[image: image72.png]

What is Java-FFT?

The Java-FFT is a tool environment for automatic code generation of classic C languages for signal processing algorithms using Kronecker product formulations. The environment is written as a stand-alone Java application. Also a Demo version written as a Java applet to be used at the Internet is available.

About this guide

The goal of this Guided Tour is to provide easy to follow tutorial to quickly become familiar with the basic features of the environment. The tutorial contains screen shots to help you follow the step-by-step instructions.

What do you need to run the application?

In order to run the application, you must have Java 2 installed on your machine. If that is not the case, you should download the Java 2 SDK. You can download the latest version by visiting http://www.java.sun.com/.

Java-FFT Environment
When you first open the tool, it appears by default in Analysis Mode as shown in figure 1 below. In the Analysis mode the environment have compose the FFT from the parameters selected. At the topside, we have the parameters such as
[image: image1.wmf]S

R

N

,

,

 to one-dimensional case and the parameters
[image: image2.wmf]1

1

1

,

,

S

R

N

 and the parameters
[image: image3.wmf]2

2

2

,

,

S

R

N

 for the two-dimensional case. The user can edit these parameters through the keyboard. The composition was written in the text area provided by the application by pressing the fact button.

[image: image73.png]

When you select Synthesis Method the program appears in Synthesis Mode as shown in Figure 2. In the Synthesis mode the environment have different buttons to select the desired composition for the FFT. At the topside, we have the parameters such as
[image: image4.wmf]S

R

N

,

,

to one-dimensional case and the parameters
[image: image5.wmf]1

1

1

,

,

S

R

N

 and the parameters
[image: image6.wmf]2

2

2

,

,

S

R

N

 for the two-dimensional case. The user can edit these parameters through keyboard. You will see the primitives operators options on the left side, to obtain the composition desired. The composition is written in the text area provided by the application.

[image: image74.png]

[image: image75.png]

Analysis Mode Operation

To operate in the analysis mode select the analysis method as shown in Figure 3.

In the Analysis Method the user can analyze the pre-defined Cooley Tukey decomposition.

[image: image76.wmf]1

1

1

,

,

S

R

N

The next step in performing the operation is to select the desired dimension. You can select between two options: One or Two-dimensional data analysis. See Figure 4.

[image: image77.wmf]2

2

2

,

,

S

R

N

If you select One-dimensional option, the environment shows one-dimensional parameters:
[image: image7.wmf]S

R

N

,

,

 as shown in the next figure (Figure 5). You can edit these parameters through the keyboard. When the N parameter is written in its corresponding field, press enter to set the S and R parameters.

[image: image78.png]

If you select a Two-dimensional option, the environment shows you two-dimensional parameters:
[image: image8.wmf]1

1

1

,

,

S

R

N

and
[image: image9.wmf]2

2

2

,

,

S

R

N

 as shown in the following figure (Figure 6). You can also edit these parameters through the keyboard. Follow the same procedure as with the one-dimensional case.

[image: image79.png]

Another available option is the decomposition radix (See Figure 7). With this option you can select different radix to decompose the Cooley-Tukey decimation in time definition. The Cooley-Tukey decomposition is define as follows:

[image: image10.wmf]S

N

R

S

S

N

R

S

N

P

F

I

T

I

F

F

,

,

)

(

)

(

Ä

Ä

=

.

You have three different options to select.

[image: image80.png]

To obtain the composition press the Fact button.

[image: image81.wmf]1

1

1

,

,

S

R

N

The Clear All button allows you to clear the text area.

After pressing the fact button you will want to obtain the c-code for the composition. To obtain it, simply press the See Code Button. When pressed, the following window will appear (Figure 9).

[image: image82.wmf]2

2

2

,

,

S

R

N

In this window you have two options present: to save the code or to close the window. The save option is not available on the demo version.

Synthesis Mode Operation

[image: image83.png]

On the Synthesis Method you have the option to make your own composition using the Funtional Primitives’ buttons. Functional Primitives is a collection of buttons (see Figure 10) that with the following definitions:
·
[image: image11.wmf](

)

(

)

S

I

R

F

Ä

 button: The button
[image: image12.wmf](

)

(

)

S

I

R

F

Ä

 call the function

FkronI that performs the product between the tensor product

of matrices
[image: image13.wmf]R

F

 and
[image: image14.wmf]S

I

, where
[image: image15.wmf]R

F

 is the Fourier matrix of

order
[image: image16.wmf]R

, and
[image: image17.wmf]S

I

is the identity matrix of order
[image: image18.wmf]S

.

·
[image: image19.wmf](

)

S

N

T

,

 button: The button
[image: image20.wmf](

)

S

N

T

,

 call the function Tride

generates a vector with the elements of the main diagonal

that composes the diagonal matrix
[image: image21.wmf]S

N

T

,

.

·
[image: image22.wmf]

S)

P(N,

button: The effect of function Permuta is equivalent

to multiply an
[image: image23.wmf]m

-stride permutation. This means that the

elements of
[image: image24.wmf]x

 will be permuted. In this function, the permutation,

that is, the
[image: image25.wmf]m

-stride permutation matrix is not generated.[image: image84.png]

·
[image: image26.wmf](

)

(

)

Ä

S

I

N

I

 call the function IkronI that performs the product between the tensor product of the matrices
[image: image27.wmf]N

I

 and
[image: image28.wmf]S

I

, where
[image: image29.wmf]N

I

 is the identity matrix of order
[image: image30.wmf]N

, and
[image: image31.wmf]S

I

 is the identity matrix of order
[image: image32.wmf]S

. The parameter of this function are
[image: image33.wmf]N

and
[image: image34.wmf]S

.
·
[image: image35.wmf](

)

(

)

S

N

P

M

I

,

Ä

 button: The button
[image: image36.wmf](

)

(

)

S

N

P

M

I

,

Ä

 call the function IkronP that performs the product between the tensor product of the matrices
[image: image37.wmf]M

I

 and
[image: image38.wmf]S

N

P

,

, where
[image: image39.wmf]M

I

is the identity matrix of order
[image: image40.wmf]M

, and
[image: image41.wmf]S

N

P

,

 is the permutation matrix of order
[image: image42.wmf]S

. The parameter of this function are
[image: image43.wmf]S

M

,

 and
[image: image44.wmf]N

.
·
[image: image45.wmf](

)

(

)

S

N

T

M

I

,

Ä

button: The button
[image: image46.wmf](

)

(

)

S

N

T

M

I

,

Ä

call the function IkronT that performs the product between the tensor product of the matrices
[image: image47.wmf]M

I

 and
[image: image48.wmf]S

N

T

,

, where
[image: image49.wmf]M

I

 is the identity matrix of order
[image: image50.wmf]M

, and
[image: image51.wmf]S

N

T

,

 is the stride matrix of order
[image: image52.wmf]S

. The parameter of this function are
[image: image53.wmf]N

M

,

and
[image: image54.wmf]S

.
·
[image: image55.wmf](

)

(

)

(

)

S

I

R

F

M

I

Ä

Ä

 button: The button
[image: image56.wmf](

)

(

)

(

)

S

I

R

F

M

I

Ä

Ä

 call the function IkronFkI that performs the product between the tensor product of the matrices
[image: image57.wmf]R

F

 and
[image: image58.wmf]S

I

 and
[image: image59.wmf]M

I

, where
[image: image60.wmf]M

I

is the identity matrix of order
[image: image61.wmf]M

, and
[image: image62.wmf]R

F

 Fourier matrix of order
[image: image63.wmf]R

 and
[image: image64.wmf]S

I

 is the identity matrix of order
[image: image65.wmf]S

. The parameter of this function are
[image: image66.wmf]S

R

,

and
[image: image67.wmf]M

.
To operate in the synthesis mode select the synthesis method as shown in Figure 11.

In the Analysis Method the user can analyze the pre-defined Cooley Tukey decomposition.
[image: image85.png]@ Analy
‘..

The next step in performing the operation is to select the desired dimension. You can select between two options: One or Two-dimensional data analysis. See Figure 13.

[image: image86.png]@R,
NS

If you select One-dimensional option, the environment shows one-dimensional parameters:
[image: image68.wmf]S

R

N

,

,

 as shown in the next figure (Figure 5). You can edit these parameters through the keyboard. When the N parameter is written in its corresponding field, press enter to set the S and R parameters.

[image: image87.png]

If you select a Two-dimensional option, the environment shows you two-dimensional parameters:
[image: image69.wmf]1

1

1

,

,

S

R

N

and
[image: image70.wmf]2

2

2

,

,

S

R

N

 as shown in the following figure (Figure 6). You can also edit these parameters through the keyboard. Follow the same procedure as with the one-dimensional case.

[image: image88.png]

Another available option is the decomposition radix (See Figure 7). With this option you can select different radix to decompose the Cooley-Tukey decimation in time definition. The Cooley-Tukey decomposition is define as follows:

[image: image71.wmf]S

N

R

S

S

N

R

S

N

P

F

I

T

I

F

F

,

,

)

(

)

(

Ä

Ä

=

.

You have three different options to select.

[image: image89.png]

To select the composition simply click on the desired buttons and the composition will appear on the composition field as shown in Figure 11.

[image: image90.png]

The Clear All button allows you to clear the text area.

After the composition is selected will want to obtain the c-code for the composition. To obtain it, simply press the See Code Button. When pressed, the following window will appear (Figure 17).

[image: image91.png]

In this window you have two options present: to save the code or to close the window. The save option is not available on the demo version.

Figure 1. Default Environment

	 (Analysis Mode)

Figure 16: Obtained Composition

Figure 9: Generated c-code window

Figure 8: Obtained Composition

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

Figure 2: Environment in the Synthesis

 Mode

 Figure 3: Analysis Method Selection

 Figure 4: Dimension Selection.

Figure 5: One-dimensional parameters: N, R, and S

Figure 6: Two-dimensional parameters:� EMBED Equation.3 ���and � EMBED Equation.3 ���

Figure 7: n-radix options

Figure 10: Functional Primitives

Java-FFT

User’s Guide

� EMBED PBrush ���

Figure 13: One-dimensional parameters: N, R, and S

 Figure 11: Synthesis Method Selection

� EMBED PBrush ���

� EMBED PBrush ���

 Figure 12: Dimension Selection.

Figure 14: Two-dimensional parameters:� EMBED Equation.3 ���and � EMBED Equation.3 ���

� EMBED PBrush ���

Figure 15: n-radix options

� EMBED PBrush ���

Figure 17: Generated c-code window

[image: image92.png]F(54) = FEI@IENTE4 HIEEF GIP 64,8

[image: image93.png]=

main.c 1
[Maritza Rodriguez Martinez 1

Computational Signal Processing Group ki

~C8PG - Dr. Daminga Radriguez- Coordinator 1 .
- 1

Description:This function is the main function of 1

the generated code 1

[
#includessteioh=
#include<stdlib h>
#include<math h>
#uefine SIZE 1024
#0efine PI 32,1416
typedef struct {double real, imag;} COMPLEX;
COMPLEX *getComplexiatrix(int axs);
void Multplica(COMPLEX 4o, COMPLEX **Global int N);

[void main(void)
t

COMPLEX **Glabal;

COMPLEX ™%,
COMPLEX *"Permuta_64_2_2_64_VAR;
COMPLEX ~1kronF_64_2_32_B4_VAR; JJ

[image: image94.png]

[image: image95.png]

[image: image96.png]

[image: image97.png]= B
main.c 1

[Maritza Rodriguez Martinez 1

Computational Signal Processing Group ki

~C8PG - Dr. Daminga Radriguez- Coordinator 1

- 1

Description:This function is the main function of 1 —
the generated code 1
[

#includessteioh=
#include<stdlib h>
#include<math h>
#uefine SIZE 1024
#0efine PI 32,1416

typedef struct {double real, imag;} COMPLEX;

COMPLEX “*getComplexiatrix(int axs);
COMPLEX ~*Fhrani(nt R,int S);
COMPLEX ~flkronFki(int M,int R int S);
COMPLEX **Trideki(int M,int N,int 8);
COMPLEX **Permk(int M,int N,int 5);
COMPLEX ~TkronF (int R,int S),
COMPLEX ~ikronT(int M,int N,int S);
COMPLEX *fkronP(int Mint N.nt 8);

void Multiplica(COMPLEX o, COMPLEX =*Glabalint N);

L o

_986886298.unknown

_1011551860.unknown

_1011553870.unknown

_1058008031.unknown

_1058008910

_1058012674

_1058008122

_1058007842

_1058007616

_1011552841.unknown

_1011552860.unknown

_986886489.unknown

_986886658.unknown

_988025675.unknown

_1011551815.unknown

_988025704.unknown

_988025718.unknown

_988025687.unknown

_988025694.unknown

_988025682.unknown

_988025652.unknown

_988025669.unknown

_986886690.unknown

_988025649.unknown

_986886671.unknown

_986886557.unknown

_986886583.unknown

_986886636.unknown

_986886569.unknown

_986886524.unknown

_986886542.unknown

_986886508.unknown

_986886358.unknown

_986886459.unknown

_986886473.unknown

_986886375.unknown

_986886327.unknown

_986886346.unknown

_986886318.unknown

_986885213.unknown

_986886050.unknown

_986886225.unknown

_986886264.unknown

_986886279.unknown

_986886246.unknown

_986886091.unknown

_986886152.unknown

_986886072.unknown

_986885987.unknown

_986886019.unknown

_986886036.unknown

_986886005.unknown

_986885959.unknown

_986885971.unknown

_986885227.unknown

_986884972.unknown

_986885161.unknown

_986885191.unknown

_986885204.unknown

_986885177.unknown

_986885127.unknown

_986885148.unknown

_986885098.unknown

_986884636.unknown

_986884948.unknown

_986884960.unknown

_986884922.unknown

_986884594.unknown

_986884618.unknown

_986884554.unknown

