PASS-TRANSISTOR LOGIC

INEL 4207 - Fall 2014
Figure 15.5 Conceptual pass-transistor logic gates. (a) Two switches, controlled by the input variables B and C, when connected in series in the path between the input node to which an input variable A is applied and the output node (with an implied load to ground) realize the function $Y = ABC$. (b) When the two switches are connected in parallel, the function realized is $Y = A(B + C)$.

(a)

(b)
Figure 15.6 Two possible implementations of a voltage-controlled switch connecting nodes \(A \) and \(Y \): (a) single NMOS transistor and (b) CMOS transmission gate.
Figure 15.7 A basic design requirement of PTL circuits is that every node have, at all times, a low resistance path to either ground or V_{DD}. Such a path does not exist in (a) when B is low and S_1 is open. It is provided in (b) through switch S_2.
Figure 15.9 Operation of the NMOS switch as the input goes low ($v_i = 0$ V). Note that the drain of an NMOS transistor is always higher in voltage than the source; correspondingly, the drain and source terminals interchange roles in comparison to the circuit in Fig. 15.8.
Example

Consider the NMOS switch shown in figs. 15.8 and 15.9 for which \(\mu_n C_{ox} = 50 \mu A/V^2 \), \(\mu_p C_{ox} = 20 \mu A/V^2 \), \(|V_{t0}| = 1V \), \(\gamma = 0.5\sqrt{V} \), \(2\phi_f = 0.6V \) and \(V_{DD} = 5V \). Let the transistor have \(W/L = 4\mu m/2\mu m \), and assume \(C = 50fF \).

1. For \(v_i \) high, (fig. 15.8) find \(V_{OH} \).

2. If the output feeds a CMOS inverter whose \((W/L)_p = 2.5(W/L)_n = 10\mu m/2\mu m \), find the static current in the inverter and its power dissipation when its input is the value found in (1). Find the inverter output voltage.

3. Find \(t_{PLH} \).

4. Find \(t_{PHL} \) for the case with \(v_i \) going low (fig. 15.9).

5. Find \(t_p \).
Example

Consider the NMOS switch shown in figs. 15.8 and 15.9 for which \(\mu_n C_{ox} = 50\mu A/V^2 \), \(\mu_p C_{ox} = 20\mu A/V^2 \), \(|V_{t0}| = 1V \), \(\gamma = 0.5\sqrt{V} \), \(2\phi_f = 0.6V \) and \(V_{DD} = 5V \). Let the transistor have \(W/L = 4\mu m/2\mu m \), and assume \(C = 50fF \).

1. For \(v_i \) high, (fig. 15.8) find \(V_{OH} \).

2. If the output feeds a CMOS inverter whose \((W/L)_p = 2.5(W/L)_n = 10\mu m/2\mu m\), find the static current in the inverter and its power dissipation when its input is the value found in (1). Find the inverter output voltage.

3. Find \(t_{PLH} \).

4. Find \(t_{PHL} \) for the case with \(v_i \) going low (fig. 15.9).

5. Find \(t_p \).

Answer: (1) \(V_{OH} = 3.4V \). (2) \(i_{DP} = 18\mu A \), \(P_D = 90\mu W \), \(v_O = 0.08 \). (3) \(i_{D}(0) = 800\mu A \), \(i_{D}(t_{PLH}) = 50\mu A \), \(i_{D,AV} = 425\mu A \), \(t_{PLH} = C(V_{DD}/2)/i_{D,AV} = 0.29ns \). (4) \(t_{PHL} = 0.17ns \). (5) \(t_p = 0.23ns \).
Figure 15.11 The CMOS transmission gate and its circuit symbol.
Transmission gate resistance empirical formula (for submicron technologies) (eq. 15.36)

\[R_{TG} = \frac{12.5}{(W/L)_n} \text{k}\Omega \]

Figure 15.13 Plot of the equivalent resistances of the two transistors of the transmission gate in Fig. 15.12(a) and the overall resistance \(R_{TG} \) versus \(v_O \). The data apply to the situation specified in Exercise 15.5.
Figure 15.14 (a) A transmission gate connects the output of a CMOS inverter to the input of another. (b) Equivalent circuit for the purpose of analyzing the propagation delay of the circuit in (a).
Elmore delay formula (eq. 15.37):

\[t_p = 0.69 \left[C_1 R_1 + C_2 (R_1 + R_2) + C_3 (R_1 + R_2 + R_3) \right] \]
For the circuit if fig. 15.14, fabricated using 0.13\(\mu\)m technology, \(Q_p\) of the first inverter has \(W/L = 2\), and both transistors in the t.g. have \(W/L = 1\). The caps are \(C_{out1} = 10fF\), \(C_{TG1} = C_{TG2} = 5fF\), and \(C_{in2} = 10fF\). Use empirical formulas to obtain \(R_{P1}\) and \(R_{TG}\); the find \(t_p\).
2. The following diagram shows an NMOS transistor operating as a switch.

Assuming that $\mu_n C_{ox} = 300 \mu A/V^2$, $W/L = 1.5$, $V_{t0} = 1V$, $\gamma = 0.5V^{1/3}$, and $2\phi_F = 0.6V$, find

(a) the maximum voltage across the capacitor, v_Y, if $v_A = v_C = 5V$. (15 pts)
(b) the voltage that must be applied to v_C so that the voltage across the capacitor, v_Y, reaches 5V if $v_A = 5V$. (10 pts)
(c) an estimate of the fall time t_f that it takes for v_Y to drop from 90% to 10% of its initial value of 5V, using the average current method. Assume $C = 1pF$, $v_A = 0V$ and $v_C = 5V$. (10 pts)
2. The following diagram shows an NMOS transistor operating as a switch.

![NMOS transistor diagram]

Assuming that $\mu_n C_{ox} = 300 \mu A/V^2$, $W/L = 1.5$, $V_{t0} = 1V$, $\gamma = 0.5V^{1/3}$, and $2\phi_F = 0.6V$, find

(a) the maximum voltage across the capacitor, v_Y, if $v_A = v_C = 5V$. (15 pts)

(b) the voltage that must be applied to v_C so that the voltage across the capacitor, v_Y, reaches 5V if $v_A = 5V$. (10 pts)

(c) an estimate of the fall time t_f that it takes for v_Y to drop from 90% to 10% of its initial value of 5V, using the average current method. Assume $C = 1pF$, $v_A = 0V$ and $v_C = 5V$. (10 pts)

Ans.: (a) $v_Y = 3.4V$; (b) $v_C = 6.8V$; (c) $i_{D1} = 3.6mA$; $i_{D2} = 0.84mA$; $t_f = 1.8ns$
Figure 15.16 Realization of a two-to-one multiplexer using pass-transistor logic.
Figure 15.17 Realization of the XOR function using pass-transistor logic.
Figure 15.18 An example of a pass-transistor logic gate utilizing both the input variables and their complements. This type of circuit is therefore known as complementary pass-transistor logic, or CPL. Note that both the output function and its complement are generated.
Probs. 13, 16, 21
Figure 15.19 (a) Basic structure of dynamic-MOS logic circuits. (b) Waveform of the clock needed to operate the dynamic logic circuit. (c) An example circuit.