
Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-1

ICOM 4036
Lecture 6

Object Oriented Programming

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-2

Introduction

• Categories of languages that support OOP:
1. OOP support is added to an existing language
– C++ (also supports procedural and data-oriented

programming)
– Ada 95 (also supports procedural and data-

oriented programming)
– CLOS (also supports functional programming)
– Scheme (also supports functional programming)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-3

Introduction

2. Support OOP, but have the same appearance
and use the basic structure of earlier
imperative languages
– Eiffel (not based directly on any previous

language)
– Java (based on C++)

3. Pure OOP languages
– Smalltalk

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-4

Object-Oriented Programming

• Paradigm Evolution
1. Procedural - 1950s-1970s (procedural abstraction)
2. Data-Oriented - early 1980s (data abstraction)
3. OOP - late 1980s (inheritance and dynamic

binding)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-5

Object-Oriented Programming

• Origins of Inheritance
– Observations of the mid-late 1980s :

• Productivity increases can come from reuse
• Unfortunately,

– ADTs are difficult to reuse--never quite right
– All ADTs are independent and at the same level

• Inheritance solves both--reuse ADTs after
minor changes and define classes in a
hierarchy to achieve polymorphism

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-6

Object-Oriented Programming

• OOP Definitions:
– ADTs are called classes
– Class instances are called objects
– A class that inherits is a derived class or a subclass
– The class from which another class inherits is a

parent class or superclass
– Subprograms that define operations on objects are

called methods

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-7

Object-Oriented Programming

• OOP Definitions (continued):
– Calls to methods are called messages
– The entire collection of methods of an object is

called its message protocol or message interface
– Messages have two parts--a method name and the

destination object
– In the simplest case, a class inherits all of the

entities of its parent

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-8

Object-Oriented Programming

• Inheritance can be complicated by access
controls to encapsulated entities
– A class can hide entities from its subclasses
– A class can hide entities from its clients
– A class can also hide entities for its clients while

allowing its subclasses to see them

• Besides inheriting methods as is, a class can
modify an inherited method
– The new one overrides the inherited one
– The method in the parent is overriden

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-9

Object-Oriented Programming

• There are two kinds of variables in a class:
1. Class variables - one/class
2. Instance variables - one/object

• There are two kinds of methods in a class:
1. Class methods – accept messages to the class
2. Instance methods – accept messages to objects

• Single vs. Multiple Inheritance
• One disadvantage of inheritance for reuse:

– Creates interdependencies among classes that
complicate maintenance

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-10

Object-Oriented Programming

• Polymorphism in OOPLs
– A polymorphic variable can be defined in a class

that is able to reference (or point to) objects of the
class and objects of any of its descendants

– When a class hierarchy includes classes that
override methods and such methods are called
through a polymorphic variable, the binding to the
correct method MUST be dynamic

– This polymorphism simplifies the addition of new
methods

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-11

Object-Oriented Programming

• An abstract method is one that does not
include a definition (it only defines a protocol)

• An abstract class is one that includes at least
one virtual method

• An abstract class cannot be instantiated

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-12

Object-Oriented Programming

• Design Issues for OOPLs
1. The Exclusivity of Objects

a. Everything is an object
• Advantage - elegance and purity
• Disadvantage - slow operations on simple objects

(e.g., float)
b. Add objects to a complete typing system
• Advantage - fast operations on simple objects
• Disadvantage - results in a confusing type system

(two kinds of entities)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-13

Object-Oriented Programming

1. The Exclusivity of Objects (continued)
c. Include an imperative-style typing system for

primitives but make everything else objects
• Advantage - fast operations on simple objects and a

relatively small typing system
• Disadvantage - still some confusion because of the

two type systems

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-14

Object-Oriented Programming

2. Are Subclasses Subtypes?
– Does an “is-a” relationship hold between a parent

class object and an object of the subclass?

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-15

Object-Oriented Programming

3. Implementation and Interface Inheritance
– If only the interface of the parent class is visible to

the subclass, it is interface inheritance
• Disadvantage - can result in inefficiencies

– If both the interface and the implementation of the
parent class is visible to the subclass, it is
implementation inheritance

• Disadvantage - changes to the parent class require
recompilation of subclasses, and sometimes even
modification of subclasses

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-16

Object-Oriented Programming

4. Type Checking and Polymorphism
– Polymorphism may require dynamic type checking

of parameters and the return value
• Dynamic type checking is costly and delays error

detection
– If overriding methods are restricted to having the

same parameter types and return type, the
checking can be static

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-17

Object-Oriented Programming

5. Single and Multiple Inheritance
– Disadvantages of multiple inheritance:

• Language and implementation complexity (in part due
to name collisions)

• Potential inefficiency - dynamic binding costs more
with multiple inheritance (but not much)

– Advantage:
• Sometimes it is extremely convenient and valuable

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-18

Object-Oriented Programming

6. Allocation and Deallocation of Objects
– From where are objects allocated?

• If they all live in the heap, references to them are
uniform

• Simplifies assignment - dereferencing can be implicit
– Is deallocation explicit or implicit?

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-19

Object-Oriented Programming

7. Dynamic and Static Binding
– Should ALL binding of messages to methods be

dynamic?
• If none are, you lose the advantages of dynamic

binding
• If all are, it is inefficient

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-20

Support for OOP in Smalltalk

• Smalltalk is a pure OOP language
– Everything is an object
– All computation is through objects sending

messages to objects
– It adopts none of the appearance of imperative

languages
• The Smalltalk Environment

– The first complete GUI system
– A complete system for software development
– All of the system source code is available to the

user, who can modify it if he/she wants

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-21

Support for OOP in Smalltalk

• Type Checking and Polymorphism
– All binding of messages to methods is dynamic
– The process is to search the object to which the

message is sent for the method; if not found,
search the superclass, etc.

– Because all variables are typeless, methods are all
polymorphic

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-22

Support for OOP in Smalltalk

• Inheritance
– All subclasses are subtypes (nothing can be

hidden)
– All inheritance is implementation inheritance
– No multiple inheritance
– Methods can be redefined, but the two are not

related

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-23

Support for OOP in Smalltalk

• Evaluation of Smalltalk
– The syntax of the language is simple and regular
– Good example of power provided by a small

language
– Slow compared with conventional compiled

imperative languages
– Dynamic binding allows type errors to go

undetected until run time
– Greatest impact: advancement of OOP

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-24

Support for OOP in C++

• General Characteristics:
– Mixed typing system
– Constructors and destructors
– Elaborate access controls to class entities

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-25

Support for OOP in C++

• Inheritance
– A class need not be the subclass of any class
– Access controls for members are
1. Private (visible only in the class and friends)

(disallows subclasses from being subtypes)
2. Public (visible in subclasses and clients)
3. Protected (visible in the class and in subclasses,

but not clients)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-26

Support for OOP in C++

• Inheritance (continued)
– In addition, the subclassing process can be

declared with access controls (private or public),
which define potential changes in access by
subclasses

a. Private derivation - inherited public and protected
members are private in the subclasses

b. Public derivation public and protected members
are also public and protected in subclasses

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-27

Example

class base_class {
private:

int a;
float x;

protected:
int b;
float y;

public:
int c;
float z;

};

class subclass_1 : public base_class { … };
// - In this one, b and y are protected and
// c and z are public

class subclass_2 : private base_class { … };
// - In this one, b, y, c, and z are private,
// and no derived class has access to any
// member of base_class

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-28

Support for OOP in C++

• Reexportation
– A member that is not accessible in a subclass

(because of private derivation) can be declared to
be visible there using the scope resolution operator
(::), e.g.,

class subclass_3 : private base_class {
base_class :: c;
…

}

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-29

Support for OOP in C++

• Reexportation (continued)
– One motivation for using private derivation:

• A class provides members that must be
visible, so they are defined to be public
members; a derived class adds some new
members, but does not want its clients to see
the members of the parent class, even though
they had to be public in the parent class
definition

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-30

Support for OOP in C++

• Multiple inheritance is supported
– If there are two inherited members with the same

name, they can both be reference using the scope
resolution operator

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-31

Support for OOP in C++

• Dynamic Binding
– A method can be defined to be virtual, which

means that they can be called through polymorphic
variables and dynamically bound to messages

– A pure virtual function has no definition at all
– A class that has at least one pure virtual function is

an abstract class

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-32

Support for OOP in C++

• Evaluation
– C++ provides extensive access control (unlike

Smalltalk)
– C++ provides multiple inheritance
– In C++, the programmer must decide at design

time which methods will be statically bound and
which must be dynamically bound

• Static binding is faster!
– Smalltalk type checking is dynamic (flexible, but

somewhat unsafe)
– Because of interpretation and dynamic binding,

Smalltalk is ~10 times slower than C++

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-33

Support for OOP in Java

• Because of its close relationship to C++, we
focus on the differences from that language

• General Characteristics
– All data are objects except the primitive types
– All primitive types have wrapper classes that store

one data value
– All objects are heap-dynamic, are referenced

through reference variables, and most are allocated
with new

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-34

Support for OOP in Java

• Inheritance
– Single inheritance only, but there is an abstract

class category that provides some of the benefits
of multiple inheritance (interface)

– An interface can include only method declarations
and named constants, e.g.,

public class Clock extends Applet
implements Runnable

– Methods can be final (cannot be overriden)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-35

Support for OOP in Java

• Dynamic Binding
– In Java, all messages are dynamically bound to

methods, unless the method is final (means it
cannot be overriden; therefore, dynamic binding
serves no purpose)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-36

Support for OOP in Java

• Encapsulation
– Two constructs, classes and packages
– Packages provide a container for classes that are

related (can be named or unamed)
– Entities defined without a scope (access) modifier

have package scope, which makes them visible
throughout the package in which they are defined -
they go in the unnamed package

• Every class in a package is a friend to the package
scope entities elsewhere in the package

• So, package scope is an alternative to the friends of
C++

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-37

Support for OOP in C#

• General characteristics
– Support for OOP similar to Java
– Includes both classes and structs
– Classes are similar to Java’s classes
– Structs are less powerful stack-dynamic constructs

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-38

Support for OOP in C#

• Inheritance
– Uses the syntax of C++ for defining classes
– A method inherited from parent class can be

replaced in the derived class by marking its
definition with new

– The parent class version can still be called
explicitly with the prefix base

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-39

Support for OOP in C#

• Dynamic binding
– To allow dynamic binding of method calls to

methods:
• The base class method is marked virtual
• The corresponding methods in derived classes are

marked override
– Abstract methods are marked abstract and

must be implemented in all subclasses
– All C# classes are ultimately derived from a single

root class, Object

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-40

Support for OOP in C#

• Evaluation
– C# is the most recently designed C-based OO

language
– The differences between C#’s and Java’s support

for OOP are relatively minor

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-41

Support for OOP in Ada 95

• General Characteristics
– OOP was one of the most important extensions to

Ada 83
– Encapsulation container is a package that defines a

tagged type
– A tagged type is one in which every object

includes a tag to indicate during execution its type
(the tags are internal)

– Tagged types can be either private types or records
– No constructors or destructors are implicitly called

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-42

Support for OOP in Ada 95

• Inheritance
– Subclasses can be derived from tagged types
– New entities in a subclass are added in a record

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-43

Example of a Tagged Type

Package PERSON_PKG is
type PERSON is tagged private;
procedure DISPLAY(P : in out PERSON);
private
type PERSON is tagged
record
NAME : STRING(1..30);
ADDRESS : STRING(1..30);
AGE : INTEGER;

end record;
end PERSON_PKG;
with PERSON_PKG; use PERSON_PKG;
package STUDENT_PKG is
type STUDENT is new PERSON with

record
GRADE_POINT_AVERAGE : FLOAT;
GRADE_LEVEL : INTEGER;

end record;
procedure DISPLAY (ST: in STUDENT);

end STUDENT_PKG;

Note: DISPLAY is being overridden from person_PKG

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-44

Support for OOP in Ada 95

• Inheritance (continued)
– All subclasses are subtypes
– Single inheritance only, except through generics

• Dynamic Binding
– Dynamic binding is done using polymorphic

variables called classwide types
– e.g., for the tagged type PERSON, the classwide

type is PERSON’class
– Other bindings are static
– Any method may be dynamically bound

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-45

The Object Model of JavaScript

• General Characteristics of JavaScript
– Has little in common with Java
– Dynamic typing
– No classes or inheritance or polymorphism
– Variables can reference objects or can directly

access primitive values

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-46

The Object Model of JavaScript

• JavaScript Objects
– An object has a collection of properties, which are

either data properties or method properties
– Appear as hashes, both internally and externally
– A list of property/value pairs
– Properties can be added or deleted dynamically
– A bare object can be created with new and a call to

the constructor for Object
var my_object = new Object();

– References to properties are with dot notation

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 12-47

Implementing OO Constructs

• Class instance records (CIRs) store the state of
an object

• If a class has a parent, the subclass instance
variables are added to the parent CIR

• Virtual Method Tables (VMTs) are used for
dynamic binding

