes the instruction. The decoded signals are
then combined with the timing signals in the timing and control block
to generate the internal control signals of the microprocessor.

Finally, the interrupt control and serial I/O control blocks are
partially elements of the control unit. The interrupt control block ac-
cepts external interrupt requests, checks whether the requested inter-
rupts are enabled, and passes valid requests to the rest of the control
unit. (As with the internal control signals, the path followed by these
requests is not shown in Figure 6.19 but it is present nonetheless.)
The serial I/O control block contains logic to coordinate the serial
transfer of data into and out of the microprocessor.

The 8085 microprocessor addresses several but not all of the
shortcomings of the Relatively Simple CPU. First of all, it contains
more general purpose registers than the Relatively Simple CPU. This
allows the 8085 to use fewer memory accesses than the Relatively
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Simple CPU to perform the same task. The 8085 microprocessor also
has a larger instruction set, and has the ability to handle subroutines
and interrupts. However, it still uses only one internal bus to transfer
data, which limits the number of data transfers that can occur at any
given time. The 8085 also does not use an instruction pipeline. Like
the Relatively Simple CPU, it processes instructions sequentially—it
fetches, decodes, and executes one instruction before fetching the
next instruction.

6.6 Summary
In previous chapters, we looked at the CPU from the point of view of
the programmer (instruction set architecture) and the system designer
(computer organization). In this chapter, we examined the CPU from
the perspective of the computer architect.

To design a CPU, we first develop its instruction set architecture,
including its instruction set and its internal registers. We then create a
finite state machine model of the micro-operations needed to fetch,
decode, and execute every instruction in its instruction set. Then we
develop an RTL specification for this state machine.

A CPU contains three primary sections: the register section, con-
sisting of the registers in the CPU’s ISA as well as other registers not
directly available to the programmer, the ALU, and the control unit.
The micro-operations in its RTL code specify the functions to be per-
formed by the register section and the ALU. These micro-operations
are used to design the data paths within the register section, includ-
ing direct connections and buses, and the functions of each register.
The micro-operations also specify the functions of the ALU. Since the
ALU must perform all of its calculations in a single clock cycle, it is
constructed using only combinatorial logic.

The conditions under which each micro-operation occurs dictate
the design of the control unit. The control unit generates the control
signals that load, increment, and clear the registers in the register sec-
tion. The control unit also enables the buffers used to control the
CPU’s internal buses. The function to be performed by the ALU is spec-
ified by the control unit. By outputting the control signals in the
proper sequence, the control unit causes the CPU to properly fetch,
decode, and execute every instruction in its instruction set.

Problems
1 A CPU with the same registers as the Very Simple CPU, connected as

shown in Figure 6.6, has the following instruction set and state dia-
gram. Show the RTL code for the execute cycles for each instruction.
Assume the RTL code for the fetch routine is the same as that of the
Very Simple CPU.
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2 A CPU with the same registers as the Very Simple CPU, connected as
shown in Figure 6.6, has the state diagram on the next page and fol-
lowing RTL code. Show the instruction set for this CPU.

FETCH1: AR←PC

FETCH2: DR←M, PC←PC � 1
FETCH3: IR←DR [7..6], AR←DR[5..0]
001: DR←M, AR←AR � 1
002: AC←AC � DR

003: DR←M

260 CHAPTER 6 CPU DESIGN

Instruction Instruction Code Operation

JMP1 00AAAAAA PC←AAAAAA � 1

INC2 01XXXXXX AC←AC � 2

ADD1 10AAAAAA AC←AC � M[AAAAAA] � 1

SKIP 11XXXXXX PC←PC � 1

IR = 11IR = 10IR = 01

FETCH1

FETCH2

FETCH3

JMP11 INC21 ADD11

ADD12

SKIP1

JMP12 INC22

IR = 00
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004: AC←AC � DR

011: DR←M, PC←PC � 1
012: AC←AC ∧ DR

1X1: AC←AC � 1, DR←M

1X2: AC←AC ∧ DR

3 Develop a control unit for the state diagram in Problem 2.
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FETCH1

FETCH2

FETCH3

001 011

002 012

003

004

1X1

1X2

IR = 1X

IR = 01

IR = 00
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4 The following control unit is supposed to realize the state diagram,
also shown, but it does not. Show the state diagram it actually realizes.
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FETCH1

FETCH2

FETCH3

FETCH4

IA1 IB1 IC1 ID1
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5 Modify the control unit of Problem 4 so that it realizes the state dia-
gram properly.

6 We wish to modify the Very Simple CPU to incorporate a new instruc-
tion, CLEAR, which sets AC←0; the instruction code for CLEAR is 111X
XXXX. The new instruction code for INC is 110X XXXX; all other in-
struction codes remain unchanged. Show the new state diagram and
RTL code for this CPU.

7 For the CPU of Problem 6, show the modifications necessary for the
register section.

8 For the CPU of Problem 6, show the modifications necessary for the
control unit. Include the hardware needed to generate any new or
modified control signals.

9 Verify the functioning of the CPU of Problems 6, 7, and 8 for the new
instruction.

10 We wish to modify the Very Simple CPU to incorporate a new 8-bit reg-
ister, R, and two new instructions. MVAC performs the transfer R←AC
and has the instruction code 1110 XXXX; MOVR performs the opera-
tion AC←R and has the instruction code 1111 XXXX. The new instruc-
tion code for INC is 110X XXXX; all other instruction codes remain un-
changed. Show the new state diagram and RTL code for this CPU.

11 For the CPU of Problem 10, show the modifications necessary for the
register section.

12 For the CPU of Problem 10, show the modifications necessary for the
control unit. Include the hardware needed to generate any new or
modified control signals.

13 Verify the functioning of the CPU of Problems 10, 11, and 12 for the
new instructions.

14 Enhance the Very Simple ALU to perform the following operations, in
addition to those it currently performs.

shl: AC←AC � AC

neg: AC←AC ′ � 1
ad1: AC←AC � DR � 1

15 Show the logic needed to generate the control signals for registers PC,
DR, TR, and IR of the Relatively Simple CPU.
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16 Show the logic needed to generate the control signals for registers R,
AC, and Z of the Relatively Simple CPU.

17 Show the logic needed to generate the control signals for the ALU of
the Relatively Simple CPU.

18 Verify the functioning of the Relatively Simple CPU for all instructions,
either manually or using the CPU simulator.

19 Modify the Relatively Simple CPU to include a new instruction, SETR,
which performs the operation R←1111 1111. Its instruction code is
0001 0000. Show the modified state diagram and RTL code for this CPU.
(Hint: One way to implement this is to clear R and then decrement it.)

20 For the CPU of Problem 19, show the modifications necessary for the
register section.

21 For the CPU of Problem 19, show the modifications necessary for the
control unit. Include the hardware needed to generate any new or
modified control signals.

22 Verify the functioning of the CPU of Problems 19, 20, and 21 for the
new instruction.

23 Modify the Relatively Simple CPU to include a new 8-bit register, B, and
five new instructions as follows. Show the modified state diagram and
RTL code for this CPU.

24 For the CPU of Problem 23, show the modifications necessary for the
register section and the ALU.

25 For the CPU of Problem 23, show the modifications necessary for the
control unit. Include the hardware needed to generate any new or
modified control signals.

26 Verify the functioning of the CPU of Problems 23, 24, and 25 for the
new instructions.
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Instruction Instruction Code Operation

ADDB 0001 1000 AC←AC � B

SUBB 0001 1001 AC←AC � B

ANDB 0001 1100 AC←AC ∧ B

ORB 0001 1101 AC←AC ∨ B

XORB 0001 1110 AC←AC ⊕ B
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27 For the Relatively Simple CPU, assume the CLAC and INAC instructions
are implemented via the CLR and INC signals of the AC register, in-
stead of through the ALU. Modify the input and control signals of Z so
it is set properly for all instructions.

28 Design a CPU that meets the following specifications.

• It can access 64 words of memory, each word being 8 bits wide. The
CPU does this by outputting a 6-bit address on its output pins A[5..0]
and reading in the 8-bit value from memory on its inputs D[7..0].

• The CPU contains a 6-bit address register (AR) and program counter
(PC ); an 8-bit accumulator (AC ) and data register (DR); and a 2-bit in-
struction register (IR).

• The CPU must realize the following instruction set.

29 Design a CPU that meets the following specifications.

• It can access 256 words of memory, each word being 8 bits wide.
The CPU does this by outputting an 8-bit address on its output pins
A[7..0] and reading in the 8-bit value from memory on its inputs
D[7..0].

• The CPU contains an 8-bit address register (AR), program counter
(PC ), accumulator (AC ), and data register (DR), and a 3-bit instruc-
tion register (IR).

• The CPU must realize the following instruction set. Note that � is an 8-
bit value stored in the location immediately following the instruction.
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Instruction Instruction Code Operation

LDI 000XXXXX � AC←�

STO 001XXXXX � M[�]←AC

ADD 010XXXXX � AC←AC � M[�]

OR 011XXXXX � AC←AC ∨ M[�]

JUMP 100XXXXX � PC←�

JREL 101AAAAA PC←PC � 000AAAAA

SKIP 110XXXXX PC←PC � 1

RST 111XXXXX PC←0, AC←0

Instruction Instruction Code Operation

COM 00XXXXXX AC←AC ′
JREL 01AAAAAA PC←PC � 00AAAAAA

OR 10AAAAAA AC←AC ∨ M[00AAAAAA]

SUB1 11AAAAAA AC←AC � M[00AAAAAA] � 1
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30 Modify the Relatively Simple CPU so that it can use a stack. The
changes required to do this are as follows.

• Include a 16-bit stack pointer (SP) register that holds the address of
the top of the stack.

• The CPU must realize the following additional instructions. Note
that operations separated by semicolons occur sequentially, and op-
erations separated by commas occur simultaneously. Also note that
the value of PC used by the CALL instruction is the value of PC after
� has been fetched from memory.
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Instruction Instruction Code Operation

LDSP 10000000 � SP←�

CALL 10000010 � SP←SP � 1;
M[SP]←PC[15..8], SP←SP � 1;
M [SP]←PC [7..0], PC←�

RET 10000011 PC [7..0]←M [SP], SP←SP � 1;
PC [15..8]←M [SP], SP←SP � 1

PUSHAC 10000100 SP←SP � 1;
M [SP]←AC

POPAC 10000101 AC←M [SP], SP←SP � 1

PUSHR 10000110 SP←SP � 1;
M [SP]←R

POPR 10000111 R←M [SP], SP←SP � 1
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