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PREFACE

The possibility that signals recorded from the brain might be
used for communication and control has engaged popular and
scientific interest for many decades. However, it is only in the
last 25 years that sustained research has begun, and it is only in
the last 15 that a recognizable field of brain—computer interface
(BCI) research and development has emerged. This new field is
now populated by some hundreds of research groups around
the world, and new groups are appearing continually. The
explosive growth of this field is evident in the fact that a major-
ity of all the BCI research articles ever published have appeared
in the past five years.

This surge in scientific interest and activity arises from a
combination of three factors. First and most obvious is the
recent appearance of powerful inexpensive computer hardware
and software that can support the complex high-speed analy-
ses of brain activity essential to real-time BCI operation. Until
quite recently, much of the rapid online signal processing
used in current and contemplated BCIs was either impossible
or extremely expensive. Now, hardware and software are no
longer limiting factors: given the appropriate expertise, almost
any promising BCI design can be implemented quickly and
inexpensively.

The second factor is the greater understanding of the
central nervous system (CNS) that has emerged from animal
and human research over the past 50 years, particularly the
voluminous new information about the nature and functional
correlates of brain signals such as EEG activity and neuronal
action potentials. Along with this new understanding have
come improved methods for recording these signals, in both
the short-term and the long-term. The continuing increases in
basic knowledge and improvements in technology are enabling
and guiding steadily more sophisticated and productive BCI
research. Particularly important is the veritable revolution in
the appreciation of the brain’s remarkable capacity for adapta-
tion, both in normal life and in response to trauma or disease.
This new appreciation is a stunning change from the concep-
tion of the hardwired CNS that prevailed only 20 or 30 years
ago. It generates enormous excitement about the possibilities
for using these adaptive capacities to create novel interactions
between the brain and computer-based devices, interactions
that can replace, restore, enhance, supplement, or improve
the brain’s natural interactions with its external and internal
environments.

The third factor is new recognition of the needs and abili-
ties of people disabled by disorders such as cerebral palsy,
spinal cord injury, stroke, amyotrophic lateral sclerosis (ALS),
multiple sclerosis, and muscular dystrophies. Home ventilators

and other life-support technology now enable even the most
severely disabled people to live for many years. Furthermore, it
is now understood that people who have very little voluntary
muscle control can lead enjoyable and productive lives if they
can be given even the most basic means of communication and
control. BCIs, even in their currently limited state of develop-
ment, can serve this need.

The distinctive property of BCI research and development,
beyond its remarkable recent growth, is that it is inherently
and necessarily multidisciplinary. The sequence of operations
that lead from the user’s brain to the BCI’s action indicates this
clearly. Appropriate selection of the brain signals that a BCI
uses depends on our understanding of neuroscience, both
basic and applied. Recording these signals properly depends
on the physical sciences as well as on electrical and materials
engineering and sometimes on neurosurgery and tissue biol-
ogy as well. Appropriate, efficient, and timely processing of the
recorded signals requires computer science and applied math-
ematics. The design and operation of the algorithms that trans-
late signal features into device commands that achieve the
user’s intent depend on systems engineering as well as on
understanding of spontaneous and adaptive changes in brain
function. The selection of appropriate user populations and the
implementation of appropriate applications require clinical
neurology and rehabilitation engineering and depend on
expertise in assistive technology. Finally, management of the
complex ongoing interaction between the user and the applica-
tion device requires understanding of behavioral psychology
and human factors engineering. All these disparate disciplines,
and effective cooperation among them, are essential if BCI
research and development are to be successful in their primary
goal, to provide important new communication and control
options to people with severe disabilities.

The multidisciplinary nature of BCI research was a major
impetus for this book and is the first principle of its structure
and content. The book is intended to provide an introduction
to and summary of essentially all major aspects of BCI research
and development. Its goal is to be a comprehensive, balanced,
and coordinated presentation of the field’s key principles, cur-
rent practice, and future prospects. It is aimed at scientists,
engineers, and clinicians at all levels, and it is designed to be
accessible to people with a basic undergraduate-level back-
ground in biology, physics, and mathematics. In response to
the inherently multidisciplinary nature of the field, it seeks to
introduce people from the many different relevant disciplines
to all aspects of BCI research and thereby enable them to inter-
act most productively. Attention has been paid to ensuring that
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the chapters mesh into a reasonably coordinated and logical
whole, while at the same time preserving the sometimes differ-
ing views of the individual authors.

Each chapter tries to present its topic in a didactic format
so that the reader can acquire the basic knowledge needed to
work effectively with researchers and clinicians from the wide
range of disciplines engaged in BCI research. For example,
the chapters on signal processing (chapters 7 and 8) do more
than simply review the various signal analysis methods that
have been used in BCIs. They try to provide an accessible
introduction to the broad range of signal analysis methods
that might conceivably be applied to BCI use, and they outline
the comparative advantages and disadvantages of these meth-
ods for specific BCI purposes. The goal is to enable the reader
to participate actively in choosing from among alternative
methods.

The book has six major parts. The Introduction stakes out
the booK’s territory by carefully defining what is and what is
not a brain-computer interface and it identifies six important
themes that appear throughout the book. Part IT introduces the
different kinds of electrical and metabolic brain signals that
BClIs might use; these chapters are necessarily long and chal-
lenging because they present many fundamental principles
that underlie the subjects of all of the subsequent chapters. Part
III proceeds through each of the components that constitute a

viii | PREFACE

BCI system, from signal acquisition to output commands, and
discusses the applications that these commands control. Part
IV reviews the principal kinds of BCIs developed to date and
describes the current state of the art. Part V addresses the issues
involved in the realization, validation, and dissemination of
BCI systems useful to people with severe disabilities. Success
in these difficult tasks is critical for the future of BCI technol-
ogy. Part V also considers the possibilities for BCI uses that go
beyond the assistive communication and control applications
that have engaged the most attention up to the present; these
further possibilities include BCI applications that could serve
people with or without disabilities. In addition, Part V includes
a chapter discussing the ethical issues associated with BCI
research and development. Part VI, the Conclusion, considers
the key problems that must be solved if BCIs are to fulfill the
high expectations that so many people have for them.

Many people have contributed to this book. Each chapter is
a unique and essential part of the whole. We hope that together
they tell a coherent and exciting story and that therefore the
whole is even greater than the sum of its parts.

Jonathan R. Wolpaw
Elizabeth Winter Wolpaw
Albany, New York
September 2011
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1 | BRAIN-COMPUTER INTERFACES:
SOMETHING NEW UNDER THE SUN

JONATHAN R. WOLPAW AND ELIZABETH WINTER WOLPAW

n 1924, Hans Berger, Professor of Psychiatry at the University

of Jena in Germany, discovered that electrical signals pro-

duced by the human brain could be recorded from the scalp.
After five years of further study, Berger published the first of 14
articles that established electroencephalography (EEG) as a
basic tool for clinical diagnosis and brain research (Berger,
1929). In 1938, just as his work had begun to receive interna-
tional recognition, the German government closed his labora-
tory and forced him into retirement. The year was momentarily
brightened for him by a holiday greeting from Herbert Jasper,
a young North American neuroscientist at the start of a stellar
career. Jasper sent to Berger the drawing shown in figure 1.1.
It implies, albeit in a fanciful way, that EEG signals could also
be used for communication.

This possibility—that people could act through brain sig-
nals rather than muscles—has fascinated scientists and nonsci-
entists alike for many years. Now, nearly a century after Berger’s
epochal discovery, possibility is becoming reality. Although
the reality is new and tentative and very modest, its excitement
and potential are driving the burgeoning field of brain-
computer interface research (fig. 1.2). This book is about that
field—the principles that underlie it, its achievements so far,
the problems that confront it, and its prospects for the future.

WHAT IS A BRAIN-COMPUTER
INTERFACE?

As currently understood, the function of the central nervous
system (CNS) is to respond to events in the outside world or

Yl (V77 et 7 i
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Figure 1.1 This drawing was included in a holiday greeting that Herbert Jasper
sent to Hans Berger in 1938. It is an early rendering of what is now called a
brain-computer interface. (© Photo Deutsches Museum, Munich.)

the body by producing outputs that serve the needs of the
organism. All the natural outputs of the CNS are neuromuscu-
lar or hormonal. A brain—computer interface (BCI) provides
the CNS with new output that is neither neuromuscular nor
hormonal. A BCI is a system that measures CNS activity and
converts it into artificial output that replaces, restores, enhances,
supplements, or improves natural CNS output and thereby
changes the ongoing interactions between the CNS and its exter-
nal or internal environment.

Understanding this definition requires an understanding of
each of its key terms, beginning with CNS. The CNS is com-
prised of the brain and the spinal cord and is distinguished
from the peripheral nervous system (PNS), which is comprised
of the peripheral nerves and ganglia and the sensory receptors.
The structures of the CNS are distinguished by their location
within the meningeal coverings (or meninges), by their unique
cell types and histology, and by their function in integrating the
many different sensory inputs to produce appropriate motor
outputs. In contrast, the PNS is not within the meninges, lacks
the unique CNS histology, and serves mainly to convey sensory
inputs to the CNS and to convey motor outputs from it.
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Figure 1.2 BCl articles in the peer-reviewed scientific literature. In the past

15 years, BCl research, which was initially limited to a few isolated laboratories,
has emerged as a very active and rapidly growing scientific field. The majority
of research articles have appeared in the past five years. (Updated from
Vaughan and Wolpaw, 2006.)



CNS activity consists of the electrophysiological, neuro-
chemical, and metabolic phenomena (e.g., neuronal action
potentials, synaptic potentials, neurotransmitter releases,
oxygen consumption) that occur continually in the CNS. These
phenomena can be quantified by monitoring electric or mag-
netic fields, hemoglobin oxygenation, or other parameters
using sensors on the scalp, on the surface of the brain, or within
the brain (fig. 1.3). A BCI records these brain signals, extracts
specific measures (or features) from them, and converts (or
translates) these features into artificial outputs that act on the
outside world or on the body itself. Figure 1.3 illustrates
the five types of applications that a BCI output might control.
For each of these five application types, it shows one of many
possible examples.

A BCI output might replace natural output that has been
lost as a result of injury or disease. For example, a person who
can no longer speak might use a BCI to type words that are
then spoken by a speech synthesizer. Or a person who has lost
limb control might use a BCI to operate a motorized wheel-
chair. In these examples the BCI outputs replace lost natural
outputs.

A BCI output might restore lost natural output. For exam-
ple, a person with spinal cord injury whose arms and hands
are paralyzed might use a BCI to stimulate the paralyzed

muscles via implanted electrodes so that the muscles move the
limbs. Or a person who has lost bladder function due to
multiple sclerosis might use a BCI to stimulate the peripheral
nerves that control the bladder, thus enabling urination. In
these examples, the BCI outputs restore the natural outputs.

A BCI output might enhance natural CNS output. For
example, a person performing a task that requires continuous
attention over a prolonged period (e.g., driving a vehicle or
serving as a sentry) might use a BCI that detects the brain
activity preceding lapses in attention and then provides an
output (e.g., a sound) that alerts the person and restores
attention. By preventing the attentional lapses that periodically
impair natural CNS output (and might cause traffic accidents),
the BCI enhances the natural output.

A BCI output might supplement natural CNS output. For
example, a person who is controlling the position of a com-
puter cursor with a hand-operated joystick might use a BCI to
select items that the cursor reaches. Or a person might use a
BCI to control a third (i.e., robotic) arm and hand. In these
cases, the BCI supplements natural neuromuscular output with
an additional, artificial output.

Finally, a BCI output might conceivably improve natural
CNS output. For example, a person whose arm movements
have been impaired by a stroke involving the sensorimotor

Brain-computer interface
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restore

Feature Commands
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 J
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Figure 1.3 The basic design and operation of a brain-computer interface (BCI) system. In this illustration, the BCl is shown in green. Electrical signals reflecting
brain activity are acquired from the scalp, from the cortical surface, or from within the brain. The signals are analyzed to measure signal features (such as
amplitudes of EEG rhythms or firing rates of single neurons) that reflect the user’s intent. These features are translated into commands that operate application

devices that replace, restore, enhance, supplement, or improve natural CNS outputs. (Modified from Wolpaw et al., 2002.) (Supplement image © Stelarc, http://

stelarc.org; Improve image © Hocoma AG, www.hocoma.com.)
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cortex might use a BCI that measures signals from the dam-
aged cortical areas and then stimulates muscles or controls an
orthotic device so as to improve arm movements. Because this
BCI application enables more normal movements, its repeated
use may induce activity-dependent CNS plasticity that improves
the natural CNS output and thereby helps the person to regain
more normal arm control.

The first two types of BCI application, replacement or res-
toration of lost natural outputs, are the goals of most current
BCI research and development, and examples of them appear
many times throughout this book. At the same time, the other
three kinds of BCI applications are also possible and are draw-
ing increasing attention (chapters 22 and 23).

The last part of the definition states that a BCI changes the
ongoing interactions between the CNS and its external or internal
environment. The CNS interacts continuously with the outside
world and with the body. These interactions consist of its motor
outputs to the environment together with its sensory inputs
from the environment. By measuring CNS activity and convert-
ing it into artificial outputs that affect the environment, BCIs
change not only the CNS outputs but also the sensory inputs
coming from the environment. These changes in sensory input
are commonly referred to as feedback. Devices that simply mon-
itor brain activity and do not use it to change the ongoing inter-
actions between the CNS and its environment are not BCls.

BCI TERMINOLOGY

PROVENANCE OF THE TERM BCI AND
ITS PRESENT DEFINITION

Although an EEG-based BCI was demonstrated by Grey Walter
in 1964 (Graimann et al., 2010a), the term brain-computer
interface was apparently first used by Jacques Vidal in the
1970s. He applied the term very broadly, using it to describe
any computer-based system that produced detailed informa-
tion on brain function. Nevertheless, in the course of his work,
Vidal developed a system that satisfies the narrower present-
day meaning (Vidal, 1973, 1977). Vidal’s system used the visual
evoked potential (VEP) recorded from the scalp over the visual
cortex to determine the direction of eye gaze (i.e., the visual
fixation point) and thus to determine the direction in which
the user wanted to move a cursor. Several years earlier, in the
first neuron-based BCI, Eberhard Fetz and his collaborators
had shown that monkeys could learn to use a single cortical
neuron to control a meter needle to gain food rewards (Fetz,
1969; Fetz and Finocchio, 1971).

The BCI definition presented at the beginning of this chap-
ter is based on the definitions and discussions in a number of
reviews over the past decade (Donoghue, 2002; Wolpaw et al.,
2002; Schwartz, 2004; Kibler and Miiller, 2007; Daly and
Wolpaw, 2008; Graimann et al., 2010a). It is intended to be
comprehensive and definitive and, at the same time, to relate
BCIs to the sensorimotor hypothesis (Young, 1990; Wolpaw,
2002), which is the theoretical foundation of modern neuro-
science. The sensorimotor hypothesis is that the whole func-
tion of the CNS is to respond to external and internal events
with appropriate outputs. In accord with this hypothesis, BCIs

are defined as systems that translate brain signals into new
kinds of outputs.

SYNONYMOUS OR SUBSIDIARY TERMS

The term brain-machine interface (BMI) was used as early as
1985 to describe implanted devices that stimulate the brain
(Joseph, 1985) but was not applied specifically to devices that
provide new outputs until more recently (e.g., Donoghue,
2002). In practice the term BMI has been applied mainly to
systems that use cortical neuronal activity recorded by
implanted microelectrodes. At present, BCI and BMI are syn-
onymous terms, and the choice between them is largely a
matter of personal preference. One reason for preferring BCI
to BMI is that the word “machine” in BMI suggests an inflexi-
ble conversion of brain signals into output commands and thus
does not reflect the reality that a computer and the brain are
partners in the interactive adaptive control needed for effective
BCI (or BMI) operation.

The terms dependent BCI and independent BCI were intro-
duced in 2002 (Wolpaw et al., 2002). In accord with the basic
BCI definition, both use brain signals to control their applica-
tions, but they differ in their dependence on natural CNS
output. A dependent BCI uses brain signals that depend on
muscle activity. For example, the BCI described by Vidal (1973,
1977) used the amplitude of a VEP that depended on gaze
direction and thus on the muscles that controlled gaze. A
dependent BCI is essentially an alternative method for detect-
ing messages carried in natural CNS outputs. Although it does
not give the brain a new output that is independent of natural
outputs, it may still be useful (e.g., Sutter, 1992) (chapter 14).

In contrast, an independent BCI does not depend on natu-
ral CNS output; in independent BCIs, muscle activity is not
essential for generating the brain signals that the BCI uses. For
example, in BCIs based on EEG sensorimotor rhythms (SMRs)
(chapter 13), the user may employ mental imagery to modify
SMRs so as to control the BCI output. For people with severe
neuromuscular disabilities, independent BClIs are likely to be
more useful. At the same time it is important to recognize that
most actual BCIs are neither purely dependent nor purely
independent. The output of a steady-state VEP-based BCI may
reflect the user’s degree of attention (in addition to the user’s
gaze direction) (chapter 14). Conversely, most SMR-based
BCIs rely on the user having sufficient visual function (and
thus gaze control) to watch the results of the BCI's output com-
mands (e.g., cursor movements).

The recent term hybrid BCI is applied in two different ways
(Graimann et al., 2010b). It can describe a BCI that uses two
different kinds of brain signals (e.g., VEPs and SMRs) to pro-
duce its outputs. Alternatively, it can describe a system that
combines a BCI output with a natural muscle-based output
(chapter 23). In the latter usage, the BCI output supplements a
natural CNS output (e.g., as illustrated in fig. 1.3).

Another recent term, passive BCI, is applied to BCI appli-
cations that use brain signals that are correlated with aspects
of the user’s current state, such as level of attention (Zander
and Kothe, 2011). For example, a BCI might detect EEG
features preceding lapses in attention and produce an output
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(e.g., a sound) that alerts the user and restores attention
(Chapter 23). The term passive is meant to distinguish these
BCI applications from those that provide communication
and control (i.e., active BCIs). However, passive and active are
subjective terms that lack clear neuroscientific definitions.
Furthermore, continued use of a passive BCI might well induce
CNS adaptations that improve its performance, so that the
term passive becomes no longer applicable. Thus, it seems
preferable to categorize BCI applications simply as shown in
figure 1.3, in which case passive BCIs will generally fit into the
enhance or supplement category.

RELATED NEUROTECHNOLOGY

The recent explosion of BCI research is part of a surge of inter-
est in a broad spectrum of new technologies and therapies that
promise unprecedented understanding of and access to the
brain and its disorders. These include structural and functional
imaging methods of high resolution and specificity, chroni-
cally implanted devices for stimulating specific structures,
molecules and particles that can encourage and guide neuronal
regeneration and reconnection, cells that can replace lost tis-
sues, and rehabilitation regimens that can restore useful func-
tion. A number of these new methods act directly on the brain,
and thus contrast with BCIs, which, as defined here, allow the
brain to act directly on the world. At the same time, some of
these methods (e.g., direct stimulation of cortical or subcorti-
cal sensory areas) are likely to be incorporated into future BCI
systems to improve their performance (chapters 5 and 16).

Direct input methods, together with BCIs (which provide
direct outputs), fit into the general class of brain interfaces.
Whether direct input methods will someday acquire their own
designation (e.g., computer-brain interfaces [CBIs]) remains
to be seen. The BCI definition described here recognizes the
novel nature of devices that provide new CNS outputs.

SIX IMPORTANT THEMES

The rest of this chapter introduces six themes that we believe
are important for understanding BCI research and develop-
ment. These themes arise explicitly or implicitly many times in
this book, and they are introduced here to emphasize and clar-
ify their importance.

BCls CREATE NEW CNS OUTPUTS THAT
ARE FUNDAMENTALLY DIFFERENT
FROM NATURAL OUTPUTS

The natural function of the CNS is to produce muscular and
hormonal outputs that serve the needs of the organism by
acting on the outside world or on the body. BCIs provide the
CNS with additional artificial outputs derived from brain sig-
nals. Thus, they require the CNS, which has evolved to produce
muscular and hormonal outputs, to now produce entirely new
kinds of outputs. For example, the sensorimotor cortical areas,
which normally interact with subcortical and spinal areas to
control muscles, are now asked instead to control certain brain
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signals (e.g., neuronal firing patterns or EEG rhythms). The
profound implications of this requirement become apparent
when BCI use is considered in terms of how the CNS normally
operates. The research of the past 200 years, and especially of
recent decades, has revealed two basic principles that govern
how the CNS produces its natural outputs.

The first principle is that the task of creating natural outputs
is distributed throughout the CNS, from the cerebral cortex to the
spinal cord. No single area is wholly responsible for a natural
output. As illustrated in an extremely simplified form in figure
1.4A, the selection, formulation, and execution of actions such
as walking, speaking, or playing the piano are achieved through
collaboration among cortical areas, basal ganglia, thalamic
nuclei, cerebellum, brainstem nuclei, and spinal-cord interneu-
rons and motoneurons. For example, while cortical areas
initiate walking and oversee its progression, the rhythmic high-
speed sensorimotor interactions needed to ensure effective
locomotion are handled largely by spinal-cord circuitry
(McCrea and Rybak, 2008; Ijspeert, 2008; Guertin and Steuer,
2009). The end product of this widely distributed CNS activity
is the appropriate excitation of the spinal (or brainstem)
motoneurons that activate muscles and thereby produce
actions. Furthermore, although activity in the various CNS
areas involved often correlates with motor action, the activity
in any one area may vary substantially from one trial (i.e., one
performance of a particular action) to the next. Nevertheless,
the coordinated activations of all the areas ensure that the
action itself is very stable across trials.

The second principle is that normal CNS outputs (whether
they be walking across a room, speaking specific words, or play-
ing a particular piece on the piano) are mastered and maintained
by initial and continuing adaptive changes in all the CNS areas
involved. In early development and throughout later life, neu-
rons and synapses throughout the CNS change continually to
acquire new actions (i.e., new skills) and to preserve those
already acquired (e.g., Carroll and Zukin, 2002; Gaiarsa et al.,
2002; Vaynman and Gomez-Pinilla, 2005; Saneyoshi et al.,
2010; Wolpaw, 2010). This activity-dependent plasticity is
responsible for acquiring and maintaining standard skills such
as walking and talking as well as specialized skills such as danc-
ing and singing, and it is guided by the results that are pro-
duced. For example, as muscle strength, limb length, and body
weight change with growth and aging, CNS areas change so as
to maintain these skills. Furthermore, the basic characteristics
of the CNS (i.e., its anatomy, physiology, and mechanisms of
plasticity) on which this continuing adaptation operates are the
products of evolution guided by the need to produce appropri-
ate actions, that is, to appropriately control the spinal motoneu-
rons that activate the muscles. In figure 1.4A, to emphasize that
this adaptation occurs and that it is directed at optimizing the
natural CNS outputs (i.e., muscle activations), all of the CNS
areas are shown in the same color as the muscles.

In light of these two principles—the many areas that con-
tribute to natural CNS outputs and the continual adaptive plas-
ticity in these areas—BCI use is a unique challenge for a CNS
that has evolved and is continually adapting to produce the
natural CNS outputs. Unlike natural CNS outputs, which are
produced by spinal motoneurons, a BCI output is produced
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Figure 1.4 CNS production of a muscle-based action versus CNS production of a BCl-based action. (A) This greatly simplified diagram shows the production of a
normal motor action by the many CNS areas that collaborate to control spinal (or brainstem) motoneurons and thereby activate muscles. The red color indicates

that all the CNS areas adapt to optimize muscle control. (B) This diagram shows the production of a BCl-mediated action by the same CNS areas, which now

collaborate to optimize the control by the cortical area that produces the brain signals that the BCI translates into its output commands. The BCl assigns to the
cortex the output role normally performed by spinal motoneurons and thereby asks that the CNS areas adapt to optimize an entirely new kind of output. This
change in the target of CNS adaptation is indicated in this illustration by the fact that the color of all these areas (green) now matches the color of the BCI.

(Modlified from Wolpaw, 2007.)

not by motoneuron activity but, rather, by signals that reflect
activity in another CNS area (e.g., motor cortex). Normally the
activity in this other area (e.g., motor cortex) is simply one of
many contributors to natural CNS output. However, when its
signals control a BCI, this activity actually becomes the CNS
output. Figure 1.4B illustrates this fundamental change. The
area that produces the signals that the BCI uses (i.e., the cortex
in this illustration) takes on the role normally performed by
spinal motoneurons. That is, the cortex produces the final
product—the output—of the CNS. How well the cortex can
perform this new role depends in part on how well the many
CNS areas that normally adapt to control spinal motoneurons
(which are downstream in natural CNS function) can instead
adapt to control the relevant cortical neurons and synapses
(which are largely upstream in natural CNS function). Figure
1.4B indicates this change in the goal of adaptation by now
showing the CNS areas in the same color as the BCI, which,
instead of the muscles, now produces the action.

For example, a BCI asks the cerebellum (which normally
helps to ensure that motoneurons activate muscles so that
movement is smooth, rapid, and accurate) to change its role to
that of helping to ensure that the set of cortical neurons
recorded by a microelectrode array produces patterns of action
potentials that move a cursor (or a prosthetic limb) smoothly,
rapidly, and accurately. The degrees to which the cerebellum

and other key areas can adapt to this new purpose remain
uncertain. The ultimate capacities and practical usefulness of
BClIs depend in large measure on the answers to this question.

The evidence to date shows that the adaptation necessary
to control activity in the CNS areas responsible for the
signals used by BClIs is certainly possible but that it is as yet
imperfect. BCI outputs are in general far less smooth, rapid,
and accurate than natural CNS outputs, and their trial-to-trial,
day-to-day, and week-to-week variability is disconcertingly
high. These problems (particularly the problem of poor reli-
ability) and the various approaches to addressing them, are
major concerns in BCI research, and they are discussed often
in this book.

BCl OPERATION DEPENDS ON THE
INTERACTION OF TWO ADAPTIVE
CONTROLLERS

Natural CNS outputs are optimized for the goals of the organ-
ism, and the adaptation that achieves this optimization occurs
primarily in the CNS. In contrast, BCI outputs can be opti-
mized by adaptations that occur not only in the CNS but also
in the BCI itself. In addition to adapting to the amplitudes, fre-
quencies, and other basic characteristics of the user’s brain sig-
nals, a BCI may also adapt to improve the fidelity with which
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its outputs match the user’s intentions, to improve the effec-
tiveness of adaptations in the CNS, and perhaps to guide the
adaptive processes in the CNS.

Thus, BCIs introduce a second adaptive controller that can
also change to ensure that the organism’s goals are realized.
BCI usage therefore depends on the effective interaction of two
adaptive controllers: the user’s CNS and the BCI. The manage-
ment of this complex interaction between the adaptations of
the CNS and the concurrent adaptations of the BCI is among
the most difficult problems in BCI research. The challenges it
poses arise at many points throughout this book.

CHOOSING SIGNAL TYPES AND BRAIN AREAS

Brain signals recorded by a variety of different electrophysio-
logical and metabolic methods can serve as BCI inputs (chap-
ters 12-18). These signals differ considerably in topographical
resolution, frequency content, area of origin, and technical
requirements. Figure 1.5 shows the range of electrophysiologi-
cal methods from EEG to electrocorticography (ECoG) to
intracortical recording and indicates the multiple scales of the
brain signals available for BCIs, from the centimeter scale of
EEG through the millimeter scale of ECoG to the tens-of-mi-
crons scale of neuronal action potentials. All of these electro-
physiological methods have been used for BCIs and warrant
continued evaluation, as do the metabolic methods discussed
in chapters 4 and 18. Each has its own advantages and disad-
vantages. Which methods will prove most useful for which
purposes is as yet unknown, and the answers will depend on a
host of scientific, technical, clinical, and commercial factors.
On the one hand, the role of neuronal action potentials
(spikes) as basic units of communication between neurons
suggests that spikes recorded from many neurons could pro-
vide numerous degrees of freedom and might thus be the best
signals for BCIs to use. Furthermore, the strong relationships
between cortical neuronal activity and normal motor control
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Figure 1.5 Recording sites for electrophysiological signals used by BCl systems.
EEG is recorded by electrodes on the scalp. ECoG is recorded by electrodes
on the cortical surface. Neuronal action potentials (spikes) or local field
potentials (LFPs) are recorded by microelectrode arrays inserted into the cortex
(or other brain areas). A few representative cortical pyramidal neurons are
indicated. (Modlified from Wolpaw and Birbaumer, 2006.)
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(chapter 2) provide logical starting points for development of
BClI-based control of devices such as robotic arms (chapter
16). On the other hand, the fundamental importance of
CNS adaptation for all BCIs, and the evidence that adaptive
methods can elicit multiple degrees of freedom even from EEG
signals (chapter 13), suggest that the difference between the
BCI performance provided by single neurons and by EEG may
not be nearly as great as the difference in their topographical
resolutions.

Questions about signal selection are empirical issues that
can be resolved only by experiment, not by a priori assump-
tions about the inherent superiority of one signal type or
another. For BClIs, the critical issue is which signals can pro-
vide the best measure of the user’s intent, that is, which signals
constitute the best language for communicating to the BCI the
output desired by the user. This question can be conclusively
answered only by experimental results.

Selection of the best brain areas from which to record the
signals is also an empirical question. Studies to date have
focused mainly on signals from sensorimotor (and visual) cor-
tical areas. The usefulness of signals from other cortical or sub-
cortical areas is also being explored (e.g., chapter 17). This is an
important question, especially because the sensorimotor corti-
ces of many prospective BCI users have been damaged by
injury or disease and/or their visual function may be compro-
mised. Different brain areas may well differ in their adaptive
capacities and in other factors that may affect their ability to
serve as the sources of new CNS outputs.

RECOGNIZING AND AVOIDING ARTIFACTS

Like most communication and control systems, BCIs face the
problems of artifacts that obscure the signals that convey
output commands. For BClIs, artifacts may come from the
environment (e.g., electromagnetic noise from power lines or
appliances), from the body (e.g., muscle (electromyographic
[EMG]) activity, eye movement (electrooculographic [EOG])
activity, cardiac (electrocardiographic [EKG]) activity, bodily
movements) or from the BCI hardware (e.g., electrode insta-
bility, amplifier noise). The different varieties of artifacts and
the measures for eliminating them or reducing their impact are
addressed in chapters 6 and 7. Particularly for BCIs that record
brain signals noninvasively, artifacts present a danger that war-
rants some discussion even in this introductory chapter.

The first requirement for any BCI study or demonstration
is to ensure that it is, in fact, using a BCI (i.e., that brain signals,
not other types of signals, control its output). Systems that use
other kinds of biological signals, such as EMG activity, may be
valuable in their own right, but they are not BCIs. Unfortunately,
nonbrain signals such as EMG activity may readily masquer-
ade as brain signals. Electrodes placed anywhere on the scalp
can record EMG activity from cranial muscles or EOG activity
that equals or exceeds EEG activity in amplitude and that over-
laps with it in frequency range. Because people can readily
control cranial EMG or EOG activity and may not even be
aware that they are doing so, such nonbrain activity may con-
taminate or even dominate the signals recorded by a BCI and
may thereby ensure that the BCI outputs are produced in part,



or even entirely, by nonbrain signals. Clearly, effective BCI
research and development are not possible in such circum-
stances. (Indeed, even in the scientific literature there are
examples of putative BCI studies in which EMG signals mas-
querade as EEG signals, so that the results reflect cranial-mus-
cle control rather than brain-signal control.) Commercial
devices (e.g., for gaming) that are currently marketed as BCIs
often do not differentiate EEG from EMG or other nonbrain
signals. Only if it is certain that the control signals arise from
brain activity and not from other activity can the results of
BCI studies be useful to people whose severe disabilities have
eliminated their control of nonbrain signals.

To avoid the danger of contamination by nonbrain signals,
EEG-based BCI studies need to incorporate topographical
and frequency analyses that are sufficiently comprehensive to
distinguish between brain and nonbrain signals. Noninvasive
metabolic BCI studies may need to incorporate analogous pre-
cautions. EEG studies that simply record from a single site, or
that focus on a single narrow frequency band, cannot reliably

discriminate between EEG and EMG, and thus, their results
may be misleading. These issues are addressed in greater detail
in chapters 6 and 7.

BCI OUTPUT COMMANDS:
GOAL SELECTION OR PROCESS CONTROL

A BCI can produce two kinds of output commands: a com-
mand that selects a goal or a command that controls a process.
Figure 1.6 illustrates these two options applied to the move-
ment of a motorized wheelchair.

In the goal-selection protocol shown at the top, the user and
the BCI simply communicate the goal (i.e., the user’s intent) to
software in the application, and it is the application that then
manages the process that accomplishes that intent. For exam-
ple, the BCI might communicate the goal of moving to a loca-
tion facing the television. The application device (i.e., the
wheelchair) then produces the several concurrent sequences
of actions (e.g., movements in x and y directions, turning,
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Figure 1.6 BCl outputs: goal selection versus process control. BCl output commands can either select goals or control processes. In goal selection the BCI

command specifies only the user’s intent; the process that achieves this intent is accomplished by the application (i.e., the motorized wheelchair), which produces
etc.) that control its movement and also manage the ongoing interactions

several concurrent sequences of actions (€.9., @, ;s @,y + -+ @1, 3511 Bgepr - - Bp)
between these actions and the resulting sequences of feedback (e.g., f, _,, f, .. .. . f, _:f, . T, ... f,_.etc). The feedback to the user is mainly the end result.
In process control the brain and the BCI provide several concurrent sequences of commands (e.g., Chetr Creear - Cooen Coperr Copozr -+ Copo etc.) that correspond to

the sequences of actions that the application produces; and the brain and the BCI continue to manage the ongoing interactions between these actions and the
resulting feedback. The most successful BCls are likely to combine goal selection and process control appropriately for each purpose and to thereby emulate the

distributed control characteristic of natural muscle-based CNS outputs. (Modified from Wolpaw, 2007.)
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braking) (denoted by a’s in fig. 1.6[top]) that move the wheel-
chair to the desired location at a safe speed. The wheelchair
application also receives concurrent detailed feedback (denoted
by fs) that allows it to adjust its actions as needed to avoid dan-
gers such as staircases and obstacles such as walls, furniture,
and other people. As the figure illustrates, the goal-selection
protocol places most of the burden (i.e., for complex high-
speed interactive control) on the application. The BCI simply
communicates the goal, and the user simply views, and benefits
from, the overall result. This example is analogous to using a
global positioning system (GPS) to select a destination and
then putting your vehicle on automatic pilot (assuming of
course that it is equipped with this option!).

In contrast, in the process-control protocol shown at the
bottom of figure 1.6, the user and the BCI control all
the details of the process that accomplishes the user’s intent.
The user and BCI produce sequences of commands (denoted
by ¢’s), which the wheelchair simply converts into actions (e.g.,
movements in x and y directions, turning, braking). The user
processes the concurrent sequences of feedback to adjust the
BCI's commands appropriately. The user and the BCI manage
all the details of the process that puts the user in front of the
television. The wheelchair simply does exactly what it is told to
do. If goal selection is like using a GPS and an automatic pilot,
process control is like driving the vehicle yourself and making
all the decisions on which way to turn, how fast to go, when to
stop, and so forth.

A simple summary of the difference between these two
kinds of BCI output commands is that in goal selection
the BCI tells the application what to do, whereas in process
control it tells it how to do it. As chapters 12-18 illustrate,
goal-selection and process-control protocols have both been
used in a variety of BCIs, noninvasive as well as invasive.

From the point of view of the CNS and the BCI, goal
selection is relatively easy. It requires only that the BCI provide
the goal (i.e., the user’s intent), which is the one part of the
desired action that the application alone cannot provide. Once
the goal is communicated, the application software and hard-
ware are expected to achieve the goal rapidly and reliably. Goal
selection is generally most appropriate for simpler BCI appli-
cations in which the set of possible commands is relatively
small and fully defined (e.g., word-processing or wheelchair
navigation in a specific environment with limited destina-
tions). For more demanding applications, in which the set of
possible goals may be large and not fully defined, or in which
unexpected complications can occur (e.g., multidimensional
control of a robotic arm or wheelchair navigation in different
environments with many possible destinations), it may be nec-
essary to use process control, which generally places greater
demands on the CNS and the BCL

As illustrated in figure 1.4A, natural CNS outputs are the
product of the combined activity of many areas from the cortex
to the spinal cord. Furthermore, the distribution of control
varies appropriately from action to action. For example, a
lengthy clinical and experimental literature indicates that the
cortex plays a much greater role in fine finger control than it
does in gross movements such as hand grasp (Porter and
Lemon, 1993). In accord with the terminology used here, the
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cortex sometimes functions in a process-control manner in
which it controls every detail of an action, and at other times it
functions in a goal-selection manner in which it delegates the
details to subcortical areas.

The most effective and desirable BCISs are likely to be those
that imitate to the greatest extent possible the action-appropri-
ate distribution of control that characterizes natural CNS func-
tion. To do this, BCIs might combine the two approaches of
goal selection and process control. For example, in reaching to
and grasping an object with a robotic arm, the cortex and the
BCI might command the three-dimensional movement of the
hand, the hand orientation, and the grasp while the application
device might handle the details of the movements of the indi-
vidual limb segments and the details of wrist rotation and
finger flexion. Such distributed designs, which place fewer
demands on the user and the BCI, may also be more realistic in
the present state of BCI development. As progress continues,
and as BCIs incorporate more elaborate and timely feedback
from the evolving action to the CNS, goal selection and pro-
cess control might be combined so that BCIs can emulate with
steadily growing fidelity the speed, reliability, and ease of the
brain’s natural outputs.

VALIDATING AND DISSEMINATING
USEFUL BCI APPLICATIONS

Because of the complexity and multidisciplinary requirements
of BCI development, most research groups focus on a single
aspect, such as recording hardware, signal processing, or appli-
cation design. This focus is both understandable and impor-
tant for making substantive contributions. At the same time,
the continuation and ultimate success of BCI development
depend on realizing systems that are useful to the people with
severe disabilities who are the principal reason for the exis-
tence of the field and for the substantial attention and support
it currently receives. Thus, it is essential to develop systems
that are clinically useful.

This task is an extremely demanding endeavor. It requires
effective interdisciplinary collaborations and management of
the complicated clinical and administrative requirements of
human research (chapter 20) as well as attention to the more or
less unique ethical issues associated with BCI research (chap-
ter 24). Clinically useful BCI systems must function effectively
and reliably in complex and often changing environments.
They must be usable by nonexperts without excessive technical
support and must provide applications that improve the lives
of their users. These requirements constitute a hard and unfor-
giving test for systems first developed in the laboratory. At the
same time, satisfying them validates the entire field of BCI
research and development.

Even when BCI systems are clinically validated, their
wider dissemination to the people who need them most faces
several practical challenges. The dissemination of new medical
technologies is typically a commercial endeavor and thus
requires a reasonable expectation of profitability. However, the
number of people who need the relatively modest capabilities
of current BClIs, or of the BCIs likely to be available in the
near future, is relatively small by typical marketing standards.



Thus, the immediate user population may not be large enough
to attract and reward the commercial entities that could manu-
facture, market, and support current BCIs for those who need
them most. Effective approaches to this problem may lie in
therapeutic BCI applications (chapter 22) that can serve
larger populations (e.g., people who have had strokes) and
in well-structured commercial initiatives that target both the
core group of people with severe disabilities and the much
larger numbers of people in the general population who
might use BCIs for other purposes (chapter 23). These difficult
issues and their potential solutions are discussed in chapters 21
and 24.

SUMMARY

The CNS interacts continuously with the outside world and the
body through its natural neuromuscular and hormonal out-
puts. BCIs measure CNS activity and convert it into artificial
outputs that replace, restore, enhance, supplement, or improve
the natural CNS outputs. Thus, BCIs change the interactions
between the CNS and its environment. The new CNS outputs
that the BCI creates are fundamentally different from natural
CNS outputs, which come from spinal motoneurons. BCI
outputs come from brain signals that reflect activity elsewhere
in the CNS (e.g., motor cortex). Effective BCI operation
requires that the CNS control that activity nearly as accurately
and reliably as it normally controls motoneurons. The achieve-
ment of such accuracy and reliability is a major challenge for
BCI research.

The adaptations that optimize natural CNS outputs
occur mainly in the CNS. In contrast, the adaptations that
optimize BCI outputs can also occur in the BCI. Thus, BCI
operation relies on the interaction between, and the adaptive
capacities of, two adaptive controllers: the CNS and the BCL
The design of this additional adaptive controller (i.e., the BCI)
and the management of its interactions with the adaptations of
the CNS constitute a particularly challenging aspect of BCI
research.

BCIs might use any of a variety of different kinds of brain
signals recorded in a variety of different ways from a variety of
different brain areas. Questions of which signals from which
brain areas are best for which applications are empirical issues
that need to be answered by experiment.

Like other communication and control interfaces, BCls
can encounter artifacts that obscure or imitate their critical
signals. EEG-based BCIs must exercise particular care to avoid
mistaking nonbrain signals recorded from the head (e.g., cra-
nial EMG activity) for brain signals. This entails appropriately
comprehensive topographical and spectral analyses.

BCI outputs can either select a goal or control a process.
Ultimately, BCISs are likely to be most successful by combining
goal selection and process control, that is, by distributing con-
trol between the BCI and the application in a manner appro-
priate to the current action. By such distribution, they could
most closely emulate natural CNS function.

The continuation and ultimate success of BCI development
depend on realizing systems that are useful to people with

severe disabilities. The clinical evaluation and validation of
BClIs are demanding endeavors requiring interdisciplinary col-
laboration and satisfaction of the complicated requirements of
clinical research.

BCI research, which occupied only a handful of laborato-
ries 15 years ago, is now an explosively growing field involving
hundreds of research groups throughout the world. Its excite-
ment and potential are drawing many young scientists and
engineers into a vibrant research community that is engaging
the numerous issues and pursuing the great promise of BCI
technology. The intent of this book is to contribute to the fur-
ther growth and success of this community by providing a
solid grounding in fundamental principles and methods, by
summarizing the current state of the art, and by raising and
discussing critical issues.
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2 | NEURONAL ACTIVITY IN MOTOR CORTEX AND

RELATED AREAS

LEE E. MILLER AND NICHOLAS HATSOPOULOS

n 1870, Eduard Hitzig and Gustav Fritsch applied electrical

stimuli to a region on the surface of a dog’s brain that caused

the limb on the opposite side of its body to move. This
observation was critical in a number of respects. It demon-
strated that, like muscles, the brain is electrically excitable. By
finding limb movement represented in a particular area, it also
addressed the larger issue of whether different parts of the
brain, and of the cerebral cortex in particular, were devoted to
different functions. In the middle of the 19th century opinions
on this point ranged from that of the minute cortical special-
ization held by the phrenologists (Gall and Spurzheim 1809),
to that of Pierre Flourens, who held that the cerebral cortex
was largely unspecialized (Flourens 1824). Based on their
experiments, Hitzig and Fritsch ultimately described the area
of the brain that we now know as the primary motor cortex
(Fritsch and Hitzig 1870). Also in the 1870s, David Ferrier
conducted experiments similar to those of Hitzig and Fritsch
using monkeys as subjects (Ferrier 1873).

Today, neurosurgeons routinely use electrical stimulation
to map the brains of awake human patients undergoing surgi-
cal procedures for treatment of severe epilepsy or tumor resec-
tion. The goal is to identify eloquent cortex, (i.e., areas where
damage will result in paralysis or in loss of sensation or linguis-
tic ability). These methods were pioneered by the Canadian
neurosurgeon Wilder Penfield, whose work led to the now
familiar map of the motor homunculus that is reproduced in
different versions in nearly every textbook dealing with neuro-
science (Penfield and Boldrey 1937; Penfield 1958) (fig. 2.1).
This map depicts the areas of motor cortex associated with dis-
tinct motor functions. It is a distorted image of the body in
which parts that require more finely graded control (e.g., the
hand) have disproportionately large representations.

Beyond the primary motor cortex, Penfield identified
the areas that we now refer to as the premotor cortex and the
supplementary motor area (Penfield and Welch 1951). These
names (and the names of several other premotor areas) reflect
their connections into primary motor cortex and their rela-
tively sparse projections into the spinal cord. Other investiga-
tors working in the same period included Woolsey and
colleagues (Woolsey et al. 1952), who used a variety of tech-
niques in experimental animals to map not only the motor
cortex but also the sensory areas of cortex that are part of a
larger network of sensory, association, and motor areas that
function together to produce normal movement.

At about the time of Woolsey’s experiments, the first
recordings of electrical activity from single neurons in the
brains of either awake or lightly anesthetized animals were
conducted in the laboratories of Vernon Mountcastle, David
Hubel, Herbert Jasper, and Edward Evarts (Mountcastle 1957;
Hubel 1957; Jasper et al. 1958; Evarts 1966). By inserting
microelectrodes into the cortex so that their exposed tips were
close to individual cortical neurons, they were able to record
single action potentials, or spikes, from these neurons.

An action potential is a brief (about 1 msec) and highly
stereotyped fluctuation in neuronal membrane potential that
occurs when excitatory synaptic input to the neuron triggers an
abrupt, transient opening of channels in the cells membrane,
through which specific ions can flow. These action potentials
are actively regenerated as they travel down a neuron’s axon to
provide synaptic input to other neurons. Action potentials are

Figure 2.1 The motor homunculus derived by Wilder Penfield illustrating the

effects of electrical stimulation of the cortex of human neurosurgical patients.
Adapted from Nolte (2002).
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viewed as the basic units of interneuronal communication
and information transfer in the nervous system. A detailed
description of this fundamental phenomenon may be found in
any basic neurophysiology textbook.

These seminal neuronal-recording experiments began to
reveal the relationships between neuronal discharge (i.e.,
spikes) in motor and sensory areas of cortex and movements
or external sensory events. In the decades since these first stud-
ies, tremendous improvements have been made in microelec-
trode and electronics technology so that it is now possible to
record the activity of many tens or hundreds of neurons simul-
taneously. This new technology has helped give rise to the
brain-computer interface (BCI), whereby such recordings can
be interpreted by a computer and used as a source of control
signals, ultimately to provide movement or communication to
a paralyzed person.

This chapter has six sections. The first four discuss the
anatomy and functional roles of the brain areas that are most
relevant to the development of BCI technology. This coverage
is intended to provide a basic background for those readers
who are not familiar with these topics and a succinct review for
those readers who are. The final two sections discuss the infor-
mation content of neuronal discharge recorded from these
areas and review current methods for recording and analyzing
spikes from many cortical neurons simultaneously (these two
topics are discussed further in chapters 5 and 16).

OVERVIEW OF BRAIN ANATOMY

In humans, most of the brain consists of the two paired cerebral
hemispheres (fig. 2.2). Each hemisphere is covered with cortex,
a structure that varies in thickness in different regions from
about 1.5 to 4.0 mm. The cortex is known colloquially as gray
matter because of the color imparted by its large number of
neurons. Beneath the cortex are a number of other deeper
gray-matter structures, the subcortical areas including the basal
ganglia, cerebellum, brainstem, and thalamus. The brain’s white
matter (so-called because of its lighter color) consists of
the many nerve fibers that interconnect the various cortical
areas and that connect the cortex to subcortical areas (and
visa versa).

The left panel of figure 2.3 shows the trajectory of a single
corticospinal fiber (i.e., one that extends from the cortex to the
spinal cord). This fiber starts in motor cortex, goes through the
cerebral peduncle, the pons, and into the medulla, where it
crosses to the other side of the body and enters the spinal cord.
It ultimately projects to interneurons and motoneurons in the
ventral horn of the spinal cord on that side. Thus, in general,
corticospinal fibers from neurons on one side of the brain
activate muscles on the other side of the body.

Because the cerebral cortex is responsible for movement
planning and because it is relatively accessible experimentally,
it is the brain area of primary focus in most BCI research.
Accordingly, this section of the chapter will focus mainly on
the cortex, with brief additional discussion of the subcortical
areas with which it is interconnected and that affect and modu-
late its activity.
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TERMINOLOGY FOR DIRECTIONS IN THE CNS

Several different coordinate axes are used to describe directions
within the body in general and the CNS in particular (fig. 2.2).
The mediolateral axis is perpendicular to the midline, and the
body is bilaterally symmetrical along this axis. That is, the zero
point of the mediolateral axis is at the midline, and the value
rises as distance to the left or right increases. The rostral (or
cranial) to caudal axis (also called the rostrocaudal axis) goes
from the head (or more precisely, the face or mouth) to the tail.
Thus, the most rostral part of the CNS is the front of the frontal
lobe, and the most caudal is the end of the spinal cord. The
third axis is the dorsoventral axis; it is perpendicular to both
the mediolateral and rostrocaudal axes, and goes from the
back (or dorsum) to the front (or ventrum). In a quadruped,
these definitions remain consistent for the spinal cord and
brain. In a biped, the rostrocaudal and dorsoventral axes rotate
forward, such that the dorsoventral axis becomes parallel to
the gravity vector (fig. 2.2, lower).

Axis terminology is further complicated by the anterior-
posterior axis. In general, anterior refers to the direction toward
the front of the head or body (i.e., the face or abdomen), and
posterior refers to the opposite direction. However, when
applied to the brain, the anterior-posterior axis is the same as
the rostrocaudal axis. Thus, the front edge of the frontal lobe is
the most rostral, or anterior part, of the cerebrum, and the tip
of the occipital lobe is the most caudal or posterior. In contrast,
when applied to the spinal cord, the anterior-posterior axis is
the same as the dorsoventral axis. Finally, the terms used for
specifying location along the main axis of a limb are proximal
and distal: proximal means close to the body, whereas distal
means far from the body (e.g., the hand or foot).

THE CEREBRAL CORTEX

The cerebral cortex has four major parts, or lobes:

. frontal
. parietal
. occipital

. temporal

Whereas the cerebral cortex of lower mammals (e.g.,
rodents, rabbits, and some primates) is a relatively smooth
sheet, the cerebral cortex of higher mammals is highly
convoluted by a set of gyri (ridges) and sulci (grooves) that
divide the cortex into distinct anatomical regions. The convo-
lutions have presumably evolved to increase cortical volume
while maintaining an unchanged thickness. The sulci and gyri
define the four main lobes of the cerebral cortex, as well as
other cortical subdivisions (fig. 2.2). The frontal and parietal
lobes are separated by the central sulcus (CS), which is a deep
groove between the cortical folds (called gyri) (fig. 2.2). The
frontal lobe lies on the anterior side of the CS and the parietal
lobe lies on its posterior side. The gyrus on the anterior side of
the CS is the precentral gyrus, that on the posterior side is the
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Figure 2.2 Major divisions of the human cerebral cortex in dorsal (from above) and lateral views. The four major lobes (frontal, parietal, occipital, and temporal) are
indicated, as well as several of the functionally defined cortical areas. Adapted from Kandel et al. (1991).

postcentral gyrus. Primary motor cortex (M1) lies along the
anterior wall of CS and continues into the precentral gyrus.
Primary somatosensory cortex (S1) lies along the posterior
wall of the CS and continues into the postcentral gyrus.

The frontal lobe is dramatically expanded in humans, even
compared to our closest primate relatives. Much of this expan-
sion is within the most anterior, prefrontal area (fig. 2.2), which
is involved in higher-order executive function, including com-
plex cognitive behaviors, personality, and decision making.

Posterior (or caudal) to the CS are the parietal lobe and then
the occipital lobe. Primary somatosensory cortex (S1) is within
the most anterior part of the parietal lobe. Farther posterior, in
what is referred to as the posterior parietal cortex (PPC), is a
region of multimodal association cortex, that receives input
from the somatosensory, visual, and auditory sensory areas
that surround it.

The occipital lobe, at the posterior pole of the brain, consists
primarily of visual areas. The temporal lobes are located ventrally
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along the sides of the brain. They are critical for auditory signal
processing, higher-level visual processing, and memory.

The cerebral cortex has three histologically distinguishable
parts: the neocortex; the paleocortex; and the archicortex. The
neocortex comprises most of the cortex in mammals and is dis-
cussed in detail in this chapter. The paleocortex and archicortex
are evolutionarily older forms of cortex. The paleocortex com-
prises a region at the bottom (i.e., the ventral side) of the cerebrum
that includes, but is not limited to, the olfactory cortex. The
archicortex (largely synonymous with the hippocampus) is a struc-
ture located deep within the temporal lobes that plays a critical
role in the formation of new memories and in spatial navigation.

In the early 1900s, Korbinian Brodmann differentiated
approximately 50 areas within the cerebral cortex, based largely
on the distribution, density, and types of cells within each
area (Brodmann 1909). His published cytoarchitectonic map
provided the framework for many subsequent investigations
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into the functional differentiation of the cerebral cortex. This
map is shown in figure 2.4, and some of the important areas
are noted in table 2.1. With the advent of modern anatomical
and physiological techniques, many of the Brodmann areas
have been further subdivided. The overlap between the ana-
tomically defined maps and functional maps determined later
by physiological methods is rather remarkable.

THE SIX LAYERS OF NEOCORTEX

Neocortex is composed of six morphologically distinct layers
(labeled I-VI), distinguishable mainly by the types of cells
they contain. Pyramidal cells (named for their pyramidal shape)
are projection neurons (i.e., their axons extend to other cortical
regions and/or to subcortical regions as far away as the spinal
cord). Of the nonpyramidal neurons, stellate cells (also called
granule cells) are the most numerous; stellate cells have extensive



Figure 2.4 Lateral view of the cerebral cortex from the work of Korbinian
Brodmann. Each of the different symbols represents an area Brodmann
considered to be anatomically distinct. He identified and numbered a total of
more than 50 such areas. His numbering is best understood in terms of his
sectioning methodology. Unlike modern brain sectioning, which usually
proceeds along the rostrocaudal axis, Brodmann sectioned along the
dorsoventral axis, so that his areal numbering begins at the top of the brain
(i.e., the central sulcus) and often alternates anteriorly and posteriorly as it
proceeds ventrally. From Nolte (2002).

dendrites that arise from the cell body and that terminate, along
with the axon, within a restricted region of the cortex. Stellate
cells are primarily involved in processing information locally.

Layer I, the outermost layer of the neocortex, is called the
molecular layer. It contains very few neurons and is composed
mostly of the dendrites arising from pyramidal neurons in
deeper layers and horizontally running axons. Layer IT is called
the external granular layer and contains mostly stellate cells
and small pyramidal cells. Layer III is called the external pyra-
midal layer and contains both small and medium-sized pyra-
midal cells. It is the primary source of fibers that interconnect
the different areas of cortex. Layer IV is the internal granular
layer. It contains many nonpyramidal neurons and receives
much of the input coming to the cortex. These fibers that come
to the cortex (and are therefore called afferent fibers) originate
in the thalamus and carry signals from each of the primary
senses. Layer V is the internal pyramidal layer. It contains the
largest pyramidal cells, the source of the long axons that proj-
ect out of the cerebrum (and are therefore called efferent fibers).
The largest of these Layer V pyramidal cells are located in the
primary motor cortex and are referred to as Betz cells (Betz
1874). Finally, Layer VI, called the multiform layer, contains
the greatest variety of cell types. It is the source of most fibers
from the cortex (i.e., efferent fibers) to the thalamus.

In different cortical regions, the amount of cortex devoted to
a given layer varies depending on the function of the area. For
example, the primary visual and somatic sensory cortices have
an input layer I'V that is much thicker than that in the primary
motor cortex; in contrast, the output layer V predominates in
primary motor cortex. In sensory regions of cortex, layer IV
contains a large number of granule cells. These regions are there-
fore often referred to as granular cortex. In contrast, motor areas
of cortex lack a prominent layer IV and are termed agranular.

TABLE 2.1 Common names and abbreviations of the major
cortical motor areas together with their Brodmann and
Matelli designations*

COMMON NAME COMMON BRODMANN  MATELLI
ABBREVIATION  (Vogt 1919)

Primary motor cortex M1 4 F1

Premotor cortex PMdr 6 (6ap) F7

(Dorsal, rostral division)

Premotor cortex PMdc 6 (bao) F2

(Dorsal, caudal division)

Premotor cortex PMvr 6 (bao) F5

(Ventral, rostral division)

Premotor cortex PMvc 6 (4c) F4

(Ventral, caudal division)

Supplementary motor SMA 6 (6a0) F3

area

Presupplementary pre-SMA 6 (6ap) F6

motor area

Cingulate motor area CMAr 24 24c

(rostal division)

Cingulate motor area CMAc 23 24d

(caudal division)

Anterior intraparietal area | AIP 7

Ventral intraparietal area | VIP 5/7

Medial intraparietal area | MIP 5

Parietal reach region PRR 5

Primary somatosensory S1 1,2,3

cortex

Prefrontal cortex PFC 9

*Matelli et al. (1985, 1991).

Intracortical efferents arising in layer III project ipsilater-
ally within a given gyrus and interconnect cortical regions in
different lobes of the ipsilateral side. The longest fibers travel in
association bundles. For example, the superior longitudinal
fasciculus contains the fibers that interconnect the frontal and
parietal lobes. Fibers projecting between the hemispheres
travel primarily through the corpus callosum, which contains
some 300 million fibers.

SUBCORTICAL AREAS

The major subcortical areas of the brain that interact with
cortex and are intimately involved in motor and sensory
function include the:

. thalamus

brainstem
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. basal ganglia

. cerebellum

The thalamus is located below the cortex and deep within
the cerebrum. It serves as the main gateway to the cerebral
cortex for sensory inputs from the spinal cord and from other
subcortical structures including the basal ganglia and cerebel-
lum. It also receives input from the cerebral cortex, which sug-
gests that the thalamus plays a complex regulatory function.

The brainstem is at the base of brain (just visible in fig. 2.2,
lower panel). The brainstem, consisting of the midbrain, pons,
and medulla oblongata, can be seen in greater detail in figure
2.3. The medulla oblongata connects to the spinal cord. The
brainstem contains nerve fibers descending to and ascending
from the spinal cord; it also contains a number of motor and
sensory nuclei, collections of neurons that further process
these signals. The most numerous of these are within the pons
(and are known collectively as the pontine nuclei).

The basal ganglia are a collection of interconnected nuclei
located deep within the cerebrum. They are strongly connected
with the cerebral cortex and play a critical role in movement.
Both Parkinson’s disease and Huntington’s chorea are associ-
ated with pathology in the basal ganglia.

The cerebellum (derived from the Latin for little brain) is
nestled under the posterior part of the cerebral hemispheres
(see fig. 2.2, lower panel). The cerebellum is involved in the
production of smooth, coordinated movements as well as in
motor learning and adaptation. Although it has no direct con-
nections to the spinal cord, it influences movement indirectly
by way of its connections to the cerebrum and brainstem.
People with disorders of the cerebellum are still able to move,
but their movements lack normal coordination; these charac-
teristic deficits are known collectively as ataxia.

CORTICAL EFFERENT PROJECTIONS

Nerve fibers that leave the cortex are called cortical efferent
fibers; fibers that enter the cortex are called cortical afferent
fibers. The cortical efferent fibers converge to pass through the
internal capsule, a very dense collection of cortical afferent and
efferent fibers located just lateral to the thalamus. From the
internal capsule, these and other descending fibers form the
paired cerebral peduncles (basis pedunculi in fig. 2.3) each of
which contains roughly 20 million fibers. Between 85% and
95% of these fibers terminate within the brainstem, the largest
proportion within the pontine nuclei. This corticopontine path-
way also provides a massive projection from many regions of
the cerebral cortex to the cerebellum. Other efferent fibers from
the cortex end in the caudate and putamen (collectively known
as the striatum), the input nuclei of the basal ganglia (see
below). Other cortical efferents, known collectively as corticob-
ulbar fibers, terminate in the lower brainstem area and include
projections to both motor and sensory brainstem nuclei.

The remaining one million cortical fibers form the medul-
lary pyramids (which give the pyramidal tract its name) and
continue to the spinal cord as the corticospinal (CST) tract.
Eighty to ninety percent of these CST fibers cross the midline
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at the pyramidal decussation (as shown in fig. 2.3) within the
caudal medulla and run in the lateral columns of the spinal
cord in primates and cats. (In rats, the CST is at the base of the
dorsal columns of the spinal cord.) The remaining fibers remain
uncrossed until they terminate bilaterally in the spinal cord,
and constitute the ventromedial CST. In primates particularly,
some corticospinal fibers synapse directly on motoneurons
within the ventral (or anterior) horn of the spinal gray matter,
especially motoneurons supplying the distal extremities. Some
CST fibers (those arising from S1) project into the dorsal (or
posterior) horn of the spinal gray matter, which receives sen-
sory afferents coming in from the peripheral nerves. However,
the majority of CST fibers project to the intermediate zone and
influence motoneurons (which are located in the ventral [ante-
rior] horn of the spinal gray matter) indirectly, through spinal
interneurons.

MOTOR AND SENSORY AREAS
OF THE CEREBRAL CORTEX

The cerebral cortex is the area of greatest interest in BCI
research because it is most accessible to electrode probes (as
well as to scalp recording) and because it is highly involved
in the executive function of motor and communication
behaviors.

The cortical surface features provide convenient landmarks
for the identification of particular regions of the brain. In mon-
keys, the small spur extending posteriorly from the arcuate
sulcus (see fig. 2.5), is a useful mediolateral landmark approxi-
mating the region of the cortex that controls proximal arm
movements (Georgopoulos et al. 1982). In humans, a distinc-
tive portion of the precental gyrus known as the “hand knob”
marks the region controlling hand movements (Yousry et al.
1997). These landmarks are often used to guide implantation of
intracortical electrodes. However, although they are useful for
localization during surgery to place electrodes, the deep sulci
make experimental access to the cortex with multielectrode
recording techniques more difficult.

Table 2.1 lists the main motor areas of the brain that have
been identified by a number of different classification systems.
The most widely used are shown in the table and include the
common names (column 1); their common abbreviations
(column 2); the cytoarchitectonic areas described for the
monkey by Brodmann (1909) and by Vogt (1919) (column 3);
and a later system based on cytochrome-oxidase staining in
the monkey (column 4) (Matelli et al. 1985; Matelli et al. 1991).
In this chapter, we use primarily the common names and
abbreviations shown in columns 1 and 2 of table 2.1.

CORTICAL SPECIALIZATION

PRIMARY MOTOR CORTEX
Primary motor cortex (M1), located in the frontal lobe, is a
brain region of great importance in BCI research because of its
close relation to movement control. Fritsch and Hitzig (1870)
and Ferrier (1873) were able to activate muscles with relatively
weak electrical stimulation in this area because of the relatively
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(Wise et al. 1997); 9m, 91, 46d, 46v are prefrontal areas (Walker 1940; Barbas and Pandya 1989). Adapted from Dum and Strick (2005).

large density here of giant Betz cells whose axons form the
CST. In primates particularly, these cells frequently project
directly to spinal motoneurons, which probably contributes to
their ability to activate small sets of muscles (Lemon 2008).
The primary motor cortex is organized somatotopically.
That is, particular regions of M1 are devoted primarily to the
control of particular body areas. This organization is reflected
in Penfield’s homunculus (fig. 2.1), in which an oddly shaped
body is drawn along the central sulcus. Representations of
the legs and feet are found within the medial wall of the cere-
brum; the trunk, upper arm, and hand representations occur
progressively more laterally in the hemisphere; and the face is
most lateral. Although neighboring body parts are typically
represented within neighboring areas of cortex, these body

parts are spatially distorted because control of some body parts
is more complex than that of others. For example, control of
the many facial or hand muscles is much more complex than is
control of the much larger biceps muscle that flexes the elbow.
Consequently, a greater amount of cortical area is devoted to
the control of the face or the hand than to the upper arm. These
general principles of somatotopic organization apply to sensory
as well as motor areas of cortex.

Despite the basic appeal of this textbook caricature of cere-
bral cortex motor representation, a true motor map probably
bears a good bit less resemblance to the body (Schieber 2001).
Figure 2.6, taken from work in Cheney’s laboratory, contains a
map that is analogous to Penfield’s in that it shows the spatial
distribution of motor areas that represent various body areas
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(Park et al. 2001). The solid line in this figure represents the lip
of the anterior bank of the precentral gyrus. The parallel dashed
line indicates the fundus of the central sulcus and the posterior
limit of M1. This study achieved much higher spatial resolu-
tion than those of Penfield, because it used intracortical, rather
than surface stimulation and because the stimulating currents
were almost 1000-fold smaller. Although the gross features of
figure 2.6 are similar to those in figure 2.1 (i.e., the face most
lateral, the legs most medial, and the hand and arms in between;
see also Sessle and Wiesendanger 1982), it lacks the individual
digits and simple linear mapping along the sulcus of the famil-
iar homunculus.

Since Penfield and Woolsey identified the primary and
premotor cortices, many additional motor cortical areas have
been identified. Although not shown in figure 2.5, M1 can be
subdivided into two regions: caudal M1 (M1c) (essentially that
lying within the sulcus); and rostral M1 (Ml1r) (the portion on
the cortical surface and extending rostrally—or anteriorly—
nearly to the arcuate sulcus [ArS in fig. 2.5]). Neurons in M1c,
nearest to the somatosensory cortex, are more strongly influ-
enced by somatosensory inputs than are neurons in M1r (Strick
and Preston 1978a; Strick and Preston 1978b). A variety of
other motor areas have been identified that have projections
into M1.

PREMOTOR CORTEX
Premotor cortex (PM), also located in the frontal lobe, is the
area anterior (rostral) to the primary motor cortex (fig. 2.5).
In monkeys, the border between the M1 and PM falls roughly
midway between the central sulcus (CS) and the arcuate sulcus
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Figure 2.6 Map of the effects of intracortical microstimulation within primary
motor cortex of a monkey. The map indicates the body parts that were
activated by stimulation at each point in cortex. The central sulcus has been
unfolded. The dashed line indicates the fundus (i.e., bottom) of the central
sulcus. The solid line is the crown of the precentral gyrus. Adapted from
Park et al. (2001).
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(ArS) (see fig. 2.5). As noted in the figure, the PM is divided
into dorsal (PMd) and ventral (PMv) areas. Each of these is
sometimes further divided into rostral (PMdr and PMvr) and
caudal (PMdc and PMvc) areas. These subdivisions are distin-
guished by differences in their parietal and prefrontal inputs,
by their outputs to M1, and by whether or not they project to
the spinal cord (Ghosh and Gattera 1995; Matelli et al. 1998;
Fujii et al. 2000).

In addition to these premotor areas, there are several other
limb-related premotor areas that have been identified within the
frontal lobe of the monkey. These can be seen in the upper draw-
ing in figure 2.5: the supplementary motor area (SMA) and the
cingulate motor area (CMA). SMA is located medial to PMdc,
and is primarily within the interhemispheric fissure. It extends
slightly onto the exposed surface of the cortex. CMA is located
entirely on the medial wall within the cingulate sulcus. As seen
in figure 2.5, the CMA has been further subdivided into rostral
(CMAr), dorsal (CMAd) and ventral (CMAV) areas.

Electrical stimulation applied to the premotor cortices can
elicit movement as in M1. However, somewhat higher currents
are required here than for M1, and the movements tend not to
be isolated to individual parts of the hand or limbs as they are
for M1. All of these premotor areas (except for PMdr) are char-
acterized by fairly extensive spinal projections in parallel with
those from M1 (Hutchins et al. 1988; Dum and Strick 1991).

SOMATOSENSORY CORTEX
The primary somatosensory cortex (S1), located in the parietal
lobe, is important in movement because it conveys the sensa-
tions of touch, temperature, pain, and limb position that are
important in guiding movement. S1 lies in the most anterior
part of the parietal lobe. It starts along the posterior (caudal)
wall of the CS and extends into the postcentral gyrus. It receives
both tactile and proprioceptive (see below) input from the
spinal cord by way of the thalamus.

The sense of touch originates from a combination of mech-
anoreceptors located either superficially or deep in the skin.
Both the depth and the spacing of the receptors determine the
spatial resolution of the signals they convey, from the exquisite
sensitivity of the tips of the fingers, to the much less sensitive
skin on the trunk. In addition, some of these receptors remain
sensitive to maintained contact (slowly adapting receptors),
whereas others are optimized to sense changes (rapidly adapt-
ing receptors).

S1 also conveys proprioception, the sense of both limb posi-
tion and movement. Although less a part of our conscious
awareness than either vision or somatosensory modalities,
proprioception is, nevertheless, quite important for planning
and guiding movement. Proprioceptive input is derived pri-
marily from two types of receptors within the muscles: muscle
spindles that are sensitive both to muscle length and to rate of
stretch, and Golgi tendon organs that sense muscle force.

As is true of other senses, somatosensory input is relayed to
the cerebral cortex by the thalamus. The thalamus is located
deep within the brain and is subdivided into a number of regions,
each of which processes input from a different sensory modality.
Thalamic somatosensory inputs converge on several cerebral
cortical areas, which together comprise S1. These include



Brodmann areas 3a, 3b, 1, and 2 (fig. 2.7). Area 3a receives pri-
marily proprioceptive input, whereas 3b receives tactile input.
The border between 3a and 3b lies within the central sulcus,
but its location varies considerably among individuals
(Krubitzer et al. 2004). Area 1 is similar to area 3b in that it
responds mostly to tactile stimuli, receiving a combination of
inputs from the thalamus and area 3b. On the other hand, area
2 is similar in many respects to 3a in that it is predominantly
proprioceptive, receiving input both from the thalamus and
from area 3a.

Perhaps unexpectedly, S1 also sends many axons to the
spinal cord, but the axons terminate mainly in the dorsal part
(i.e., the dorsal horn) of the spinal gray matter and are thought
to regulate spinal reflexes and afferent input to the cerebrum
(Liu and Chambers 1964; Coulter and Jones 1977; Yezierski
et al. 1983; Ralston and Ralston 1985).

POSTERIOR PARIETAL CORTEX
The PPC (i.e., areas 5 and 7, including the regions within the
intraparietal sulcus in fig. 2.5) is also involved in sensory func-
tion. It is an example of a multimodal association cortex, in that
many of these neurons receive a combination of visual, audi-
tory, and somatosensory inputs (Blatt et al. 1990; Andersen
etal. 1997; Breveglieri et al. 2006). The PPC probably combines
this sensory input to form an internal map of the limbs and
their relation to the external world that is used to guide move-
ment planning. Lesions within this part of the brain can cause
adisorder called hemispatial neglect, in which a person becomes
unable to recognize the limbs on the opposite side of the body.

Vision and proprioception are undoubtedly the most
important of the sensory input modalities that guide move-
ments. Visual signals from the occipital lobe follow two diver-
gent paths, one extending into the PPC and the other into the
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Figure 2.7 Projections from the somatosensory portions of the thalamus to the
primary somatosensory cortex. Adapted from Kandel et al. (1991).

temporal lobe. These have been referred to, respectively, as the
dorsal and ventral visual streams (Ungerleider and Mishkin
1982), and the function of these two streams has traditionally
been divided into object-location (the “where” or dorsal
stream), and object-recognition (the “what” or ventral stream).
Another view is that these two streams might more properly be
viewed as vision-for-action and vision-for-perception, respec-
tively (Goodale and Milner 1992), a view that reflects the
anatomy of the dorsal action stream, which passes from
visual cortex into the PPC and then into the motor areas of the
frontal lobe.

As with the visual system’s division into object-recognition
for perception and object-location for action, the somatosen-
sory system may be similarly divided into representations for
perception and action. The ventral stream (perception) analog
projects from the secondary somatosensory cortex (SII in
figure 2.5) to the insula and is thought to be involved in tactile
learning and memory (Mishkin 1979; Friedman et al. 1986).
The dorsal stream analog (action) enters the PPC together with
visual input and then projects to the frontal lobe.

Within the PPC are several areas that play important roles in
the control of movement. These lie near the intraparietal sulcus
(IPS) (fig. 2.5). The lateral intraparietal area (LIP) (see fig. 2.5,
inset showing detail of the IPS) is primarily involved in the con-
trol of saccadic (i.e., rapid) eye movements (Robinson et al.
1978). The ventral intraparietal area (VIP) (fig. 2.5, inset) is
located in the groove at the bottom of the IPS and contains neu-
rons with complex tactile/visual receptive fields. VIP is thought
to be involved in the coding of space in egocentric, head-
centered coordinates (Duhamel et al. 1997, 1998), a function
that may be important for both head and limb movements.

The anterior and medial intraparietal areas (AIP and MIP)
(fig. 2.5, inset) are both involved in arm and hand movements:
MIP is devoted primarily to reaching movements; AIP is
devoted to the control of grasping (Mountcastle et al. 1975;
Taira et al. 1990; Cohen and Andersen 2002).

An area that has received considerable attention recently is
the parietal reach region (PRR) which includes MIP as well as
the dorsal aspect of the parietooccipital area (PO; also known
as visual area, V6A). Many neurons in PRR encode the end-
point of limb movements in a gaze-centered coordinate system
(Batista et al. 1999). These regions project to the PM area PMd,
while the ventral and lateral areas (VIP, AIP) project to PMv
(Wise et al. 1997; Dum and Strick 2005; Chang et al. 2008).
VIP and AIP may specifically target PMvc and PMvr, respec-
tively (Luppino et al. 1999).

PREFRONTAL CORTEX
The prefrontal cortex (PFC), located in the frontal lobe, sur-
rounds the principal sulcus and includes Brodmann areas 9
and 46 (seen in fig. 2.5). It is usually not grouped with other
cortical areas involved in motor control in the primate brain
because of its differing anatomical connections and lack of
stimulation-evoked movements. The PFC does not contribute
to the CST as do primary motor and premotor cortices and
parts of the parietal cortex (Lemon 2008); and, unlike premo-
tor and PPC areas, the PFC does not directly project to or
receive inputs from M1 (Picard and Strick 2001). The dorsal
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and ventral aspects of the PFC project to the dorsal and ventral
premotor areas, respectively. In spite of these many differences
from the other cortical motor areas, PFC is included here
because it appears to have a major role in high-level executive
functions relating to movement.

The most dramatic and famous example of the loss of func-
tion due to prefrontal damage is that of Phineas Gage. Gage
sustained an injury in 1848 when a long, one-inch diameter
iron rod was driven through his head while he was setting an
explosive charge to level a railway roadbed, destroying a major
portion of his frontal lobes (Damasio et al. 1994). Although he
lived and functioned normally in many respects, his friends
described dramatic changes in his personality. What little is
known about the ensuing psychological changes derives
largely from the comments of John Martyn Harlow, the physi-
cian who cared for Gage both in the immediate aftermath of
the accident, and in the ensuing decade before he died. The
formerly friendly and reliable Gage had become, quoting
Harlow, “impulsive, unreliable, unable to carry out his plans,
was profane and now lacked deference towards others. So
marked was this change, that his friends said he ‘was no longer
Gage” (Harlow 1868).

In addition to the PFC’s apparent role in less well-defined
executive functions, its role in short-term memory has been
highlighted by a large number of well-controlled lesion experi-
ments and clinical studies as well as electrophysiological
recordings from animals. The maintenance of spatial working
memory in particular appears to be a function of PFC (Jacobsen
1935; Funahashi et al. 1989; Goldman-Rakic 1995). It is exper-
imentally difficult to separate this function from that of control
of the spatial focus of attention, which may also be an impor-
tant component of PFC function (Lebedev et al. 2004).

CEREBRAL CORTICAL AREAS AND
MOTOR CONTROL

To understand how the brain controls the limbs, and particu-
larly to understand the role of the cortex, the conceptual frame-
work of a motor hierarchy is very helpful. In this conceptual
framework, motor control is seen as a set of functions that are
hierarchically organized and performed in series. Although it
is not always possible to segregate particular functions within
distinct cortical and subcortical structures, the concept of
motor hierarchy serves as a useful aid in understanding the
functional differences among various brain structures.

The concept of a motor hierarchy can be understood along
at least four different dimensions:

. time (planning vs. execution)

. encoding (abstract vs. concrete coding)

. complexity (simple vs. complex movements)

. source (external vs. internal movement initiation).

Using these four dimensions as guidelines, we will consider
six major cortical areas that have been described in this
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chapter: M1, PMd, PMv, SMA, PPC, and S1. We choose these
cortical areas because they are particularly relevant for corti-
cally controlled BCIs since they are intimately involved in the
planning and execution of voluntary movements and because
several have been the focus of past and current BCI develop-
ment. Using the results of electrical stimulation and single-
neuron recording studies, we will consider each of these
cortical areas along each of the four dimensions. Finally, we
will consider the roles of these areas in the motor hierarchy in
the context of reaching to grasp an object, a natural behavior
that traces its evolutionary roots to primate foraging and
arboreal locomotion.

THE TIME DIMENSION:
PLANNING VERSUS EXECUTION

Motor behavior can be viewed as a process of planning or
preparation, followed in time by execution of that plan. Because
planning precedes execution and is considered to provide more
general, abstract information about the movement (see next
section), it is viewed as a process that occurs higher in the
motor hierarchy than execution. Planning includes several
tasks: the identification of a goal (e.g., a target to be reached);
the selection of the limb to be used (e.g., the right upper limb);
and finally the specification of a path to the target (e.g., where
the hand moves to reach the target). In complex, ethologically
relevant behaviors, it is often impossible to temporally separate
planning from execution since they overlap in time. An exper-
imental approach to separate planning from execution is the
instructed-delay paradigm. In this paradigm an instructional
cue is first presented to inform the subject (human or animal)
which of several possible movements should be performed.
This cue is followed by an enforced-delay period (typically sev-
eral hundred milliseconds) during which the cue is present
and planning can occur, but movement execution is not
allowed. At the end of the delay, a go cue instructs the subject
to make the movement. In some experiments a period requir-
ing a short-term memory process is incorporated by removing
the instruction cue before the end of the delay period.

Using this paradigm, investigators have been able to deter-
mine which cortical and subcortical areas are involved in the
planning process. This is accomplished by examining the mod-
ulation of neural activity during the delay period. Riehle (2005)
proposed three criteria that must be met for neural activity to
be considered planning-related: (1) modulation of spiking (i.e.,
neuronal action potential) frequency relative to baseline must
occur during the planning period; (2) this modulation must be
related to the movement to be made after the go cue; and
(3) trial-by-trial variations in this modulation must predict
trial-to-trial variations in the movement features (e.g., reaction
time, success, or failure).

PRIMARY MOTOR AND DORSAL

PREMOTOR CORTICES
Although there are strong reciprocal connections between
PM and M1, electrophysiological data suggest that PM is more
strongly engaged during planning, whereas M1 is more
intimately involved in movement execution.



Modulation in M1 typically begins only 50-200 msec
before movement onset, providing strong evidence that M1 is
involved in the execution phase (Evarts 1968; Georgopoulos
etal. 1982). As illustrated in figure 2.8, the modulation profiles
of different M1 neurons are quite heterogeneous: they include
both transient (phasic) and sustained (tonic) components, as
well as various combinations of increasing or decreasing
firing rates (Cheney and Fetz 1980; Kalaska et al. 1989).
A number of studies have also observed that if an instructed-
delay paradigm is used (enforcing a delay between the presen-
tation of a movement target and the subsequent movement
initiation cue), early planning-related activity can be observed
prior to the initiation cue (Tanji and Evarts 1976). This activity
has been used to predict the upcoming movement direction
(Georgopoulos et al. 1989).

Premotor cortex also exhibits rate modulation locked to
movement onset. Activity during the delay period is greater in
PM than in M1 (Godschalk et al. 1981; Weinrich and Wise 1982;
Riehle and Requin 1989; Riehle 1991; Crammond and Kalaska
2000). Moreover, several studies show that preparatory modu-
lation typically occurs earlier in PM (in particular PMd) than in
M1 (Riehle 1991; Kalaska and Crammond 1992) (fig. 2.9).

These findings support the conclusion that PM is more
closely related to planning, whereas M1 is more closely involved
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Figure 2.8 Differing firing-rate profiles of four neurons in the primary motor
cortex during a reaching task against a constant load. Each plot represents the
average firing rate as a function of time. The onset of movement is at time 0.
Redrawn from Kalaska et al. (1989).

in execution. It may therefore be said that PM resides higher in
the motor hierarchy than M1 (Weinrich and Wise 1982). At
the same time the data suggest that, although PM exhibits
more robust and earlier preparatory activity, a gradient of pre-
paratory-to-execution functions exists along the rostrocaudal
dimension of the precentral gyrus (Johnson et al. 1996).

POSTERIOR PARIETAL CORTEX
For visually-guided movements, the PPC (including Brodmann
areas 5 and 7), and regions within the intraparietal sulcus, may
be viewed as even higher in the motor hierarchy than PM. PPC
receives visual information related both to the movement goal
and to the state of the limb (via direct inputs from extrastriate
areas including V2, V3, V4, medial temporal area [MT], and
medial superior temporal area [MST]). This visual information
is retinotopic (i.e., in a coordinate system anchored to the
retina) (Baizer et al. 1991). In fact, neurons in the PRR appear
to code arm-movement direction in a retinotopic coordination
system much like that of other visual cortical areas (Batista
et al. 1999). Several studies have shown that area-5 neurons
exhibit broad directional tuning like that of M1 (see below),
such that single-neuron firing rates vary with target direction
even during an instructed-delay period prior to movement
(Kalaska et al. 1983; Crammond and Kalaska 1989).

However, Kalaska and colleagues report evidence that
directional signals in M1 do not necessarily originate in pari-
etal cortex (Kalaska et al. 1983). Using an identical center-out
movement task, they directly compared neurons of M1 with
those of area 5 and demonstrated that, on average, M1 neurons
began modulating their firing-rates about 60 msec earlier than
area-5 neurons. The earlier responses in M1 do not support the
idea that the directional signals in M1 originate in parietal
cortex. Because the earliest area-5 neurons began modulating
before movement onset, the authors speculate that at least
some of the directional responses in area 5 may represent an
efference copy from M1 (i.e., a copy of the signal from M1 used
to inform area 5 about the command being sent in parallel to
the CST) rather than proprioceptive feedback. Given that PPC
is not one homogeneous area, one way to reconcile these
conflicting viewpoints is to consider that certain parts of PPC,
such as PRR within the intraparietial sulcus, sit higher in the
temporal hierarchy and send inputs to M1, whereas other
parts, such as area 5 on the gyrus (where Kalaska et al. (1983)
recorded), sit lower in the temporal hierarchy and receive
efference copy information from MI.

PREFRONTAL CORTEX

Despite the relatively distant connection of lateral PFC to
M1 and to the spinal cord, activity in lateral PFC does
change during sensorimotor tasks (Tanji and Hoshi 2008).
Di Pellegrino and Wise (1991) compared the activity of
prefrontal and premotor cortical neurons during a modified
instructed-delay task. They found that, like PM neurons, pre-
frontal neurons show direction-dependent discharges related
to movement onset. However, prefrontal discharge was more
phasic, more stimulus-related, and began 150 msec earlier on
average than PM discharge. These observations place PFC
higher on the motor control hierarchy than PM.
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Figure 2.9 Simultaneous recordings from three dorsal premotor cortical neurons (PMd) and three M1 neurons during an eight-direction, reaching task. (A) Perievent
histograms for three PMd neurons (rows) aligned on the onset of an instructed-delay period for each movement direction (columns). Arrows point to the average

movement onset time. (B) Perievent histograms from three M1 neurons. Time zero represents the onset of the instruction cue for both sets of figures. Notice that
the PMd neurons exhibit modulation early in the instructed-delay period, whereas the M1 neurons do not. From Hatsopoulos et al. (2004).

THE ENCODING DIMENSION:
ABSTRACT VERSUS CONCRETE CODING

A movement can be described with different levels of abstrac-
tion. These range from the most abstract (e.g., the movement
goal itself, represented by a target in space), to the somewhat
less abstract (e.g., the hand movement necessary to reach the
goal), to the most concrete (e.g., the temporal sequence of
muscle contractions necessary to move the hand). Theories of
biological motor control have borrowed concepts from robot-
ics in an effort to elucidate these different levels of abstraction.
In robotics, a goal and the desired trajectory plan for the
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end-effector are specified in a coordinate system linked to a sta-
tionary part of the robot. Using this model for the nervous
system, the movement goal or trajectory plan would be repre-
sented in an egocentric coordinate system (i.e., a coordinate
system anchored to the body). The trajectory plan would be fur-
ther transformed from body coordinates into joint coordinates
using the so-called inverse kinematics equations, which dictate
how the angular position of each of the joints evolves over time
[i.e., B(f)] to execute the trajectory plan along each dimension:

Flx(t)]=0(t) (2.1)



where x(t) is a time-varying vector of end-effector positions,
0(t) is the vector of joint angular positions, and F is a nonlinear
function.

Because movement is ultimately governed by forces obey-
ing Newton’s second law, the joint trajectories are realized
using a set of torque trajectories t(t) determined by the inverse
dynamics equation:

GlO(t),6(1),6(1)] = 7(t) (2.2)
where t(#) is the vector of time-varying angular torques and
G is a nonlinear function of the angular position, velocity, and
acceleration of the joints.

Using this robotics perspective, a given brain area might
represent (or encode) one of the different levels of movement
abstraction. That is, it might encode an abstract goal in world
or egocentric coordinates; it might encode the kinematics of
the arm and hand in egocentric or joint-centered coordinates;
or it might encode the forces or muscle activities required to
realize the kinematics.

PRIMARY MOTOR CORTEX

Early Work

Beginning 40 years go with the work of Evarts (1968) and
continuing to the present, research in behavioral electrophysi-
ology has attempted to determine the motor variables encoded
in the activity of single cells in M1. Despite much effort the
results are still not entirely clear. Evarts’s postulate was that M1
represented kinetic variables (e.g., joint torque or its deriva-
tives) and thus corresponded to the final transformation on the
right side of equation 2.2. This view was supported by the early
data from his laboratory as well as by a number of succeeding
studies (Smith et al. 1975; Hepp-Reymond et al. 1978; Cheney
and Fetz 1980; Kalaska et al. 1989; Taira et al. 1996; Hepp-
Reymond et al. 1999; Cabel et al. 2001), with further support
coming from studies showing that the activity of a population
of neurons (i.e., population activity) in M1 can be used to pre-
dict grip force, joint torque, or EMG activity (Carmena et al.
2003; Westwick et al. 2006; Pohlmeyer, Solla, et al. 2007; Fagg
et al. 2009; Pohlmeyer et al. 2009).

Directional Tuning

There is now strong evidence that cells in M1 encode sig-
nals representing the movement of the hand in space (i.e., the
input to eq. 2.1), including information about direction.
Georgopoulos and colleagues (1982) performed the classic
experiment testing this postulate. In this experiment monkeys
were required to make hand movements from a central posi-
tion to one of eight peripheral targets. About 75% of M1 neu-
ronsexhibitedbroad directional tuningduring these movements.
That is, each neuron displayed a preferential response to one
direction, called the cell’s preferred direction (PD). The peak
discharge during movements made to other directions was a
function of the cosine of the angle between the cell’s PD and
the actual direction of motion (fig. 2.10). The presence of
directional tuning has been an extremely robust finding that
has been replicated in many other studies of M1 for both two-
dimensional and three-dimensional reaching (Schwartz et al.

1988; Kalaska et al. 1989; Maynard et al. 1999; Moran and
Schwartz 1999).

Kinematic Information

Although movement direction has been the most exten-
sively studied, there is also evidence that M1 neurons represent
other kinematic features of movement, including velocity,
position, and movement distance (Georgopoulos et al. 1984;
Fu et al. 1993; Kurata 1993; Ashe and Georgopoulos 1994; Fu
et al. 1995; Paninski et al. 2004). Over the past 25 years this
model of M1 as a source of kinematic signals has emerged as
the dominant viewpoint. With a few exceptions (Carmena
et al. 2003; Pohlmeyer, Perreault, et al. 2007; Moritz et al. 2008;
Fagg et al. 2009; Gupta and Ashe 2009; Pohlmeyer et al. 2009),
it has served as the basis for all BCIs that use M1 neuronal
activity to control movement.

Population Vectors

Georgopoulos showed that the PDs and discharge rates of
a large population of neurons can be combined to predict
movement direction (Georgopoulos et al. 1986). This is called
the population vector approach. It simply takes the vector-sum
of preferred directions among a population of directionally
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Figure 2.10 Directional tuning of a neuron from primary motor cortex (M1). (Top
panel) Raster plots (i.e., spikes) from one M1 neuron over repeated movements
in each of eight movement directions. (Bottom panel) The average spike rate

from the same neuron as a function of direction. A cosine function was used to
fit the data. From Georgopoulos et al. (1982).
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tuned neurons after weighting each PD-vector by the firing
rate of the corresponding neuron. Using the population-vector
approach, Schwartz and colleagues demonstrated that more
complex movement paths with time-varying directions can be
decoded as well (Schwartz 1992; Schwartz and Moran 1999).
This approach has been used in real-time BCIs to guide the
movement of virtual and robotic devices in three dimensions
(Taylor et al. 2002; Velliste et al. 2008).

Other Studies

Despite the numerous demonstrations supporting kine-
matic encoding of hand movement in M1, there have been a
number of studies suggesting a more complex picture (e.g.,
studies of M1 discharges during isometric contraction [i.e.,
muscle contractions without movement]) (Taira et al. 1996;
Boline and Ashe 2005; Sergio et al. 2005). The directional tuning
of most (but not all) M1 neurons during movement is aftected
by changes in external load, initial hand position, and arm pos-
ture (Kalaska et al. 1989; Caminiti et al. 1990; Caminiti et al.
1991; Scott and Kalaska 1995). Furthermore, for individual M1
neurons, context-dependent effects can also alter the relation-
ship between firing rate and force (Hepp-Reymond et al. 1999).

StricK’s laboratory examined the postural dependence of
M1 discharge with a behavioral paradigm in which monkeys
were trained to perform wrist movements in one of four direc-
tions (flexion, extension, radial deviation, and ulnar deviation)
with the forearm supinated, pronated, or midway between the
two extremes (Kakei et al. 1999). Since forearm rotation
changes the pulling direction of muscles (thereby changing the
muscles’ preferred directions computed in extrinsic, body-cen-
tered coordinates), they used measurement of the shifts of
M1-neuron PDs in the different postures to show that indi-
vidual M1 neurons represented movement in either a muscle-
based (intrinsic) or body-centered (extrinsic) coordinate
system (fig. 2.11). Forearm rotation did not affect discharge
rate for 20% of the neurons, affected the magnitude but not the
PD of discharge for 30%, and (much in the way it affected
muscle discharge) affected the PD for 32%. These results sug-
gest that both low-level muscle activations and higher-level
hand movements are represented within M1.

There is also evidence that discharge in M1 may even rep-
resent target location, regardless of arm-movement direction.
Alexander and colleagues developed a behavioral paradigm to
distinguish activity related to spatial features of the target from
activity related to arm movement (Shen and Alexander 1997a).
Monkeys were trained to control a cursor with movements of a
joystick using whole-arm movements similar to those in
Georgopoulos’s study (Georgopoulos et al. 1982). In one con-
dition, the joystick and cursor movements were identical.
However, in a second condition, they rotated the spatial map-
ping between the joystick and cursor motion by 90 degrees
such that upward movement of the cursor now required a
rightward movement of the joystick. During reaction time and
movement time, the activity of roughly 40%-50% of neurons
was exclusively related to the direction of arm movement,
regardless of the target location or cursor movement. However,
during the instruction, delay, and reaction time periods, the
activity of 10%-15% of the neurons was related to the target
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larger group did not rotate. Forearm orientation affected the magnitude of
most muscles and neurons. n is the number of neurons studied. Adapted
from Kakei et al. (1999).

location or the direction of cursor movement independent of
the required limb movement.

The strong correlations among the different movement-
related signals have made it very difficult to address the ques-
tion of what M1 actually encodes. Likewise, theoretical studies
have taken opposing views on the question of the primacy of
high- or low-level tuning within M1 (Mussa-Ivaldi 1988;
Todorov 2000; Fagg et al. 2002). Given the currently contradic-
tory state of the literature, a number of interpretations are pos-
sible. First, M1 might encode an as yet undiscovered feature of
movement that may be partially correlated with the parameters
of movement already examined. Second, M1 might not be a
functionally homogeneous area, but, rather, may contain a het-
erogeneous set of neurons that together possess the full range
of representations postulated from the robotics perspective. A
third possibility, entirely consistent with the second, is that the
motor cortex serves as a substrate for implementing the trans-
formation from sensory to motor coordinate systems. In sum-
mary, there is at present no clear consensus as to M1’s position
along the abstract-to-concrete dimension.



PREMOTOR AND POSTERIOR

PARIETAL CORTICES
In contrast to the ambiguity regarding M1, the picture appears
to be clearer for PM and PPC. Using the rotated visual-display
paradigm described above, Shen and Alexander (1977b) found
that neurons representing target location were much more
common in dorsal premotor (PMd) cortex than in MI.
Likewise, Strick and colleagues found that most ventral
premotor cortical (PMv) neurons encode wrist-movement
direction in a body-centered coordinate system, with virtually
none encoding it in muscle coordinates (Kakei et al. 2001).

Several studies have also described a spatial gradient of
target selectivity in which more M1 neurons with higher-order,
abstract properties were found rostrally, near the boundary
between M1 and PMd (Alexander and Crutcher 1990; Johnson
et al. 1996).

A recent study directly compared the ability of simultane-
ously recorded populations of M1 and PMd neurons to decode
discrete target location versus continuous hand position in
an instructed-delay, center-out task (Hatsopoulos et al. 2004).
Although target location and movement direction were not
explicitly dissociated, this study found that PMd populations
could more accurately predict target direction prior to
movement, whereas M1 populations could more faithfully
reconstruct continuous hand position. These findings further
support the notion that PM activity is related to an abstract
goal.

Kalaska and colleagues compared the effects of a bias-load
force imposed systematically in different directions during
center-out hand movements in neurons in M1 and in area 5 of
the PPC (Kalaska et al. 1989, 1990). M1 neurons exhibited a
mixture of different load effects. In contrast, area-5 neurons
were almost completely unaffected by the added load and thus
appear to represent the kinematics of movement regardless of
the force required to move.

THE COMPLEXITY DIMENSION:
COMPLEX VERSUS SIMPLE MOVEMENTS

Many everyday movements are complex and can be viewed as
either sequential or simultaneous recruitment of simpler
movements. For example, typing on a keyboard or playing
the piano requires a sequence of finger movements, and reach-
ing to grasp an object requires coordination across proximal
and distal segments of the upper limb. Moreover, bimanual
movements require the coordination of both limbs. At a behav-
ioral level, complex movements are typically not just the
concatenation of simpler movements, since one movement
element may affect the execution of another element. This
is particularly evident in the language phenomenon of co-
articulation, in which the production of one phoneme is
influenced by the need to produce the next phoneme (Daniloff
and Moll 1968; Benguerel and Cowan 1974). It is also evident
in piano playing (Engel et al. 1997) and probably in many
other complex movements. These behavioral phenomena
suggest that there are specialized neural circuits that link
and coordinate simple movements into more complex
sequences.

SUPPLEMENTARY MOTOR CORTEX AND PRIMARY

MOTOR CORTEX
Beginning with the classical stimulation studies of Penfield
(Penfield and Welch 1951), it has been recognized that the
supplementary motor area (SMA) of the cortex is an important
area in the representation of complex movements involving
multiple limb segments.

Single-neuron recordings have demonstrated that SMA
neurons fire preferentially for complex movement sequences
compared to simple movements. In a task using a series of
push-pull movements of a handle, individual SMA neurons
fired only for particular sequences of movements, but not for
any single movement in isolation (Shima and Tanji 2000). For
example, as illustrated in figure 2.12, one SMA neuron fired
whenever a pull was followed by a push, but not when these
movements were performed in other sequences or in combina-
tions with other movements.

However, recent studies have called into question the view
that movement-sequence representations reside within SMA
but not within M1. Lu and Ashe demonstrated that M1 neu-
rons preferentially encode specific memorized movement
sequences (Lu and Ashe 2005). They also found that injections
of muscimol (a drug that inhibits neuronal activity) into M1
increased errors during memorized sequences, without
increasing errors in nonsequenced movements.

The electrical stimulation used in Penfield’s experiments
was of much greater intensity and longer duration than that
typically used in the most recent intracortical-stimulation
studies. However, using lengthy stimulation trains (500-1000
msec) and relatively high current intensity to stimulate frontal
lobe (including M1) and parietal lobe, Graziano et al. (2002,
2004) elicited seemingly goal-directed movements that
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Figure 2.12 A neuron recorded from the supplementary motor cortex that
responds during the combination of a pull movement followed by a push
movement but that does not respond to individual movement elements.
From Shima and Tanji (2000).
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mimicked ethologically relevant behaviors involving complex
movements of multiple limb segments. Although the interpre-
tation of these observations is controversial given the large
magnitude and long duration of electrical stimulation, they
suggest that cortical control of movement sequences may be
distributed beyond SMA.

THE SOURCE DIMENSION:
EXTERNAL VERSUS INTERNAL
MOVEMENT INITIATION

A movement can be triggered and initiated by an external stim-
ulus, or it may be initiated internally by motivation. For exam-
ple, one may reach for and grasp a cup among several other
visually presented objects after instruction to do so (i.e., external
initiation), or one may simply decide to reach out for the cup to
satisfy a desire for the hot coffee it contains (i.e., internal initia-
tion). The distinction between external and internal initiation is
particularly evident in the generation of complex movements
such as those involved in playing a musical instrument: a pianist
can play from sheet music that provides visual instructions as to
which keys to press, for how long, and in which order (i.e., exter-
nal initiation); or, with repeated practice, the pianist can remem-
ber and generate (i.e, internal initiation) the proper sequence of
key presses without the support of external stimuli.

The distinction between external and internal movement
guidance can be seen rather dramatically in Parkinson’s dis-
ease. Although severe akinesia can prevent some people with
Parkinson’s disease from initiating even a simple step on their
own, they may be able to walk if visual cues are placed on the
ground.

SUPPLEMENTARY MOTOR AND

PREMOTOR CORTICES
Experimental evidence provides support for the existence of
two separate neural circuits (in SMA and PM) that subserve
internally guided versus externally guided movements, respec-
tively. Electrophysiological experiments in behaving monkeys
suggest that SMA is particularly important for internally gen-
erated movements. Mushiake and colleagues trained monkeys
to press a set of buttons in various sequences (Mushiake et al.
1991). To train the animals to perform a particular button-
press sequence, lights within the buttons were turned on in the
proper sequence to cue each movement. After several repeti-
tions the lights within the buttons were gradually dimmed
until they were completely extinguished. A significant number
of SMA neurons began to modulate only after the lights had
been extinguished and stopped firing when the lights were
restored. These SMA neurons were thus understood to be
related to internal initiation of movement.

In contrast, a second neural circuit involving the PM (PMd
and PMv) appears to be involved in externally-generated
movements. In the same experiment (Mushiake et al. 1991), a
large number of PMd and PMv neurons fired while the lights
remained illuminated, but stopped firing once the lights were
extinguished. In contrast, M1 neurons did not differentiate
between the two conditions. This study suggests that area 6 (the
area containing both SMA and PM cortices) has specialized
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circuits dedicated to internal and external movement genera-
tion. In contrast, M1, which is lower in the motor hierarchy, is
not affected by this contextual difference.

VISUALLY GUIDED REACH-TO-GRASP
(PREHENSION) BEHAVIOR

Thus far we have described a motor hierarchy understood on
the basis of the four dimensions outlined above. These descrip-
tions have been framed in general terms. We now look in detail
at a concrete example, that of prehension, the act of reaching
to grasp an object, to see how these hierarchical functions
throughout the cortex lead to purposeful movement.
Prehension is a fundamental feature of human behavior. It
traces its evolutionary roots to primates foraging for food in arbo-
real environments, and it has supported the development of more
complex actions, such as tool use. Current BCI research is study-
ing prehension in order to develop cortically controlled BCI
systems capable of moving to locations and grasping objects.

TWO CORTICAL NETWORKS SUBSERVE

PREHENSION
Prehension is interesting from the perspective of motor con-
trol because it is a complex behavior that requires the coordi-
nation of proximal and distal components of the arm.
Electrophysiological data provide some evidence for two corti-
cal networks, one supporting reach behavior and the other
supporting grasp (fig. 2.13). The dorsal network—including
area 5d (in the PPC), MIP (medial intraparietal area), PMdc
(the caudal portion of dorsal PM), and M1—appears to be spe-
cialized for control of shoulder and elbow movements (i.e., for
reach behaviors). Corticospinal projections from PMdc and
rostral M1 (i.e., on the precentral gyrus) terminate predomi-
nantly in upper cervical (i.e., neck) segments of the spinal cord
containing motoneuron pools innervating proximal muscula-
ture (He et al. 1993). A recent electrical-stimulation study sug-
gests that there is a dorsal-to-ventral topography within PMd,
such that stimulation above the arcuate spur elicits predomi-
nantly proximal arm movements (Raos et al. 2003). In con-
trast, the ventral network including the anterior intraparietal
area (AIP), rostral portion of the ventral PM (PMvr), and M1
(particularly the caudal portion of M1 buried in the central
sulcus) has been postulated to control distal movements such
as grasping (Kurata and Tanji 1986; Rizzolatti et al. 1988;
Jeannerod et al. 1995). The AIP and PMvr possess similar func-
tional properties, including both visual and motor responses to
grasped objects. Not surprisingly, given AIP’s proximity to
visual input, AIP’s discharge appears to depend more on the
shape of the grasped object and less on the actual details of the
grasp (Jeannerod et al. 1995).

Unlike AIP neurons, many PMvr neurons appear to be
more sensitive to different types of grasp (Taira et al. 1990;
Sakata et al. 1995; Raos et al. 2006). There appear to be at least
two functionally distinct groups of grasp-related neurons in
PMvr. In monkeys, the first group (called canonical neurons)
discharges not only for particular types of grasps but also when
the monkey simply observes the grasped object (Rizzolatti et al.
1988; Rizzolatti and Fadiga 1998). A second group (called
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Figure 2.13 Two proposed neural networks in the macaque monkey cortex
involved in control of proximal reaching movements and distal grasping
movements, respectively. A dorsal reach network consists of the superior
parietal cortex (area 5d and MIP), caudal dorsal premotor cortex (PMdc) and
primary motor cortex (M1). A ventral grasp network includes the anterior
intraparietal area (AIP), rostral ventral premotor cortex (PMv; F5), and M1.

mirror neurons) discharges even when a monkey watches
another individual (either monkey or human) make a particu-
lar grasping movement (di Pellegrino et al. 1992; Gallese et al.
1996). Thus, AIP appears to represent more abstract informa-
tion (i.e., higher in the motor hierarchy) than does PMvr, which
itself is clearly at a higher level in the hierarchy than M1.

PRIMARY MOTOR CORTEX
The primary motor cortex (M1) is clearly involved in the con-
trol of distal as well as proximal components of arm move-
ments. We have already described evidence that M1 neurons
encode a variety of proximal reach movement parameters.
Electrophysiological recordings in behaving monkeys have
also shown that single neurons in M1 modulate their activity
with many different aspects of distal limb function, including
torque about the wrist (Evarts 1966; Murphy et al. 1979; Cheney
and Fetz 1980; Kurata 1993; Kakei et al. 1999) and grip force
(Hepp-Reymond et al. 1978; Muir and Lemon 1983; Wannier
et al. 1991; Maier et al. 1993).

Lesions of M1 or the pyramidal tract in monkeys cause
transient paresis or paralysis of the proximal limb and persis-
tent loss of finely controlled wrist and finger movements (in
particular, the loss of the ability to fractionate the movements
of individual digits) (Denny-Brown 1950; Lawrence and
Kuypers 1968a; Passingham et al. 1978). Intracortical micro-
electrode stimulation of M1 using short stimulation trains and
low-current amplitudes can elicit muscle contractions and
movements about the shoulder, elbow, wrist, and finger joints
(Asanuma et al. 1976; Huntley and Jones 1991; Donoghue et al.
1992). Longer stimulation trains (lasting several hundred mil-
liseconds) can elicit complex, apparently goal-directed move-
ments involving proximal and distal joints that appear similar
to natural reaching and grasping (Graziano et al. 2002, 2004).
Consistent with these observations, a number of imaging and
stimulation studies indicate that proximal and distal represen-
tations are intermingled and distributed throughout the arm
area of M1 (Huntley and Jones 1991; Donoghue et al. 1992;
Schieber and Hibbard 1993; Sanes et al. 1995).

Thus, despite extensive study, the existence of a strictly
topographic organization within the arm area of M1 is still
somewhat controversial. Modern stimulation studies argue
for the existence of a concentric or horse-shoe organization,
with distal representations mainly in the caudal portion of
M1 (including the anterior bank of the central sulcus) that
are surrounded by a zone of proximal-arm representations
(see fig. 2.6) (Kwan et al. 1978a, 1978b; Park et al. 2001; Park
et al. 2004). In between these two zones is a third zone in
which low-current stimuli elicit activity in combinations of
proximal and distal muscles (Park et al. 2001). There are two
possible functional interpretations of this intermediate zone:
that single neurons encoding either distal or proximal compo-
nents are intermingled in close proximity to each other and
can be excited concurrently with electrical stimulation; or,
alternatively, that single neurons encode both proximal and
distal components. Based on strong congruence between
stimulus-triggered and spike-triggered averaging of EMG
signals, Park et al. (2001, 2004) argue in favor of the second
interpretation. As for the inner distal and outer proximal
zones, coordination of reach and grasp might appear in the
form of spatiotemporal patterning of the firing of these two
populations of neurons.

Recent anatomical studies using retrograde transneuronal
rabies-virus transport from individual muscles have demon-
strated that direct projections from cortex to spinal motoneu-
rons arise almost exclusively from the caudal portion of M1 in
the anterior bank of the central sulcus (Rathelot and Strick
2006). Moreover, these studies demonstrate that motor neu-
rons innervating proximal as well as distal muscles receive
these monosynaptic projections and form a medial-to-lateral
topography within caudal M1 such that proximal cells reside
more medially and distal cells more laterally. Therefore, caudal
MI may be a particularly important area for producing coordi-
nated reach-to-grasp behaviors.

SOMATOSENSORY FEEDBACK IN
CONTROL OF MOVEMENT

PROPRIOCEPTION
At present, the user of a BCI that controls movement of a
cursor or robotic limb must rely on relatively slow visual feed-
back to guide the movement and to correct errors. In contrast,
in normal movements these functions are accomplished in
large part by the proprioceptive system. People suffering loss of
proprioceptive feedback can rely on watching their limbs, but
their movements are typically slower and less coordinated than
normal and require great concentration (Ghez et al. 1995;
Sainburg et al. 1995). Thus, sensorimotor feedback in the form
of proprioception is an important modulator of movement
control.

Proprioceptive sense comes from a variety of muscle and
joint sensory organs (e.g., muscle spindles, Golgi tendon organs,
joint receptors, etc.). Their inputs converge onto cortical areas
3a and 2 of the primary somatosensory cortex (S1). Additional
complexity arises because the position and velocity sensitivi-
ties of muscle spindles can be modulated by descending input
from the brain (Burke et al. 1978; Loeb and Duysens 1979;
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Prochazka 1981) and because both Golgi tendon organs (Houk
and Henneman 1967; Crago et al. 1982) and joint receptors
(Grigg 1975; Millar 1973) are differentially sensitive to actively
and passively generated forces. As a result, cortical responses
to perturbations during movement are likely to differ from
those during rest. Indeed, studies that have compared the dis-
charge of S1 neurons during active and passive movements
find only partial correspondence (Soso and Fetz 1980;
Prudhomme and Kalaska 1994). In this and in many other
respects, the discharges of area 2 and 3a cells appear to be fairly
similar.

NEURONAL ACTIVITY IN S1 AND

RELATED AREAS
Movement-related neuronal activity in S1 is predominantly
phasic (i.e., occurring during the movement itself), is often
proportionate to movement speed, and in most cases is com-
bined with lesser tonic, or position-related discharge (Soso and
Fetz 1980; Gardner and Costanzo 1981; Wise and Tanji 1981).
One study of planar, center-out reaching movements made in
a variety of directions revealed sinusoidal-shaped tuning
curves very much like those of neurons in M1 (Prud’homme
and Kalaska 1994).

The earliest studies of the signals in S1 were those of
Mountcastle in the late 1950s and focused largely on the sense
of touch (Mountcastle 1957; Mountcastle et al. 1957).
Mountcastle established that all the primary sensory and motor
cortical areas are composed of distinct columns of neurons
extending from the most superficial to the deepest layers of
cortex. He further suggested that these columns might act as
elemental computational units, each processing inputs from
one part of the body and one type of receptor (Mountcastle
1957). As these inputs are transmitted through the cortex,
from area 3b to area 1 and then into the secondary somatosen-
sory cortex, they gradually combine inputs from different
receptor types and cortical areas, thereby conveying more
complex, multimodal representations of stimuli within larger
receptive fields. This progression in receptive-field complexity
and size continues as the somatosensory signals propagate into
the PPC, where they are combined with visual and auditory
inputs.

This progression of signal processing was recently analyzed
in the context of a sensorimotor decision-making process (de
Lafuente and Romo 2006). Monkeys were trained to discrimi-
nate the presence or absence of a vibratory stimulus applied to
the fingertip. The monkeys indicated the presence or absence
of the stimulus by making one of two different movements.
This was an easy task unless the amplitude of the stimulus was
quite small, in which case the monkeys made frequent mis-
takes. Recordings were made from a number of different corti-
cal areas during the period in which the monkey was making
its decision. The results showed that the correspondence
between the monkey’s final judgment and the neuronal dis-
charge increased as the recordings shifted from the primary
somatosensory cortex to the secondary somatosensory cortex,
to the PMdc. Conversely, regardless of the monkey’s ultimate
decision, activity in the primary sensory areas corresponded
with the properties of the mechanical stimulus.
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CHANGES IN SOMATOTOPIC MAPS

AFTER INJURY
If BCIs that use cortical neuronal activity are to be useful to
people with severe disabilities, it will be important to take into
account the dramatic changes in cortical somatotopic maps
that occur after both peripheral and central injuries. A good
example of this dramatic change is the phantom-limb sensa-
tion experienced by many amputees, in which sensory affer-
ents from the remaining portion of the limb innervate the
adjacent denervated cortex, causing them to sense the pres-
ence of the limb despite its absence (Flor et al. 2007).

Less dramatically, prolonged and selective use of particular
digits causes their cortical representations to increase in size
(Pascual-Leone and Torres 1993; Nudo et al. 1996; Xerri et al.
1996). Furthermore, mechanical coupling of two digits has
been shown to cause their cortical maps to fuse (Clark et al.
1988; Jenkins et al. 1990). Similar changes have been demon-
strated in response to either cortical or peripheral electrical
stimulation (Nudo et al. 1990; Recanzone et al. 1990).

These observations have important implications for people
with neurological disorders, for the possible use of BCIs that
depend on signals originating in specific sensorimotor cortical
areas, and for the incorporation of BCIs with sensory-feedback
methods that depend on cortical stimulation.

SUBCORTICAL AREAS

Subcortical areas also make important contributions to motor
behaviors. However, due to their less accessible locations, they
are less pertinent to BCI technology, at least in its present state.
Thus, we discuss these areas only briefly. In the future, as
recording technology and scientific understanding continue to
improve, these subcortical areas may assume greater impor-
tance in BCI research and development. The major subcortical
areas that we discuss are the:

. thalamus
. brainstem
. basal ganglia

. cerebellum

THE THALAMUS

As previously noted, the thalamus provides the principal input
to the cerebral cortex, conveying inputs from the spinal cord as
well as from subcortical areas. It consists of a number of dis-
tinct nuclei divided into lateral, medial, anterior, intralaminar,
midline, and reticular groups. The lateral group is further sub-
divided into ventral and dorsal tiers. Thalamic nuclei fall into
two general classes: relay nuclei and diffuse-projection nuclei.
The relay nuclei subserve a single sensory modality or motor
area, and they interact reciprocally with fairly circumscribed
regions of the cerebral cortex. In contrast, the diffuse-projec-
tion nuclei influence broad regions of cortex and have impor-
tant connections to both the basal ganglia and the limbic



system (Morgane et al. 2005). They are thought to be involved
in the regulation of arousal, emotion, and cognitive state
(Jones 1981; Van der Werf et al. 2002).

The ventral tier of the lateral group of thalamic nuclei
contains the ventral anterior (VA) and ventral lateral (VL)
nuclei. These are the main motor nuclei of the thalamus
and convey inputs from the basal ganglia and cerebellum to
specific areas of the cerebral cortex. In turn, these cortical areas
project back to the basal ganglia and cerebellum. These inter-
connections appear to constitute well defined loops that origi-
nate and terminate in specific cortical areas. In addition to the
traditional motor and premotor cortical areas that have been
recognized for decades, it is also now evident that motor areas
within the medial wall of the cerebrum, and even nonmotor
areas in temporal lobe and PFC, are involved in similar loops
(Middleton and Strick 2000).

THE BRAINSTEM

We have already described cerebral cortical projections that
descend into subcortical areas and to the spinal cord. There are
also brainstem areas that project to the spinal cord. These
include the red nucleus, the brainstem reticular formation, the
vestibular nuclei, and the superior colliculus. Their spinal pro-
jections have been divided into lateral and medial systems,
based on the location of their terminations in the spinal cord,
which largely overlap with the lateral (crossed) and ventrome-
dial (uncrossed) corticospinal systems, respectively (Kuypers
et al. 1962). Brainstem motor areas are most prominent in
lower mammals and decline in prominence relative to the cere-
bral cortex as one ascends phylogenetically toward humans.

The main component of the lateral system is the red
nucleus, which receives somatotopically organized projections
from the cerebellum and, to a lesser extent, from the primary
motor cortex. Its output, the rubrospinal tract crosses the
midline within the brainstem and descends in the lateral
column of the spinal cord. Like the crossed CST, it terminates
in regions of the cord that influence motoneurons of limb and
hand (or paw) muscles. The rubrospinal tract is involved in
independent use of the limb, primarily reach and grasp move-
ments (Lawrence and Kuypers 1968b).

The medial brainstem system includes primarily the retic-
ular, vestibular, and tectal nuclei. Their outputs (the reticu-
lospinal, vestibulospinal, and tectospinal tracts) descend in the
ventral column of the spinal cord. Like the uncrossed CST,
they target primarily interneurons and propriospinal neurons
that control axial and proximal limb muscles on both sides of
the body and appear to be principally involved in the control of
whole-body posture, orienting, and locomotion (Lawrence
and Kuypers 1968b).

THE BASAL GANGLIA

The basal ganglia are a group of nuclei located deep within the
cerebrum (fig. 2.14). These highly interconnected nuclei are
implicated in a range of motor disorders, including Parkinson’s
disease and Huntington’s chorea. The earliest models of the
basal ganglia viewed them as essentially a funnel, receiving

inputs from disparate cortical areas and sending output exclu-
sively to the motor cortex (Kemp and Powell 1971). More
recently, it has been recognized that the output of the basal
ganglia targets a much broader range of cortical areas, com-
prising (much like the corticocerebellar pathways [see below])
several parallel loops (Alexander et al. 1986). These include the
motor, oculomotor, lateral orbitofrontal, dorsolateral prefron-
tal, and anterior cingulate, or limbic circuits. Although these
loops are thought to be largely separate, there is likely to be
some degree of convergence within their thalamic or cortical
targets (Joel and Weiner 1994; Hoover and Strick 1999).

As shown in figure 2.14, the head of the caudate nucleus is
adjacent to the putamen, with the two structures separated by
fibers of the internal capsule. Functionally, they are considered
to be one structure, the striatum, which serves as the primary
input nucleus of the basal ganglia. The striatum receives inputs
from throughout the cerebral cortex, the brainstem, and the
thalamus. The basal ganglia also include the globus pallidus
and the substantia nigra. These structures are the principal
output nuclei. They send a large number of inhibitory fibers to
the ventroanterior (VA) and ventrolateral (VL) nuclei of the
thalamus. The thalamus in turn sends excitatory projections to
various motor-related areas, including the primary motor
cortex, the supplementary motor area, PM, and the PFC.
Output from the basal ganglia also goes directly to the superior
colliculus and is involved in eye and head movements.

The basal ganglia are thought to be involved in the expecta-
tion of reward, and the prediction of actions to optimize them,
particularly within the prefrontal and limbic circuits (Kawagoe
etal. 1998; Schultz et al. 2000). Evidence is also emerging of the
important role of the basal ganglia in promoting the learning
of actions (including sequences of movements) that optimize
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Figure 2.14 Location of the basal ganglia deep within the cerebral cortex,
parallel to the lateral ventricle. The fibers of the internal capsule pass through
the striatum, causing a separation between the caudate and the putamen.
Although it is located in close proximity to the tail of the caudate nucleus, the
amygdala is not considered part of the basal ganglia. The basal ganglia output
nuclei, globus pallidus, and substantia nigra, are medial to the putamen and
are not visible in this figure. From Kandel et al. (1991).
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reward (Graybiel 1995, 2005). Degenerative changes within
the basal ganglia are associated with a number of motor and
cognitive disorders, most prominently Parkinson’s and
Huntington’s diseases.

THE CEREBELLUM

LOCATION, ORGANIZATION, AND

CONNECTIONS
The cerebellum sits on the dorsal surface of the brainstem
caudal to the cerebrum. The cerebellar cortex is highly convo-
luted into many folds or folia, to a much greater extent than the
gyri and sulci of the cerebral cortex, and is divided by a series
of fissures running roughly mediolaterally. Figure 2.15 pres-
ents a dorsal view of the human cerebellum. The primary
fissure divides the anterior lobe from the posterior lobe, and
the posteriolateral fissure divides the posterior lobe from the
flocculonodular lobe (not visible in this view). Although the
cerebellum is symmetrical about the midline, it is not divided
at the midline, as is the cerebrum.

The cerebellar cortex has only three layers, and unlike the
cerebrum, there is little variation across different cortical
regions. With few exceptions, the same neuronal types, in the
same proportion, with the same well-defined interconnections,
are found throughout the cerebellar cortex. The Purkinje cells,
which are the cerebellar output neurons and are among the
largest neurons in the CNS, are in the middle layer. Beneath the
cerebellar cortex are the cerebellar nuclei, which receive the
Purkinje cell axons from the cerebellar cortex, and are the main
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source of the cerebellar output fibers. Moving mediolaterally
are found the fastigial, interpositus, and dentate nuclei, which
receive the outputs from the most medial (i.e., the vermis),
intermediate (i.e., paravermis), and most lateral (i.e., hemi-
spheric) parts of the cerebellar cortex, respectively. The cere-
bellar hemispheres have become greatly enlarged in the
phylogenetic transition from cats to monkeys to humans and
are often called the neocerebellum, while the vermis and para-
vermis constitute the paleocerebellum. The floculonodular
lobe (also called the archicerebellum) is the most primitive
part of the cerebellum, and it sends its axons directly to the
vestibular nuclei in the brainstem.

Multiple maps of the body-surface representation in the
cerebellar cortex have been made (e.g., Snider and Stowell
1944). Representation of the trunk is usually placed within the
vermis, with the limbs in the hemispheres. The floculonodular
lobe receives mainly visual and vestibular input (Snider and
Stowell 1944; Manni and Petrosini 2004) and is chiefly involved
in balance and eye movements.

Cerebellar inputs and outputs pass through the anterior,
middle, and posterior cerebellar peduncles. The inputs come
from many different sources in the pontine nuclei and the
spinal cord. Cerebellar outputs go to the cerebral cortex via the
ventral lateral nucleus of the thalamus and to a variety of brain-
stem motor areas, including the red nucleus which gives rise to
the rubrospinal tract.

The cerebellum and the cerebrum are closely intercon-
nected. The leg, arm, and face regions of the primary motor
cortex send separate, parallel projections to the cerebellum
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Figure 2.15 Dorsal view of the cerebellum, showing both the cortical surface and the underlying paired nuclei. The right hemisphere has been removed to reveal
the three cerebellar peduncles that connect the cerebellum to the brainstem. From Kandel et al. (1991).

34| BRAIN-COMPUTER INTERFACES



through the pons. The cerebellar nuclei, in turn, project back
through the VL nucleus of the thalamus to the same cortical
regions. Thus, closed loops connect the leg, arm, and face rep-
resentations in the motor cortex to those in the cerebellum.
Similar closed-loop circuits with the cerebellum appear to exist
for each of the premotor areas in the frontal lobe (Dum and
Strick 2003; Kelly and Strick 2003; Glickstein et al. 2009; Strick
et al. 2009).

CEREBELLAR FUNCTION
Current understanding of cerebellar function began with
Gordon Holmes, a neurologist who served with the British
Forces in France during World War I. Holmes made repeated
observations of the effects of gunshot wounds in the cerebel-
lum and visual cortex (areas which, being relatively unpro-
tected by the back of the helmet, were quite vulnerable to
injury) (Pearce 2004). Holmes quoted one of his patients, who
had a lesion of the right cerebellar hemisphere as saying, “the
movements of my left arm are done subconsciously, but I have
to think out each movement of the right arm. I come to a
dead stop in turning, and have to think before I start again”
(Holmes 1939). Based on such observations, Holmes wrote
numerous papers giving classic descriptions of cerebellar dis-
orders (Holmes 1939).

The effects of cerebellar lesions are unlike those resulting
from injury to the cerebrum. In particular, motor deficits are
ipsilateral to the side of the injury, and they do not result in
paralysis. Damage to the cerebellar hemispheres is associated
with a broad spectrum of disorders of limb movements. The
term ataxia is used generally to describe the resulting incoordi-
nation, which may include: dysmetria (wrong-amplitude move-
ments), intention tremor occurring particularly near the end of
movement, disdiadochokinesia (inability to perform a rapidly
alternating movement), or decomposition of complex move-
ments into several components. Such findings indicate that the
cerebellum is important in fine-tuning the details of movement,
and in coordinating the limbs and limb segments so that com-
plex movements occur smoothly and automatically. These find-
ings have generated a variety of models for how the cerebellum
performs these functions (e.g., Lacquaniti and Maioli 1989;
Paulin 1989; Miall et al. 1993; Kawato 1999; Spoelstra et al.
2000; Kawato and Gomi 1992; Wolpert et al. 1998).

In addition, the cerebellum has long been known to play a
role in motor learning, including the recalibration of eye/hand
coordination during growth, as well as adaptive adjustments in
the vestibular reflexes that control eye and head movements to
stabilize vision (Gellman et al. 1985; Stone and Lisberger 1986;
Kim et al. 1987; Wang et al. 1987; Lou and Bloedel 1992).
Cerebellar injury is associated with a loss of the ability to adapt
movements to changing conditions.

Although the cerebellum has traditionally been viewed as a
motor structure, recent views suggest that it also helps to opti-
mize the acquisition of sensory information (Gao et al. 1996;
Blakemore et al. 2001) and to organize higher cognitive func-
tions (Kim et al. 1994; Daum and Ackermann 1995; Thach
2007). Such higher-order functions are thought to be located
within the hemispheres and dentate nucleus.

INFORMATION IN ACTION
POTENTIALS (SPIKES)

Neuronal action potentials (or spikes) are believed to be the
basic units of interneuronal communication and information
transfer in the CNS. In accord with this understanding, the
second section of this chapter discussed the functional correla-
tions of various cortical areas largely in terms of the amount of
activity (i.e., the numbers of spikes produced). In this section
we consider exactly how spikes or series of spikes (spike trains)
might encode the information important for motor control.
There are several hypotheses about the way in which informa-
tion might be encoded in spiking activity. This is important for
BCI technology, which is based on the premise that brain sig-
nals can be decoded and used to control devices.

RATE-CODING HYPOTHESIS

The prevailing view today is referred to as the rate-coding
hypothesis. It posits that information is transmitted by neurons
through the rate at which they produce spikes. The notion
of a rate code was first clearly articulated by Adrian and
Zotterman (1926), who recorded action potentials from
cutaneous nerve fibers in the leg of a cat as the pressure applied
to the footpad was varied. While spike amplitude remained
stable, the number of spikes counted over several seconds was
proportional to the pressure applied. This observation sug-
gested that spike frequency, or rate, is the fundamental mecha-
nism of coding information. This is called the rate-coding
hypothesis.

Since the seconds-long time interval used in this initial
study appeared to be too long to encode the rapidly changing
sensory, motor, and cognitive information associated with
motor behaviors, later investigators refined the rate-coding
hypothesis by considering much smaller time windows able to
accommodate rapid variations (Richmond et al. 1987).
Nevertheless, the preferred operational time scale of neurons
and the appropriate time scale for measurement of spike rates
remain unsettled.

In many BCI applications, spikes are counted in bins (i.e.,
time periods) of 20-100 msec (Serruya et al. 2002; Taylor et al.
2002; Carmena et al. 2003; Pohlmeyer et al. 2009). Counting
spikes in bins is a common method for estimating firing rates.
However, this method has certain problems. First, the tempo-
ral boundaries of the bins are chosen arbitrarily with respect to
the occurrence of individual spikes (e.g., so that a given spike
might span two adjacent bins). Second, when bin width (i.e.,
duration) is reduced to improve temporal resolution, the rate
resolution decreases (because rate is computed in increments
of 1/binwidth) (Dayan and Abbott 2001). An alternate method
not extensively used in BCI applications is to convolve a spike
train with a Gaussian or similar filter in order to translate the
point process into a continuous rate signal (French and Holden
1971; Dayan and Abbott 2001). With this approach, the width
of the Gaussian filter acts much like the bin width in standard
binning, and it determines the temporal resolution at which
the firing rate is measured.
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TEMPORAL-CODING HYPOTHESIS

The temporal-coding hypothesis offers an alternative viewpoint.
In this hypothesis information is encoded in the fine temporal
patterns of spikes. That is, the precise temporal pattern of
spike occurrences carries information beyond the total
number of spikes. There is much debate as to what the essential
distinction is between rate and temporal coding. Some
researchers argue that by shrinking the bin width or
Gaussian-filter width to some arbitrarily small value, a rate
code becomes indistinguishable from a temporal code, and
that, therefore, there is no fundamental difference between
the two hypotheses. Others argue that if temporal patterns
of action potentials measured on a millisecond (as opposed
to tens or hundreds of milliseconds) time scale do carry
behavioral information, then these patterns constitute proof
of a temporal code. Theunissen and Miller (1995) have
proposed a formal distinction between the two hypotheses
by appealing not only to the temporal fluctuations of the
neural response but also to the temporal variations in the
stimulus or behavior that is encoded. They argue that if
temporal patterns in a spike train are fluctuating faster than
the stimulus or behavior and carry information about the
stimulus or behavior, then this is evidence for a temporal
code. For example, if we consider the original work of
Adrian, who monitored action potentials in cutaneous nerve
fibers under different levels of maintained pressure (Adrian
and Zotterman 1926), any pattern of spike trains within the
measurement period (beyond that of the mean spike rate)
that correlated with the pressure level would constitute a
temporal code.

Although some data support the idea of temporal
coding in sensory systems (Richmond etal. 1987; Middlebrooks
et al. 1994), there is less evidence of temporal coding in the
motor system, at least at the single-neuron level. However, a
number of studies suggest that precise temporal synchrony
between neurons in the motor cortex may carry behavioral
information. For example, Riehle and colleagues recorded
simultaneously from multiple M1 neurons while monkeys
performed a simple reaching task in which the cue to move
could occur at one of several predictable time points. Significant
synchronization between pairs of M1 neurons occurred at
these expected cue times even when the firing rates of the con-
stituent neurons did not change at these times (Riehle et al.
1997). The authors suggest that rate and temporal coding
are not mutually exclusive, but, rather, provide complemen-
tary information, in which the firing rate of individual neu-
rons encodes movement information, while the synchrony
between neurons encodes expectation or enhanced attention
(Middlebrooks et al. 1994). In another study (Hatsopoulos
et al. 1998), M1 neurons appeared to synchronize transiently
near the onset of a reaching movement, and the magnitude of
synchrony changed with the direction of movement. A fol-
low-up study suggested that this synchrony, while present in
pairs of M1 neurons, carries directional information that is
redundant with the simple rate coding of individual neurons
(Oram et al. 2001).
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SPIKE RECORDING AND PROCESSING

The spikes of cortical neurons are detected by microelectrodes
that penetrate into cortex so that their tips (or other recording
surfaces) are close to the neurons. This section discusses the
techniques used to record and analyze spikes (see also chapters 5,
7, and 16). Recording of field potentials by electroencepha-
lographic (EEG) methods is described in chapters 3 and 6.

MICROELECTRODES

The first reported use of penetrating electrodes to record spikes
from individual cortical neurons was probably Renshaw’s study
in the late 1930s using an agar-filled micropipette and a vacu-
um-tube amplifier (Renshaw et al. 1940). It was not until the
early 1950s that metal microelectrodes were used to record
spikes from neurons in visual, somatosensory, and motor cor-
tices (Hubel 1957; Mountcastle 1957; Jasper et al. 1958; Hubel
1959; Evarts 1966). These microelectrodes were essentially
insulated wires with sharpened uninsulated tips.

Many different types of microelectrodes are now in use for
intracortical recordings, including multielectrode arrays that
can be chronically implanted in the brain for months or even
years. Several commonly used variations are shown in figure
2.16. The simplest of these are microwire electrodes, arrays of
thin wires soldered to a connector in two or more rows (fig.
2.16A). The diameter of the wires is typically 25-50 pm, and
their composition may be steel, tungsten, or platinum-iridium.
The tips of the wires are generally cut off at an angle to produce
sufficient sharpness to penetrate the pia mater (the innermost
and thinnest of the three meningeal layers surrounding the
brain). Because of the high flexibility of these wires, they must
be stiffened during insertion. A coating of polyethylene glycol
is typically used to accomplish this and makes it possible to
construct electrodes as long as 20 mm or more. The coating is
dissolved with warm saline as the electrodes are inserted slowly
into the cortex to the desired depth. The electrodes are stabi-
lized in position by anchoring the connector directly to the
skull with an adhesive such as methyl methacrylate.

If the tips of electrodes in an array are <50 um apart, the
spike of a given neuron may be detected at more than one elec-
trode. This offers more than just redundancy. A single elec-
trode often records spikes from several different neurons, and
it may be difficult to identify the spikes produced by each indi-
vidual neuron. Separation is usually accomplished on the basis
of differences in spike shapes (see section on Spike Sorting in
this chapter). The spike-sorting process can be more reliable if
the spikes of an individual neuron are recorded by more than
one electrode. This was the rationale behind the stereotrode
(McNaughton et al. 1983), which was constructed by twisting
together two 25-pum platinum/iridium wires and cutting the
ends with a sharp scissors. Subsequently, four wires were used
for the same purpose, giving rise to the tetrode (Gray et al.
1995). These have been further bundled into arrays of as many
as 12 tetrodes, each adjustable in depth (Wilson and
McNaughton 1993; Yamamoto and Wilson 2008; Kloosterman



et al. 2009; Nguyen et al. 2009), providing the ability to record
quite reliably from large numbers of neurons and to record
spikes from a given neuron on several electrodes simultane-
ously (fig. 2.16B).

An alternative design that has recently become available
commercially (Microprobes for Life Sciences, http://www.
microprobes.com/; Plexon Neurotechnology Research Systems,
http://www.plexon.com/) is the floating microelectrode array
(fig. 2.16C). This array consists of as many as 36 electrodes
mounted in a small ceramic substrate, and bonded to thin con-
necting wires (i.e., leads). The electrode tips are finely etched
and generally have somewhat better recording properties than
microwires, the tips of which are simply the cut ends of the
wire. The array geometry is highly customizable, with elec-
trodes as long as 10 mm. The array is inserted much like a
microwire array, but the flexible leads run to a connector
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Figure 2.16 Different types of microelectrode arrays for recording spikes from
cortical neurons. (A) Microwires (Tucker Davis Technologies). (B) Multiple
tetrode microdrive (Kloosterman et al. 2009; Nguyan et al. 2009). (C) Floating
microelectrode array (Microprobe, Inc.) (D) Array of 100 silicon electrodes
(Utah array) (Blackrock Microsystems). (E) Planar multisite silicon electrodes
(Michigan electrodes) (Neuronexus Technologies). (F) Metal multisite electrode,
the “U-Probe” (Plexon).

mounted on the skull. This allows the electrode array to float
on the surface of the cortex, thereby reducing movement
relative to brain tissue.

A similar rationale was part of the motivation for the 100-
electrode Utah array, invented nearly 20 years ago by Richard
Normann at the University of Utah (Jones et al. 1992) and now
available commercially through Blackrock Microsystems
(http://www.blackrockmicro.com/) (fig. 2.16D). Many differ-
ent laboratories have now adopted it for high-density cortical
recordings. The array is constructed from a block of silicon,
formed into 100 cone-shaped spikes separated by 0.4 mm and
either 1.0 or 1.5 mm long. The tips are metalized with either
platinum or iridium; the shank is insulated with silicon nitride.
The electrodes are connected via very thin wires to a separate
skull-mounted connector. Unlike other microelectrode arrays
that are inserted relatively slowly into the cortex, the Utah
array is inserted at very high speed (in <1 msec) to a calibrated
distance using a pneumatic inserter. This approach is designed
to reduce the mechanical dimpling of the surface that is other-
wise typically associated with the insertion of such a large
number of electrodes.

The use of a silicon substrate allows for the adoption of
some of the technology developed for the fabrication of inte-
grated circuits. An excellent example of this strategy is the
Michigan probe originally developed at the University of
Michigan and now available commercially from NeuroNexus
Technologies (http://www.neuronexustech.com/) (fig. 2.16E).
The basic electrode consists of a single shank approximately 15
um thick, 150 um wide, and up to 10 mm long, etched from
silicon. Along the length of this shank are as many as 64
iridium, gold, or platinum contacts, each routed to a connector
at the base of the shank. A variety of electrodes are available
with different geometries and numbers of contacts. Moreover,
several of these devices can be combined in a single package to
form a more complex planar device. The design of the Michigan
probes provides an opportunity to integrate electronic circuitry
onto the same substrate as the electrode array itself.

The U-Probe (Plexon Neurotechnology Research Systems,
http://www.plexon.com/) is another example of an electrode
with multiple contact sites along its length (fig. 2.16F). Unlike
the Michigan probe, its overall geometry is more like the
traditional electrode, with a cylindrical cross section and a
conical tip.

NOISE REDUCTION AND ELECTRODE
SIGNAL CONDITIONING

The spikes recorded from these microelectrodes have ampli-
tudes on the order of tens to several hundred microvolts, and
the impedance of the electrodes ranges from several hundred
kilohms to several megaohms. Consequently, the recordings
are quite prone to noise from a variety of sources such as power
lines, lights, and electrical equipment. In addition, simply
bending the leads generates tiny microphonic currents that can
be as large as the spikes if care is not taken to eliminate them.
The process of eliminating noise from the recorded signals is
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called conditioning. Conditioning eliminates irrelevant aspects
of the signals so that the spikes can be discerned. The most
effective approach is to condition the signals as close to the
electrodes as possible so that the subsequent transmission
through longer leads is less prone to interference. This is
accomplished in several steps.

The first step is amplification of the signal very close to the
electrode by a headstage. Commercially available headstages
range from very simple voltage followers constructed from
discrete transistors to more sophisticated integrated-circuit
devices with 10x or greater voltage gain and appropriate
bandpass filtering (see chapter 7). Most of the companies offer-
ing electrode arrays also provide headstages configured for
their particular arrays. Since substantial noise can arise from
the wires connecting the headstage to the next stage of pro-
cessing, recent interest has focused on using telemetry to elim-
inate the need for these wires. Several telemetered headstages
with as many as 96 channels are available commercially (e.g.,
Triangle Biosystems, Inc., http://www.trianglebiosystems.com/;
Biosignal Group Corp., http://www.biosignalgroup.com/).

After this initial step of signal conditioning is accomplished
at the headstage, further filtering and amplification are typically
required. These further steps are discussed in greater detail in
chapters 7 and 9. Some degree of high-pass filtering (chapter 7)
is usually necessary because of the high gain (10,000x) required
and because of the DC offsets (i.e., abrupt voltage shifts) and
low-frequency noise introduced by movement artifacts. Such
filtering does not impair spike detection since most of the power
in spikes is in frequencies of 300 Hz to 10 kHz. However, in
addition to spikes it is often desirable to record local field
potentials (LFPs) (see chapter 3), which have lower frequencies,
so the high-pass filter should be kept below 10 Hz. In addition,
an appropriate (i.e., 5-10 kHz) anti-aliasing low-pass filter
(chapter 7) is typically applied, and then the signals are digitized
at rates of 25-40 kHz. Further digital filtering may be helpful in
subsequent stages to deal with particular noise sources or to
help in identifying spikes from different neurons.

SPIKE SORTING

For most of the history of single-neuron behavioral electro-
physiology, researchers relied on single, moveable microelec-
trodes, positioning their tips very near the cell body of one
neuron in order to selectively capture its extracellular voltage
waveform. More recently, however, with the advent of multi-
electrode technology, it is not always practical to isolate single
neurons, either because it is too time-consuming to position
each electrode close to a single neuron or because the elec-
trodes are rigidly fixed in one position and may or may not be
near a particular neuron. In response to this problem, over the
past decade sophisticated algorithms for identifying the spikes
of individual neurons have become prevalent in microelec-
trode electrophysiology. This process is called spike sorting,
and a relatively large literature describing a number of different
approaches has emerged (see (Lewicki 1998) for a review).
The assumption underlying all spike-sorting algorithms is
that the size and shape of the spikes from a single neuron are
highly stereotyped and differ from those coming from other
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neurons. Therefore, all algorithms begin by representing the
spike waveform according to some feature set. The simplest is
the fluctuation of the spike voltage over time. Sets of represen-
tative examples of these waveforms can be selected from
several minutes of recorded data, and an average waveform can
be computed and used as a template to sort subsequent spikes.
Each spike that is subsequently collected can be compared to
each of the template waveforms with any of a number of differ-
ent similarity metrics. If the match is sufficiently close, it is
assumed to have been generated from the corresponding
template neuron (Tolias et al. 2007; Rebesco et al. 2010).

Another approach is to represent the spike waveform using
an appropriate reduced-dimensionality basis set. For example,
assuming that the action potential is sampled at 40 kHz for 1.5
msec, there are 60 voltage values per action potential. Given
that the action potential is highly autocorrelated in time, the
dimensionality of the signal can be reduced from 60 to perhaps
two or three dimensions using an analysis technique called
principal components analysis (PCA) (chapter 7), while still
accounting for most of the variance across individual spikes.
Alternatively, a small set of arbitrarily chosen features can be
defined (e.g., spike width, peak-to-trough amplitude, or time-
to-peak voltage). By thus projecting the action potential wave-
forms into a lower-dimensional space, distinct clusters often
emerge, each potentially corresponding to a single neuron. In
a process called cluster-cutting, boundaries separating the clus-
ters can be manually defined so that it is often possible to iso-
late more than one neuron from a single microelectrode.

With the growing use of multielectrode methods that allow
100 or more neurons to be recorded simultaneously, manual
spike-discrimination methods have become extremely tedious
or entirely impractical. Automated methods have been devel-
oped to address this problem and to eliminate the subjectivity
characteristic of manual methods (Wood et al. 2004).
Nonparametric clustering algorithms (e.g., k-means or fuzzy
clustering) can automatically discover partitions between nat-
urally occurring clusters in the PCA or feature space. However,
many of these methods have an inherent weakness in that they
require prior knowledge of the expected number of clusters
(Lewicki 1998). More powerful spike-sorting algorithms that
can also estimate the number of distinct clusters in a data set
have been developed (Lewicki 1994; Wood and Black 2008). By
using Bayes’s rule (see chapter 8), the probability that a given
spike waveform belongs to a particular cluster can be used to
sort spikes into distinct clusters.

SUMMARY

The ease with which we make arm and hand movements is due
to the interaction of many different cortical and subcortical
brain areas. This network is necessary to transform a high-
level, abstract representation of a movement goal into the
sequence of muscle activations necessary to effect the move-
ment. The goal might be represented initially in visual coordi-
nates, or it might be generated internally. Feedback to guide
the movement is normally provided both by the somatosen-
sory and visual systems. The cerebellum is thought to refine
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the dynamics of the movement through its interconnections
with the cerebral cortex. The basal ganglia are important in ini-
tiating and optimizing actions.

In this chapter we review these anatomical connections
and the neuronal activity that occurs throughout the network
during movement. Although the cerebellum and basal ganglia
play critical roles in the production of normal movements,
their locations make them relatively inaccessible either to
arrays of chronically implanted electrodes or to noninvasive
electroencephalography. On the other hand, the exposed cere-
bral cortical surface is accessible to both EEG electrodes and to
the various types of implanted multielectrode arrays now avail-
able for recording neuronal action potentials (spikes).

Among the exposed cortical areas, the primary motor
cortex (M1) is so named because of its strong anatomical con-
nections to the spinal cord and because its neuronal activity is
closely related to that of the muscles that produce movements
and to particular aspects of the movements, such as direction.
As aresult, M1 neurons have been the focus of most intracorti-
cal BCI development efforts up to the present. Just anterior to
M1 within the frontal lobe are several premotor areas that rep-
resent more complex and abstract movement plans. Within the
PPC are several different areas that appear to combine visual
and somatosensory signals into an internal map of the body
and its environment that is important in movement produc-
tion. Many of the neurons in these higher-order motor areas
represent limb movements in complex, gaze-dependent coor-
dinates. In designing a BCI, its intended application might
drive the choice of area from which neuronal activity will be
recorded.

Although BCI research has focused on extracting motor-
related information from cortical neurons, there is increasing
interest in the possibility that somatosensory information
comparable to that from skin and muscle receptors might be
provided to the user during BCI operation by electrically
activating appropriate brain areas. Realization of this possibil-
ity would be facilitated by increased understanding of the neu-
ronal coding in these areas and by development of methods for
activating individual neurons.

A variety of multielectrode arrays are currently available,
and sophisticated algorithms have been developed for identi-
tying the spikes of different neurons and for extracting the
movement-related information each provides. However,
several cortical areas most promising for BCI development,
including parts of primary motor and sensory cortex and
reach-related areas of PPC, are located deep within cortical
sulci where they are not readily accessible to current recording
technology. Thus, substantial technological challenges remain
to be addressed.
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3 | ELECTRIC AND MAGNETIC FIELDS

PRODUCED BY THE BRAIN

PAUL L. NUNEZ

n most present-day BCI systems electric or magnetic signals

produced by brain activity are used to convey the user’s inten-

tions to the BCI system. This chapter focuses primarily on
electric rather than magnetic recording because electric record-
ing (particularly by electroencephalography [EEG]) is conve-
nient, widely used, and inexpensive, whereas magnetic recording
by magnetoencephalography (MEG) is expensive, cumbersome,
and remains largely confined to research settings. For purposes
of our discussion in this chapter, we may categorize brain elec-
tric fields as belonging to four classes according to the nature
and spatial scale of the neural activity that produces them.
Chapter 2 deals with the first of these (i.e., action potentials pro-
duced by individual neurons), and this chapter addresses the
other three classes. These three classes encompass the electric
fields produced by the activity of neurons and their synapses at
three spatial scales of measurement. These three scales, measur-
ing micro-, meso-, and macroscale fields, are determined by the
size and location of their respective recording electrodes.

« Microscale fields, in practice, are the local field
potentials (LFPs) that are recorded within brain
(usually cortical) tissue and mostly reflect
current sources related to synaptic activity
occurring within perhaps 0.1-1.0 mm of the
recording electrode, that is, within tissue
volumes typically in the 10~ to 1 mm’ range.

. Mesoscale fields are mostly recorded from the
surface of cortex. Such recordings are called the
electrocorticogram (ECoG). They are believed to
reflect mainly synaptic and other source
activity occurring over a substantial portion
of the depth of local cortex (2-5 mm), that is,
within tissue volumes of 1-20 mm”.

« Macroscale fields are recorded as the
electroencephalogram (EEG). These are obtained
from the scalp. Each electrode reflects synaptic
source activity occurring within large parts of
the underlying brain, perhaps 10-40 cm? of the
cortical sheet, or cortical tissue volumes in the
10° to 10* mm?® range. Thus, EEG represents the
space-averaged source activity in tissue
containing on the order of 100 million
to a billion neurons.

TABLE 3.1 Approximate scales of cortical tissue

SPATIAL SIGNAL MEASUREMENT EXAMPLES OF
SCALE TYPE RANGE (mm) BRAIN STRUCTURES
Microscale LFP < 10" Cell body,
synaptic knob
Mesoscale ECoG 10" to 10 Module to
macrocolumn
Macroscale EEG >10 Brodmann area,
lobe, brain

Table 3.1 lists these three scales, their recording methods,
and examples of the neuroanatomical structures at each scale.
Note that each of today’s methods for recording electric fields
covers only one of the scale ranges. Table 3.2 lists cortical struc-
tures related to function and links them to these three scales.

A BCI usually focuses on the electric fields or potentials
generated in a particular brain area, those associated with a
particular motor or cognitive function, or both. Its goal is to
enable a person to use these fields for communication and con-
trol, substituting BCI technology for the normal use of mus-
cles. Thus, just as understanding muscle-based movement
entails understanding how muscles generate force and the
characteristics of that force, effective BCI research necessarily

TABLE 3.2 Spatial scales of cortical tissue structure
related to function

STRUCTURE DIAMETER # NEURONS ANATOMICAL
(mm) DESCRIPTION
Minicolumn 0.03 102 Spatial extent of
inhibitory connections
Module 0.3 104 Input scale for
corticocortical fibers
Macrocolumn 3.0 10¢ Intracortical spread
of pyramidal cell
Region 50 108 Brodmann area
Lobe 170 10° Areas bordered by
major cortical folds
Hemisphere 400 10" Half of brain
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begins with some basic information about brain physiology,
anatomy, and physics: How are the brain’s electric fields
generated? How are they distributed through the head? What
determines their spatial and temporal characteristics? How are
they best distinguished from other fields of brain or nonbrain
origin? These basic questions are the business of the present
chapter. It is intended to be a concise and accessible summary
of the physical principles important for understanding LFP,
ECoG, and EEG signals and for employing these signals in BCI
research and development. We begin with a brief treatment of
electric field fundamentals and go on to address the principles
that underlie the behavior of these fields within the brain and
in other tissues of the head.

We first provide a short nontechnical overview. Synaptic
and action potentials at neural membranes create current
sources, the so-called generators of LEP, ECoG, and EEG signals.
These same current sources also generate magnetic fields (those
detected by MEG), but with different sensitivity to specific
source characteristics. As we will see, MEG is partly indepen-
dent of, and complementary, to EEG. At the low frequencies that
are of interest in electrophysiology, the electric and magnetic
fields are uncoupled; that is, each may be estimated without ref-
erence to the other. For this reason, we will avoid the label elec-
tromagnetic which implies a single (coupled) field and which
generally exhibits much more complicated dynamic behaviors.

Much of the membrane current from source regions
remains in the local tissue and forms small current loops that
may pass through the intercellular, membrane, and extracellu-
lar media. Such local source activity may be recorded as LFP. In
addition, some of the source current may reach the cortical sur-
face to be recorded as ECoG, and a little even gets as far as the
scalp to be recorded as EEG. The manner in which source cur-
rent spreads through brain, CSE, skull, and scalp tissue is called
volume conduction and is determined by the geometric (i.e., due
to surface shapes) and electrical resistivity of these tissues. For
example, skull tissue has a high resistivity, causing current gen-
erated in local cortical regions to spread widely. (This is one
reason that the cortical region contributing to potentials
recorded at each scalp electrode is much larger than the elec-
trode itself.) The second contributor to this space-averaging
effect is the physical separation (about 1 cm) between cortical
sources and scalp. In EEG, this current-spreading also contrib-
utes to the knotty issue of choice of a reference electrode, to be
discussed in more detail in chapter 6. Whereas large-scale mea-
sures like EEG provide the big picture but no local details,
small-scale measures like LFPs provide local detail but only
very sparse spatial coverage. Thus, these measures plus the
intermediate-scale ECoG provide complementary and largely
independent measures of brain source activity at different spa-
tial scales and therefore with different levels of description.

Many physics and engineering books provide excellent
treatments of electric field fundamentals. Why then is this
chapter necessary? First, texts on electric circuits or electro-
magnetic fields focus on issues of minimal interest in electro-
physiology and are not, by themselves, very useful in the
current context. Introductory electrical engineering is con-
cerned with one-dimensional current in wires, rather than
volume current in three spatial dimensions. Elementary physics
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courses emphasize fields due to charges in dielectrics (i.e., insu-
lators) rather than the membrane current sources generating
fields. The practical problems in electrophysiology require a
much different emphasis, one that treats current sources in
conductive media.

The second reason for this chapter is the most obvious and
most important. Electric currents and fields depend on the
medium that contains them. Living tissue presents unique
problems as a medium for these currents. In particular, spatial
scale is a central issue in all of electrophysiology, specifically in
the critical distinction among the microscopic, mesoscopic, and
macroscopic fields. The nature of brain electric fields depends
strongly on the scale under study. In a complex system with
nontrivial relationships among dynamics at different spatial
and temporal scales, it is important to appreciate that no one
scale is intrinsically better than another (Nunez 2010). The
usual elementary relations between charges and electric fields
are of minimal use in electrophysiology. Static membrane
charge produces no electric field that can be recorded by an extra-
cellular electrode. This is because many charged particles (ions
such as Na*, CI, etc.) in the extracellular fluid change position
to shield membrane charge. Thus, the electric field due to the
static charges in the extracellular space is essentially zero (i.e.,
it is electroneutral, except at atomic scales). In a conducting
medium like living tissue, this charge shielding impels a focus
not on charges (the usual focus in describing electric fields and
potentials in insulators) but, rather, on current sources.

A third justification for this chapter is that electrophysiol-
ogy is concerned exclusively with fields of low frequency.
Although currents generally produce magnetic fields, it is only
at field frequencies in the megahertz range or higher (i.e., fre-
quencies far above those found in the brain) that they form
nonnegligible electromagnetic fields and associated propagat-
ing waves. The fields generated in tissue are well below the
megahertz range. This allows us to focus, instead, on quasi-
static electric or quasistatic magnetic fields. We use the quasi-
static approximation, in which electric fields (e.g., those
measured by EEG) occur as if magnetic fields do not exist and
in which magnetic fields (e.g., those measured by MEG) occur
as if electric fields do not exist. It is important to note here that
although some time intervals of EEG records may appear as
waves traveling across the scalp (as revealed by progressive
EEG phase shifts), these events are not due to electromagnetic
waves. Rather, such “brain waves” owe their origins to some
combination of synaptic delays, intrinsic cellular dynamics,
and action-potential propagation delays, and they originate at
least partly from the selectively nonlinear behavior of active
cell membranes.

To begin our introduction to the physiological electric
fields that can be measured and used for BCIs, we first give a
short overview of electric circuits with emphasis on the ideas
that carry over naturally to brain electric fields. The goal is to
provide the electric-field novice with a robust bridge to the
more advanced topic of multiscale brain electric fields. The
basic physics and physiology supporting the ideas of this chap-
ter are presented in more technical depth in (Nunez and
Srinivasan 2006a) where a more extensive reference list may
also be found.



CURRENTS AND POTENTIALS IN
ELECTRIC CIRCUITS

OHM'’S LAW IN ELECTRIC CIRCUITS

Electric current is defined as the directed motion of positive
charge (coulombs) per unit time. It is measured in units of
amperes (A), where one ampere equals one coulomb/second
(C/sec). However, the positive current direction is an arbitrary
definition. In metal wires the carriers of current are negatively
charged electrons moving in directions opposite to positive
current. By contrast, current carriers in living tissue are posi-
tive and negative ions moving in opposite directions, and both
of these movements contribute to the total current in tissue
volume conductors.

In a typical electric circuit, the small resistance contributed
by the wire may be neglected so that opposition to current
occurs only at discrete circuit elements with resistance R. Ohm’s
law (eq. 3.1) relates the potential difference (V,-V) across
resistor terminals to the current I passing through the resistor

V,-V,=RI (3.1)
Current moves from higher to lower potentials, so that
positive current in equation (3.1) is consistent with V| greater
than V.. The process is somewhat analogous to water flow
down a pipe, with volume flow (liters per second) representing
current, and the heights of the pipe ends representing the two
voltages. According to this analogy, current, like water, flows
“downhill” as indicated in figure 3.1. The pipe’s resistance to
water flow depends on its cross-sectional area and the frictional
force applied to the water by the pipe wall. This metaphor
emphasizes that potential differences, not potentials, cause cur-
rent to flow. This distinction has long been a source of confu-
sion in the EEG community when reference-electrode effects
are evaluated. Although idealized electric circuits typically
allow for a convenient reference location where the potential
may be set to zero, actual human heads, which contain unknown
sources of current, are not so cooperative. The important issue
of reference selection is extensively discussed in chapter 6.

EQUIVALENCE OF VOLTAGE AND
CURRENT SOURCES

Voltages and currents may be generated by several kinds of
sources. Figure 3.2 shows two circuits: an ideal independent
voltage source (an AC or alternating-current generator) (upper

Figure 3.1 Fluid flow rate through the central pipe (liters/sec) depends on
the height difference between its two ends V-V, and the pipe resistance R.
The fluid flow is analogous to current flux through a resistor with a voltage
difference across its terminals.

panel) and an ideal independent current source (lower panel)
(typically a separate circuit containing transistors and voltage
sources). Ideal here means that the magnitude of the voltage or
current produced by an independent source is a fixed property
and is not affected by other elements in the circuit. (Note that
in all circuit images in this chapter, arbitrary combinations of
circuit elements are represented by rectangles, as in the case of
box X; their inner details are not relevant to this discussion.)
Representation of sources as ideal and independent is not uni-
versally valid. For example, if a switch in series with the current
source is opened, thereby disconnecting it from other parts of
the circuit, the current must go to zero unless the source sup-
plies enough power to cause electrons to jump the air gap in
the switch, creating sparks. However, with proper circuit
design, the ideal source assumption will be valid whenever box
X contains normal circuit elements.

The ideal voltage source V. (fig. 3.2, upper panel) in series
with the resistor R is equivalent to the ideal current source I
(fig. 3.2, lower panel) in parallel with the same resistor R in the
following sense. In both cases, V_ = RI_and all the currents and
voltages in the network represented by box X are identical,
regardless of whether the terminals (a, b) of the box are con-
nected to the voltage or current source network. This equiva-
lence principle, closely associated with Thevenin’s theorem of
electrical engineering (see any introductory engineering text
on electric circuits) is valid irrespective of the complexity of
the network in box X, which might contain hundreds of non-
linear circuit elements. The equivalence of voltage and current
sources also occurs in volume conductors such as the head.
Whereas smaller-scale electrophysiology (LFP and single-
neuron studies) may be concerned with membrane potentials
measured by small electrodes (see chapters 2, 5), data from
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Figure 3.2 Circuit with ideal independent sources: voltage source (upper panel)
and current source (lower panel). The equivalence of voltage and current
sources is described in the text. All the currents and voltages in the electric
network represented by X are unchanged when the voltage source (upper) is
replaced by the current source (lower). The network X is arbitrary, perhaps
containing thousands of nonlinear circuit elements.
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macroscale EEG are more conveniently related to the multiple
synaptic current sources produced within mesoscale tissue
volumes. Just as they are in electric circuits such as those
shown in figure 3.2, these current and voltage source descrip-
tions can be regarded as equivalent for electrical phenomena in
the head.

The sources shown in figure 3.2 are independent: they are
fixed regardless of what happens in box X. By contrast, figure
3.3 shows a circuit with an ideal dependent (i.e., controlled)
current source, indicated by the diamond symbol. In this
example, the current I is controlled by the voltage in some
other part of the circuit according to some rule, I, = f (V). This
control is provided by some influence not indicated in the
figure, typically a separate circuit. Given the dense intercon-
nectivity of cerebral cortex, dependent sources provide more
realistic cortical analogs than independent sources.

IMPEDANCE IN ELECTRIC CIRCUITS

Fundamentally, circuit dynamics are governed by differential
equations, which model resistive, capacitive, and inductive ele-
ments. However, for cases in which all sources produce sinu-
soidal voltages or currents and all circuit elements are linear,
electrical engineers have devised a clever trick to bypass some
of the mathematics. The trick is to employ complex circuit
variables such as impedance, which have real and imaginary
parts. Impedance (Z) is the AC equivalent of resistance and
accounts for phase shifts due to capacitive and inductive prop-
erties of circuit elements. Ohm’s law (eq. 3.1) remains valid,
provided that resistance R is replaced by impedance Z. Z is a
complex quantity providing for phase shifts between current
and voltage. Resistors, capacitors, and inductors are often com-
bined in circuit analysis to form equivalent impedance. The real
and imaginary parts of Z are labeled the composite resistance
and reactance, respectively, of the combined circuit elements.
At frequencies of interest in EEG, inductive effects (cou-
pling of electric and magnetic fields) in macroscopic neural
tissue masses are entirely negligible. Capacitive effects have
also been found to be negligible in most studies, although small
but measureable capacitive phase shifts were found in at least
one study of live human skull (Akhtari et al. 2002) . Thus, in
addressing macroscale tissue volume conduction, we usually

ls= f(Vx)

Figure 3.3 Circuit with ideal dependent source. The diamond symbol represents
a dependent current source with its output given by the function IS = f(VX ),
that is, controlled by the voltage V, across the terminals of the gray box
(representing arbitrary circuit elements). This control occurs through processes
not shown in the image, possibly a separate circuit. The white boxes also
represent arbitrary circuit elements.
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use impedance and resistance interchangeably. However, even
at macroscopic scales, capacitive effects may be important at
electrode/tissue interfaces where the contact approximates a
resistor and capacitor in parallel. This occurs because chemical
reactions take place at the metal/tissue interface where tissue
ion current induces tiny electron current in the amplifier cir-
cuit. Capacitive effects are, of course, quite important at the
microscopic scale of individual cells. Indeed, membranes in
states well below threshold for action-potential firing are mod-
eled as chains of resistors in parallel with capacitors, similar to
coaxial TV cables, but with zero inductance.

Tissue volume conduction adds several complications not
present in electric circuits, but volume conduction is simpler
in other ways. The first major simplification is the neglect of
magnetic induction. As noted, brain currents can produce gen-
uine electromagnetic fields (propagating waves or far fields)
only at field frequencies in the megahertz range or higher, fre-
quencies far above those found in the brain. It is thus reason-
able to use the quasistatic approximation, in which electric
fields (e.g., those measured by EEG) occur as if magnetic fields
do not exist, and magnetic fields (e.g., those measured by
MEG) occur as if electric fields do not exist. Thus, EEG wave
propagation across the scalp is not electromagnetic; rather, its
origins are some combination of axonal propagation and syn-
aptic (i.e., postsynaptic potential) delays.

LINEAR SUPERPOSITION IN ELECTRIC CIRCUITS

A second major simplification in tissue volume conduction
occurs because, for the weak electric fields detected by EEG,
tissue appears to behave linearly at macroscopic scales. By this
we mean that in this context, bulk neural tissue obeys Ohm’s
law. (By contrast, neural cell membranes become nonlinear
near their thresholds for firing action potentials; this is a
microscale phenomenon.) At the macroscale of bulk tissue
that is relevant for EEG studies, and at frequencies below per-
haps 10-100 kHz, current largely bypasses high-resistance
membranes and thereby obeys Ohm’s law.

For electric circuits, the analogous linearity is indicated in
figure 3.4, in which the rectangular boxes stand for arbitrary
combinations of linear resistors, capacitors, inductors, and/or
any other linear elements, including independent sources. The
current source I, in figure 3.4 (upper panel) generates numerous
voltages and currents within networks represented by the rect-
angles; V| is any such voltage. Similarly, the current source I,
(fig. 3.4, middle panel) generates the voltage V, at the same loca-
tion as V.. Figure 3.4 (lower panel) shows that when the two
current sources are turned on simultaneously, the potential at
this location is simply the sum V| + V,. This simple outcome
does not hold true if the boxes contain nonlinear elements.

About 10 billion synapses producing current sources
occupy regions the size of a cortical macrocolumn (see section
Multiple Scales of Cortical Sources below and table 3.2 in this
chapter) with diameter of 1-3 mm and containing perhaps a
10° to 10° neurons. If I and I, were to represent two cortical
current sources, such as the net source current produced
in two cortical columns, figure 3.4 correctly indicates that
the resulting dural or scalp potential is simply the sum of
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Figure 3.4 Superposition in a linear electric network. In this figure only,

rectangles represent linear circuit elements. In the upper and middle panels,
current sources |, and |, produce voltages V, and V,, respectively, when acting
separately. When both sources are turned on together (lower panel), the
resulting voltage at the same location is V, +V,. This simple result does not
hold true in nonlinear circuits.

potentials generated by each column separately. This result
does not require that the sources oscillate at equal frequencies
or even produce sinusoidal oscillations at all; only the validity
of Ohm’s law is required. This linearity of the tissue volume
conductor must not be confused with the nonlinear dynamics
of source interactions. A simple circuit analog illustrates this
distinction: in figure 3.3 the dependent current source I, and
other sources in the gray box might be coupled by some com-
plicated nonlinear process that may lead their dynamics to be
quite complicated; nevertheless, the net voltage produced by
multiple sources will still sum linearly.

CURRENTS AND POTENTIALS IN TISSUE
VOLUME CONDUCTORS

OHM’'S LAW FOR VOLUME CONDUCTION

Three important new issues arise with the transition from elec-
tric circuits to volume conduction. First, while low-frequency
current in a copper wire is uniformly distributed over its cross
section, current through the head is spread out in complicated
spatial patterns determined by both geometric and resistive
tissue properties.

The second issue concerns the definition of electric poten-
tial. In electric circuits the symbol V normally denotes potential
with respect to some arbitrary circuit node where the potential
may be set to zero. This practice will not work in a volume

conductor with distributed sources. Thus, for the head volume
conductor in EEG applications, we will adopt the symbol ©
rather than V'to indicate the (theoretical) nominal potential with
respect to infinity, where the term nominal indicates that this is
the potential due only to sources generated by the brain. Note
that experimental recordings, whether from inside or outside
the skull, measure the experimental potential V, rather than the
theoretical potential @. V is expected to closely approximate ®
if recordings are mostly free of artifact, other noise sources, and
electrode reference distortions. External-noise reduction is
greatly facilitated by modern amplifier systems designed to
reject potentials that are equal at recording and reference
sites (i.e., common mode rejection), and to thereby eliminate
(ideally) most environmental (nonbiological) noise sources.

The third issue concerns spatial scale. This issue is often
ignored in abstract neural network models, but it is critically
important in actual physical or biological systems. The spatial
scale of electrophysiological measurement spans four or five
orders of magnitude, depending on the size and location of the
recording electrodes. In practice, all descriptive electrical prop-
erties (i.e., potential, current density, resistivity, etc.) must be
defined at a specific spatial scale. For example, the resistivity
(see below) of a membrane will differ greatly from that of the
extracellular fluid, and both will differ from that of a composite
large-scale tissue mass.

Ohm’s law in volume conductors is a more general state-
ment than it is in its usual form in electric circuits (eq. 3.1). In
volume conductors Ohm’s law is expressed as a linear relation-
ship between vector current density J (in microamperes per
square millimeter, pA/mm?*) and electric field E (microvolts
per millimeter, pV/mm):

J=0E (3.2)

Here o (Siemens/mm, or S/mm, or ohm'mm) is the con-
ductivity of the physical or biological material. Conductivity is
typically used in mathematical models. In contrast, experi-
mentalists tend to use its inverse resistivity, n = 1/o (ohm mm),
as the standard parameter. When conductivity is a scalar, equa-
tion (3.2) is a vector equation, equivalent to three scalar equa-
tions in three directions. Because we are concerned here only
with quasistatic (not electromagnetic) fields, the electric field
may be expressed conveniently as the gradient of potential

E=-Vb=- 8£+8£+82
ox dy Oz (3.3)

Both electric circuit analysis and electrophysiology are
greatly simplified by the introduction of the more simple
(scalar) electric potential @. The term on the far right side of
equation 3.3 involving spatial derivatives applies only in rect-
angular coordinates. The shorter vector form (—-V®) (middle
of eq. 3.3) is generally preferred because it is explicitly inde-
pendent of human choices of coordinate system.

The simple, one-dimensional version of Ohm’s law (eq. 3.1)
is easily obtained from equations 3.2 and 3.3 for the special
case of current passing through a material of constant cross
section. This is shown in figure 3.5. Suppose current I is
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constant across the cross-sectional area A of a cylindrical con-
ductor of resistivity n and length Ax, as in the case of 60-Hz
current in a copper wire. In this example, J=/ i and E=E i,
where x indicates the direction of current and electric field
and i is a unit vector in the x direction. The x component of
current density is J =I/A. The electric field is approximately
E =—A®/Ax=(P, —®,)/Ax .Substitution of these relations
into equation 3.1 yields
o -, -1
(3.4)

In the case of simple wire current, the symbols ® and V are
interchangeable. Comparison of equations 3.1 and 3.4 shows
that the resistance of a wire or other cylindrical medium of
resistivity n, length Ax, constant cross section A, and constant
current density across the cross section is given by

_NAx
A (3.5)

R

Thus, resistivity is a basic property of the medium through
which current passes. It is determined by interactions between
charges in motion and the medium’s atomic, molecular, or cel-
lular structure. In contrast, resistance depends both on the
medium and its geometric properties.

In EEG applications involving head volume conductor
models, equation 3.5 reminds us that the resistance of any cur-
rent path depends on both geometry (tissue boundaries) and
tissue resistivity. The former may be obtained by MRI, but it is
much more problematic to find the latter. For example, the
resistance to current normal to the surface of a skull plug of
cross-section A may be expressed as the sum of the resistances
of the three skull layers, the middle of which (i.e., cancellous
bone) has much lower resistivity than the top and bottom
layers (i.e., cortical bone) (Law 1993; Akhtari et al. 2002; Nunez
and Srinivasan 2006a).

CURRENT DISTRIBUTION IN THE HEAD

Current flux in the head volume conductor involves several
complications not normally present in simple circuits. The
most obvious is that current spreads out from sources nonuni-
formly so that current density J(r, t) at each location r is
not generally constant over any cross section A. Also, head
resistivity varies with type of tissue so that n = n(r). That is, the
medium is an inhomogeneous volume conductor. Here the

— AX —_—
Figure 3.5 The resistance of a cylindrical conductor of resistivity n also depends
on its length Ax and its cross section A. In contrast, resistivity 1 is simply a
property of the medium (e.g., copper wire, salt water, tissue) through which the
current passes.
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scalar resistivity is expressed as a function of vector location r;
an alternate form is n = n(x, » z). Finally, tissue is generally
anisotropic, meaning that resistivity (or conductivity) is direc-
tion dependent. In white matter, for example, resistivity is
lower for current flux in directions parallel to axons. In aniso-
tropic tissue (whether homogeneous or inhomogeneous),
conductivity is a tensor (or matrix) with matrix elements that
may or may not be functions of location r.

In anisotropic conductors, Ohm’s law, equation 3.2, involves
matrix multiplication. All serious volume-conductor models
of the head take into account major inhomogeneities (i.e.,
among brain, CSE, skull, and scalp tissues). However, because
of a paucity of detailed experimental data, nearly all head
models assume that these tissues are isotropic. Despite this
crude approximation, head volume-conductor models provide
semiquantitative predictions of relations between intracranial
sources and scalp potentials that are very useful for many
applications. For example, even very simple volume-conductor
models can provide important “filters” to weed out ill-con-
ceived EEG data reduction methods; that is, if a proposed
method does not work even with simple head models, it cannot
be expected to work with actual heads.

Despite the complications of conductive inhomogeneity
and anisotropy, experiments indicate that living tissue is linear
at macroscopic scales: Ohm’s law (eq. 3.2) is valid, but perhaps
only in matrix form. This experimental finding is fully consis-
tent with the nonlinear conductive properties of active mem-
branes: in a tissue volume that is mesoscopic (e.g., 1 mm?) or
larger, most externally applied current passes through the
extracellular fluid. It is important to note that higher cell den-
sity increases mesoscopic resistivity, but the resistivity never-
theless remains linear. Tissue resistivity can vary widely with
measurement scale: a microelectrode with tip diameter of 10~
to 10 cm may record potentials based only on extracellular
fluid, which has substantially lower resistivity than a meso-
scopic or macroscopic tissue mass (i.e., which includes cells).
Thus, it makes little sense to speak of tissue “resistivity” with-
out explicit reference to the spatial scale at which this property
is defined or measured.

HEAD MODELS OF VOLUME CONDUCTION

Several classes of models have proven valuable in testing our
intuitions about volume conduction in heads, and they show
that the EEG folklore has often been wrong. The most widely
adopted head models are the three-sphere and four-sphere
models. The four-sphere model, portrayed in figure 3.6, con-
sists of an inner sphere (brain) surrounded by three spherical
shells representing cerebral spinal fluid (CSF), skull, and scalp
layers. The three-sphere model incorporates the CSF as part of
the brain; in practice it is about as accurate as the four-sphere
model because the largest model errors are caused by inhomo-
geneity and anisotropy and by uncertainty concerning skull
resistivity (Nunez and Srinivasan 2006a).

Cortical mesoscale sources (small arrows in fig. 3.6) send
currents into surrounding tissues. These currents form closed
loops by returning to their cortical origins. Most of this source
current remains inside the skull, but a little reaches the scalp
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Figure 3.6 The usual four-sphere head model consists of an inner sphere (brain)
surrounded by three spherical shells representing CSF, skull, and scalp layers.
The small arrows represent cortical mesoscale sources where closed current
loops begin and end. Some of this current reaches the inner dura layer and is
recorded as ECoG; much less reaches the scalp to be recorded as EEG.

and may be recorded as EEG. Cortical morphology, especially
the parallel arrangement of pyramidal cells (chapter 2), sug-
gests that source currents tend to flow perpendicular to the
local cortical surface. Thus, gyral source currents tend to be
perpendicular to the CSF layer, and sulcal source currents tend
to be parallel to the CSF layer; however, this geometric picture
is very crude given the convoluted nature of cortical folds.

Positive and negative ions travel in opposite directions along
current paths such that the numbers of positive and negative
charges remain equal in mesoscopic (or even much smaller)
volume elements at all locations. This is a standard condition of
conductive media called electroneutrality. (To imagine this, pic-
ture a densely crowded boardwalk on which all men walk north
and all women walk south, with much pushing and shoving
such that gender neutrality is preserved in all large regions of the
crowd. If they walk at the same speed, the men and women
contribute equally to this “person current”) Although most
source current remains inside the skull, a little passes into the
scalp before returning to cortex. From a strictly external view-
point, these are essentially skull current sources, and they pro-
duce currents and potentials in the scalp.

Whereas EEG is recorded at the scalp, larger potentials are
recorded when electrodes are placed inside the cranium on the
cortical surface for ECoG. The ECoG potentials naturally pro-
vide better localization of brain dynamics. Even more detail is
obtained with smaller electrodes that record LFPs from within
cortical tissue. Whereas scalp-recorded EEG measures the
activity of synaptic current sources in tissue volumes contain-
ing roughly 100 million neurons, intracranial electrodes can
record activity in volumes containing perhaps 1-10 million
neurons, depending mostly on electrode size and location. It is
important to note that intracranial recordings generally obtain
different information, not more or better information, than
that obtained from the scalp. To use a standard analogy, scalp

electrodes measure large portions of the forest but no trees,
whereas intracranial electrodes measure some individual trees
or maybe even a few ants on their leaves.

Although the idealized n-sphere models have easily imple-
mented analytic solutions, they provide only crude representa-
tion of tissue boundaries. By contrast, finite-element and
boundary-element models, which are substantially more com-
puter intensive, may employ MRI images to locate tissue
boundaries more accurately. Are these numerical models more
accurate than n-sphere models? The answer is not clear, mainly
because accurate tissue resistivity is every bit as important as
accurate geometry for estimating volume conduction. Tissue
resistivity (especially skull resistance) is often poorly known
and may vary by 100% or more across subjects or across loca-
tions in the same subject. Furthermore, both bulk skull (with
three distinct layers) and white matter are substantially aniso-
tropic, meaning that the conductivity of each tissue is an inho-
mogeneous tensor (or 3x3 matrix), with unknown or poorly
known individual components. Some data indicate that, in
sharp contrast to equation 3.5, bulk skull plug resistance is
uncorrelated to thickness, apparently because thicker skulls
may have a disproportionately thick inner layer of cancellous
bone, which has relatively high conductivity (Law 1993). This
implies that attempts to correct head models by using MRI to
find tissue boundaries may achieve only marginal improve-
ments unless much more accurate tissue conductivities are also
obtained. Nevertheless, several heroic studies have obtained
in vivo measurements of tissue resistivity (e.g., Akhtari et al.
2002; Lai et al. 2005; and others reviewed in Nunez and
Srinivasan 2006a). These studies show rather large variation in
resistivity estimates, across tissues, across laboratories, and
across individual subjects.

POTENTIALS RECORDED INSIDE
THE CRANIUM

POTENTIALS AT DIFFERENT SCALES

The incredible fractal-like complexity of cortical tissue, notably
the myriad of synapses on branched dendrites, results in com-
plex cortical source distributions and correspondingly complex
extracellular potentials. Consider first a thought experiment in
which we record and plot a detailed map of potentials at every
point within a single cortical macrocolumn of 3 mm height
and diameter, with a volume of 85 mm?®. To construct in detail
the potentials next to small cell bodies, we might first imagine
the microscopic scale and define the ambiguous term “point”
as, for example, a cubical voxel (volume element) 0.001 mm on
each side. Fully mapping a macrocolumn at this scale would
require something like 100 billion microelectrode placements.
Figure 3.7 depicts an experiment using a spherical electrode of
radius & with center located at the tip of the arrow r. The volume
of the electrode tip is B=4nt*/3. The recorded potential is
approximately related to our fanciful point potential @, by the
following integral over the volume B

1
CEN ’ ’
D(r,1;E) = le @, (r ,t',t)dB(r) e
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Figure 3.7 ®,(r,r’,t) is the theoretical tissue potential at a point located at r+r’.
Actual measured potentials ®(x,t;¢) that are centered on site r (tip of r arrow)
depend critically on electrode volume (dashed circle). For a spherical electrode
of radius &, the volume is B =471 3. Given the fractal-like structure of cortical
tissue, the dynamic behavior of potentials recorded at different scales may be
quite different.

The approximate sign is used in equation 3.6 because,
in practice, the electrode will distort the original current
distribution and potential. Given the fractal-like nature of cor-
tical anatomy and the fact that intracranial electrophysiology
spans three or four orders of magnitude of spatial scale, we
expect the dynamic behavior of potentials recorded inside the
cranium to be scale sensitive. The magnitude, spatial depen-
dence, and time dependence of intracranial potentials gener-
ally depend on the electrode scale (radius = &). Potentials
recorded at larger scales tend to have smaller magnitudes
because larger electrodes tend to pick up more of a mixture of
positive and negative source contributions that cancel (as
reviewed in Abeles 1982; Nunez 1995). Furthermore, there is
no guarantee that the dominant frequencies observed at one
scale will closely match frequency spectra recorded at another
scale. For example, in brain states with dominant alpha activ-
ity, most of the beta and gamma activity recorded with ECoG
is typically missing in the simultaneous scalp-recorded EEG,
apparently because higher-frequency cortical source regions
are much less synchronous and/or smaller than the alpha
source regions (Pfurtscheller and Cooper 1975; Nunez 1981,
1995). Potentials that are generated in cortex and recorded
from the scalp represent neural activity that has been severely
space-averaged due to volume conduction through the inter-
vening tissue. This results in data at scales greater than several
centimeters and thus insensitive to electrode size. Equation 3.6
is an example of experimental coarse-graining (spatial averag-
ing) of a dynamic variable. Theories of neocortical dynamics
often incorporate theoretical coarse-graining, to reflect the fact
that genuinely useful theory in electrophysiology must be
explicitly linked with the appropriate measurement scale.
Otherwise, the theory may be little more than mathematical
exercise.

MONOPOLE CURRENT SOURCES

Any current source region may be modeled as a sum of
distributed point sources (i.e., where current comes from) and
sinks (i.e., where current goes to). The potential at distance r
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from a single point source I(¢) in a medium of conductivity o is
given by
1(#)
4mor

D(r,t) =

(3.7)

Equation 3.7 follows from a simple argument. Surround
the point source with an imaginary spherical surface of radius
r. Since total current is conserved, the radial current density J.
at this surface equals current divided by surface area, with all
current moving in the radial direction. Application of Ohm’s
law (eq. 3.2) to this current density yields equation 3.7. Let the
current source be 4m microamperes (nA), and let cortical resis-
tivity (n = 1/0) be 3000 ohm mm. The potential in the cortex
on a spherical surface of 1.0 mm radius (surrounding the point
source) is then approximately 3000 pV, assuming all other
sources and sinks are located much farther away (but see caveat
2 in the next paragraph).

Equation 3.7 incorporates several idealizations and thus
requires the following caveats: (1) The symbol ®(r,t) indicates
nominal potential with respect to infinity, approximated with a
“distant” (compared to the source region) reference electrode;
(2) since all current sources must be balanced by current sinks,
equation 3.7 cannot normally be applied in isolation; (3) the
distinction in equation 3.6 between a point potential and
the potential recorded with an electrode of radius § applies;
and (4) the medium is assumed to be infinite with constant
scalar conductivity o, that is, no boundary effects due to other
tissues are included.

DIPOLE CURRENT SOURCES

The idealized current dipole consists of a point source +I and a
point sink -1, separated by a distance d, as shown on the left
side of figure 3.8. However, the word dipole has an additional
and more general meaning that makes the dipole concept
applicable to a wide range of source-sink configurations: nearly
any source-sink region where the total source and sink cur-
rents are equal (local current conservation) will generate a pre-
dominantly dipole potential at distances large compared to the
dimensions of the source-sink region. Thus, the collection of
equal point sources and sinks shown on the right side of figure
3.8 produces an approximate dipole potential at distances r
when ris large compared to d (e.g., ¥=3d or 4d or more, depend-
ing on the desired accuracy of the dipole approximation). For
this reason, cortical dipoles, and especially dipole layers
(sheets), provide the dominant source models for potentials
recorded on the scalp. The potential due to either of the source
distributions in figure 3.8 may be approximated by

I(t)d cos6
O(rt)z——— r

> >>d
4mwor

(3.8)

Here 0 is the angle between the dipole axis and the vector r
to the point of measurement. The effective pole separations are
d=d for the source-sink (fig. 3.8, left) and d<d for the dis-
tributed sources (fig. 3.8, right). The angular dependence in
equation 3.8 is strictly correct only if all sources lie on the
vertical axis. However, equation 3.8 provides a reasonable
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Figure 3.8 The current dipole (left side of the figure) consists of a point source +I
and point sink (negative source, —I) separated by distance d. A mixture of equal
numbers of point sources and sinks of equal strength (right side of figure) also
produces an approximate dipole potential at moderately large distances (say
r>4d depending on the accuracy of the dipole approximation) but with smaller
effective pole separation d <d yielding smaller potentials at the same distance.
As sources and sinks become fully mixed, d— 0, which indicates a so-called

"

closed field” of essentially zero potential external to the source region.

approximation if the sources approximate a fairly narrow
cylindrical region as shown on the right side of figure 3.8. As
the average separation between point sources and sinks is
reduced, the effective pole separation and external potential
also become smaller. The so-called closed field of electrophysi-
ology corresponds to the limiting case d >0, which occurs
when positive and negative point sources are well mixed,
having small average separations. The layered structure of
mammalian cortex is critical to the production of scalp poten-
tials: no recordable EEG would be expected if cortical neurons
were randomly oriented or if excitatory and inhibitory synap-
tic action were highly mixed in cortical columns.

The potential due to the two monopoles (the dipole in
fig. 3.8, left) or to the source-sink collection (fig. 3.8, right) may
be generally expanded in (mathematical) multipole series
that include the dipole and quadrupole terms, in addition to
higher-order terms that are nonnegligible close to the source
region. Note that use of the term dipole in the mathematical
expression (expansion) differs from its use when describing
the idealized dipole on the left side of figure 3.8. (This is a
common source of confusion in electrophysiology.) The mono-
pole term in such expansions is zero, provided that local cur-
rent is conserved (i.e., when all local point sources are matched
by point sinks of equal strength); the dipole potential then
becomes dominant.

ACTION POTENTIAL SOURCES

In controlled experiments using isolated axons, classical axon-
surface recordings with respect to a distant electrode during
the passage of an action potential yield triphasic waveforms
traveling along the axon. Such surface potentials (measured
with respect to a distant electrode) are generally in the 100-pV
range. By contrast, the corresponding transmembrane potential
(potential difference between inside and outside the cell) is a
traveling monophasic waveform in the 100-mV range; that is,
its magnitude is about 1000 times larger. When cell membranes
behave as linear conductors (i.e., when Ohm’s law is valid),
axon current source distribution at membrane surfaces mimics
transmembrane potential. However, active membranes or even
membranes approaching threshold are inherently nonlinear,
meaning Ohm’s law is dramatically and selectively violated.

This nonlinearity is immediately evident from the monophasic
nature of the transmembrane potential. That is, Ohm’s law
requires that membrane current source distribution along the
axon match the direction (in or out) of transmembrane poten-
tial. The latter cannot be strictly monophasic along a linear
membrane because membrane source current must have
matching sinks somewhere along the axon.

In genuine tissue, the falloff of action potentials with dis-
tance from an axon is likely to be very complicated due to axon
bending, axon myelination, influence of nearby cells, and other
factors. Action potentials in nonmyelinated fibers fall off quite
rapidly (perhaps within a few millimeters) with distance from
the axon. By contrast, action potentials in large myelinated
fibers tend to fall off slowly (over several centimeters) perpen-
dicular to fiber axis (Nunez and Srinivasan 2006a). This raises
the question of whether action potentials in corticocortical
fibers (which form most of the white matter layer just below
neocortex) might contribute to the EEG. The answer hinges
partly on whether action potentials in enough white matter
fibers physically line up and produce synchronous sources dis-
tributions that superimpose to produce measurable potentials
at the scalp. If this did occur, we might expect very fast (>100
Hz) EEG components (reflecting the passage of the triphasic
waveform) as in the example of the brainstem evoked poten-
tial. However, the standard view is that cortical synaptic sources
are the dominant generators of scalp-recorded EEG. This view
is based partly on compelling experimental evidence from
animal studies that have used depth probes to map sources
(Lopes da Silva and Storm van Leeuwen 1978). Additionally, as
discussed in detail in Nunez and Srinivasan (2006a), the
assumption that dipole layers of different sizes produced by
cortical synapses are responsible for EEG leads to generally
correct predictions of the ratios of ECoG to EEG amplitudes
observed in different brain states.

LOCAL FIELD POTENTIALS

LFPs are microlevel phenomena recorded within cortex. They
are recorded by microelectrodes placed sufficiently far from
membrane surfaces to avoid domination by individual neu-
rons, a purposeful reduction in spatial resolution somewhat
analogous to the coarse-graining in equation 3.6. The poten-
tials recorded are expected to measure synaptic sources within
~1 mm and action-potential sources within ~0.1 mm of the
electrode tips (Leggett et al. 1980; Gray et al. 1995). These
potentials are generally low-pass filtered (<350 Hz) (see
chapter 7) to remove the fast activity coming from action
potential sources. The result is the standard LFP, which can be
modeled as a sum over many point sources using equation 3.7.
LFPs are expected to be largest in regions where sources are
mostly of the same sign, although any current source activity
of frequency low enough to survive the low-pass filter can, in
theory, contribute to the LFP.

ELECTROCORTICOGRAPHY

ECoG (discussed in more detail in chapter 15) is a mesoscale
(intermediate scale) phenomenon that involves placement of
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electrodes just above the brain’s surface on the arachnoid (the
middle of the three meningeal membranes that surround the
brain and spinal cord), and just below the dura mater (the out-
ermost and thickest of the meninges). Because the electrodes
do not penetrate into the brain, ECoG is less invasive than LFP
recording and provides spatial resolution intermediate between
LFPs and EEG. Before reaching the ECoG electrodes, cortical
source currents pass through several layers: the cerebral cortex,
the pia mater (the innermost and thinnest of the meninges),
the cerebrospinal fluid (CSF), and the arachnoid. Of great
importance is that these currents do not pass through the skull.
The main differences between ECoG and LFPs include ECoG’s
larger electrodes, ECoG’s larger average source-electrode sepa-
ration, and the different choices of temporal filtering. ECoG
spatial resolution appears to be roughly 2-10 mm, apparently
limited partly by source distribution across the 3-mm cortical
depth. ECoG is considered the gold standard for identifying
cortical tissue prone to epileptic activity and is routinely
employed to provide guidance prior to epilepsy surgery (Fisch
1999; Niedermeyer and Lopes da Silva 2005).

INTRASKULL RECORDINGS

Most of the degradation in spatial resolution from ECoG to
EEG is due to the intervening skull. Thus, electrodes placed
inside the skull but above the dura may provide a good inter-
mediate-resolution option for long-term clinical applications
such as BCIs. Such electrodes would be less invasive than
ECoG electrodes and might achieve more stable long-term
performance.

COMPARISON OF SPATIAL RESOLUTIONS

Table 3.3 lists the estimated (but very approximate) spatial
resolution achieved with each of the several recording meth-
ods discussed here. The asterisks on high-resolution EEG and
high-resolution MEG indicate that their spatial-filtering
algorithms are not directly comparable to other methods (see

TABLE 3.3 Estimated spatial resolution of recorded potentials or
magnetic fields generated by cortical sources

RECORDING METHOD TYPICAL SPATIAL

RESOLUTION (mm)

Microelectrode of radius & >E

LFP 0.1-1
ECoG 2-5
Intraskull recording 5-10
Untransformed EEG 50
Untransformed MEG 50
High-resolution EEG* 20-30
High-resolution MEG* Unknown

*Not directly comparable to the other methods listed; see text.
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High-Resolution EEG in this chapter). In general, spatial filter-
ing may be applied to data recorded from any system with a
sufficiently large number of well-placed sensors in a manner
analogous to digital filtering in the time domain. Thus, devel-
opment of high-resolution versions of MEG is plausible,
although the issue of selective sensitivity to different source
orientations remains.

BRAIN SOURCES AT MULTIPLE SCALES
EEG GENERATED IN CORTICAL GYRI

Nearly all scalp potentials recorded without averaging origi-
nate in cortical dipole layers (sheets) that occupy at least 10-40
cm? or more of cortical surface (Nunez and Srinivasan 2006a).
Furthermore, all other things being equal, the crowns of corti-
cal gyri (see chapter 2) are expected to provide larger contribu-
tions than sources in cortical folds. Isolated cortical dipoles,
often adopted as models for somatosensory evoked potentials
and epileptic spikes, are simply special cases of dipole layers
with very small dimensions. Two major reasons for the domi-
nance of synchronous cortical sources are evident. First, poten-
tials generated locally fall off with distance from their source
regions, and cortical sources are closest to the scalp. Second,
and even more importantly, cortical pyramidal cell morphol-
ogy allows dipole sources to line up in parallel, potentially cre-
ating large dipole layers. Because the dipole vectors in such
layers are perpendicular to the cortical surface, gyral crowns
are generally more efficient generators of EEG than fissures
and sulci in which the dipole layers in opposing cortices tend
to cancel each other. When near-parallel sources in contiguous
gyral crowns are synchronously active, they add by linear
superposition to create relatively large scalp potentials, an
effect acknowledged when EEG amplitude reduction is labeled
desynchronization (chapter 13) (Kellaway 1979; Pfurtscheller
and Lopes da Silva 1999).

MULTIPLE SCALES OF CORTICAL SOURCES

The multiple scales of cortical morphology, current sources,
and recording electrodes are summarized in tables 3.1 and
3.2, and in figure 3.9. As indicated in figure 3.9, the macro-
column (mesoscale) in neocortex is defined by the spatial
extent of axon branches (seen in the bracketed region E in
fig. 3.9) that remain within the cortex (called recurrent collater-
als). The large pyramidal cell (C) is one of 10° to 10° neurons in
the macrocolumn. Nearly all pyramidal cells send an axon
(G) into the white matter, and most of these reenter the cortex
at some distant location (corticocortical fibers). Each large
pyramidal cell has 10* to 10° synaptic inputs (F and inset) caus-
ing microcurrent sources and sinks. A convenient source
variable is s(r,f), the total current per unit volume AH that
crosses a spherical surface centered at location r:
s(r,t)= M
AH (3.9)
Here the volume AH is assumed to be smaller than the
measurement volume in equation 3.6. Field measurements can



be expected to fluctuate greatly when small electrode contacts
(A) are moved over distances of the order of cell body diame-
ters. Small-scale recordings measure space-averaged potential
over some volume (B) and depend mostly on the size of the
electrode contact. An instantaneous imbalance in sources or
sinks in bracketed regions (D) and (E) will cause a diffuse cur-
rent density J and potential difference AD across the cortex.

The conductivity o (or resistivity ) and other electrical
properties of bulk tissue must always refer to space averages
over volumes of a certain size. Such parameters have different
meanings depending on the measurement scale. A pyramidal
cell is a large structure compared to a microelectrode tip. As
pictured in figure 3.9, field measurements can be expected to
fluctuate greatly when small electrodes (i.e., B, or the individ-
ual contacts on A) are moved over distances of the order of cell
body diameters. At microelectrode scales, the fundamental
electrophysiological parameters are defined separately for
intercellular and extracellular fluid and membrane.

Macroelectrode recordings, like those with EEG, present
quite a different picture. The scalp electrode measures fields
due to neural activity in tissue masses containing perhaps 10°
neurons. In this case, conductivity must refer to average prop-
erties in a large volume of tissue. The conductivity (or resistiv-
ity) of tissue can be expected to depend strongly on the packing
density of the cells because membranes provide relatively high-
resistance current pathways.

At the cell membrane the microsource function s(r, t)
includes both active sources at the synapses and passive

(return) current from more distant locations on the cell. Thus,
microcurrent source-sink separations depend on capacitive-
resistive membrane properties of cells within the volume in
addition to synaptic action density. As a result a simple model
predicts a low-pass filtering effect on scalp (and to a lesser
degree ECoG) potentials below perhaps 50-100 Hz due to
reduction in average source-sink separations (Nunez and
Srinivasan 2006a). Action potentials can contribute to recorded
potentials from inside the cranium, but their contribution to
(unaveraged) scalp potentials is believed to be small.

MESOSCOPIC SOURCE STRENGTH AS
DIPOLE MOMENT PER UNIT VOLUME

Each mesoscale (mm?) volume of human neocortex contains, on
average, about 10° neurons and 10° or so synapses. Each active
synapse produces local membrane current, as well as return
current from more distant membrane surfaces, as required by
current conservation. Excitatory synapses produce negative
source regions (sinks) at local membrane surfaces and distrib-
uted positive sources at more distant membrane locations.
Inhibitory synapses produce current in the opposite direction
(i.e., sources at local membrane surfaces and sinks at more distant
locations). Thus, the distribution of passive sources and sinks
over each cell depends on both the synapse polarity and the
capacitive-resistive properties of the cell and surrounding space.

The current dipole moment per unit volume P(r, t) of a
tissue mass is defined as a weighted space average of all the
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Figure 3.9 The macrocolumn is defined by the spatial extent of axon branches E that remain within the cortex (recurrent collaterals). The large pyramidal cell C is

one of 10° to 10° neurons in the macrocolumn (the figure would be essentially solid black if only as many as 1% were shown). Nearly all pyramidal cells send an
axon G into the white matter; most reenter the cortex at some distant location (corticocortical fibers). Each large pyramidal cell has 10* to 10° synaptic inputs F

(and inset) causing microcurrent sources and sinks s(r, w, t), where the vectorr locates the tissue volume W (e.g., a macrocolumn, as in fig. 3.10) and the vector w

locates microsources within this volume of tissue W. An instantaneous imbalance in sources or sinks in regions D and E (see brackets at left of column) will cause a
diffuse current J and potential difference A® across the cortex (z is impedance). Field measurements can be expected to fluctuate greatly when small electrode

contacts (at the numbered sites along A) are moved over distances of the order of cell body diameters. Recordings at a somewhat larger scale are represented by
region B, which could represent a larger electrode contact. Adapted from Nunez (1995).
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micro-sources s(r, t) within the volume (fig. 3.10). The vector r
locates the center of the tissue volume or mass (voxel W) with
respect to an arbitrary coordinate system. The voxel size is also
partly arbitrary; that is, dipole moments may be defined at
different scales. The vector w locates the microsources inside
the volume W; thus, the notation s(r, ) is replaced by s(r, w, f)
when appropriate. In figure 3.10 the filled circles represent
positive sources, and the open circles represent negative
sources. With positive sources mostly in the upper part of the
tissue mass W, P(r, t) is positive. We refer to P(r, t) as a meso-
scopic source function or dipole moment per unit volume. It is
defined by the following integral over the tissue volume
element W:

P(r,t) = % [ wste,w.naw w)
W (3.10)

Equation 3.10 is useful in EEG when the volume W is
chosen to roughly match coordinated source activity; W may
be anything between perhaps the minicolumn to macrocol-
umn scales (table 3.2). Neocortex may then be treated as
a continuum in EEG applications, so that P(r, t) is a continu-
ous field variable. There are, however, two limitations to this
approach. First, the tissue volume should be large enough to
contain many microsources s(r, w, t) due to local synaptic
activity as well as their passive return currents; at the same
time, its characteristic size should be much smaller than the
closest distance to the recording electrode. The former condi-
tion suggests that the total strength of microsources will be
approximately balanced by an equal strength of microsinks
such that the monopole contribution of the tissue volume W is
approximately zero, that is

I,(rt)= Jf”s(r,w,t)dW(w) =0
w (3.11)
This condition is represented symbolically in figure 3.10

with an equal number of open and filled circles. While the
volume W is partly arbitrary, condition equation 3.11 is more

Figure 3.10 A volume W of tissue (e.g., a cortical macrocolumn). The mixture of
microsources or sinks s(r,w,t) results in a mesosource (i.e., a dipole moment per
unit volume) P(r,t) in volume W. This mesosource representation is useful for
calculating scalp potentials only if W is sufficiently large that local current
conservation holds, as given by equation 3.11.
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likely to be satisfied if W is a full cortical column of some
diameter containing both the soma and dendrites of cortical
neurons. The second condition, that the scale of W be suffi-
ciently small compared to the recording distance, ensures that
the contributions to scalp potential of quadrupole and higher-
order terms are negligible. If both conditions on W are satis-
fied, the dipole term is dominant in the general multipole
expansion expressing scalp potential.

The volume microsources s(r, w, ) are expressed in micro-
amperes per cubic millimeter (LA/mm?), and mesoscopic source
strength P(r, t) in microamperes per square millimeter (uA/
mm?), respectively. Thus, P(r, t) has units of current density
and has a simple interpretation for the idealized source distri-
bution depicted in figure 3.11 in which inhibitory synaptic
activity (which produces current sources) in the lower part of
a cortical column is balanced by excitatory synaptic action
(which produces current sinks) in the upper part of the column
(and with no intermediate sources). In this highly idealized
picture, the dipole moment per unit volume P(r, f) is essen-
tially the (negative) diffuse macroscopic current density J(r, )
across the cortex. The two variables P(r, t) and J(r, t) have
opposite signs because they essentially represent currents
external and internal to the column, respectively. Only a small
part of the external current (thin gray arrows outside the
column) reaches the scalp to produce EEG.

SCALP-RECORDED POTENTIALS
ALL SCALP RECORDINGS ARE BIPOLAR

Any voltage measurement requires both a recording electrode
and a reference electrode. EEG practitioners have long been
perplexed in attempting to find a proper reference electrode
for EEG recordings. For ECoG measurements, the reference

Inhibitory synaptic action
v

Figure 3.11 Idealized case providing an intuitive interpretation of dipole
moment per unit volume P(r,t). In this example, all sources and sinks produced
by synapitic action are located in a deep layer (inhibitory-produced sources)
and a superficial layer (excitatory-produced sinks) of a cortical column. As a
result, the mesosource is P(r,t)=—J(rt), the diffuse current density
(microamperes per square millimeter) between the layers of sources and sinks.
The sign change occurs because current from the lower layer exits the column,
spreads through distant tissue (including a little to the scalp to yield EEG), and
returns through the top of the column to the cortical sinks in the upper layer.
The three dashed cylindrical regions represent neural subpopulations within
the larger tissue mass.



electrode is located outside the skull and may usually be con-
sidered effectively “quiet,” because the voltages outside the skull
are categorically much smaller than inside. In contrast, scalp
potentials cannot generally be recorded with respect to some
theoretical place called “infinity” This presents a significant
challenge for EEG recording.

Suppose V(r,t) is an unknown scalp potential. Each EEG
channel records an experimental scalp potential that depends
on a pair of scalp electrode locations (r ,r,)

V(. rp,t) = V(x,,t) = V(r,,1t) (3.12)
Or in shortened notation
V.=V, -V, (3.13)

In standard EEG parlance, reference recordings involve
choosing some fixed location r,, typically an ear, mastoid, or
neck site, and recording all potentials with respect to this fixed
site. Unfortunately, r, rarely qualifies as a genuinely indifferent
reference. Whereas so-called bipolar recordings measure the
potential difference between two nearby electrodes both of
which are presumed to be changing in potential, these record-
ings are not fundamentally different from referenced record-
ings, except that bipolar recordings acknowledge the presence
and influence of the reference electrode explicitly.

Recording all potentials with respect to some fixed location
r, is advantageous in that it allows for rereferencing to any other
site B. That is, suppose potentials are recorded with respect to
site R with a system of N channels and N + 1 scalp electrodes.
Suppose we wish to find the potentials that would have been
recorded had the reference been located at site B. This is accom-
plished with the following (identity) transformation

V_VBE(Vn_VR)_(VB_VR) (3.14)

The first parentheses in equation 3.14 represent the origi-
nal reference recording; the second parentheses are a single
potential difference obtained from the same data set. The left
side of equation 3.14 then yields the new reference recording.
If the potentials V, and V, are free of all artifact (i.e., nonbrain
activity such as heart, muscle, or other biological or nonbio-
logical potentials), V,and V, are equal to the theoretical nom-
inal potentials with respect to infinity and are given the symbols
®, and ®,. Equation 3.14 is just one of several EEG data
transformations discussed later in this chapter (as well as in
chapters 6 and 7).

THE REFERENCE ELECTRODE

The essential feature of a true reference is that it is located far
from any sources. Unfortunately, however, the word far is often
misinterpreted. A true reference (i.e., at infinity) must be elec-
trically far. This concept and the methods available for realiz-
ing it as closely as possible are discussed in detail in chapter 6.
As emphasized and illustrated there, the choice of a reference
electrode is absolutely crucial to correct interpretation of the
EEG signals recorded. Indeed, different reference choices can

produce dramatically different, and often misleading, results.
Thus, it is essential to choose a reference that is appropriate for
the specific recording situation. Chapter 6 describes the differ-
ent options and discusses the factors important in selecting
among them.

THE FORWARD AND INVERSE
PROBLEMS IN EEG

THE FORWARD PROBLEM

In EEG theory, the so-called forward problem consists of calcu-
lating scalp potentials from a known mesosource function P(r’,
t), defined in equation 3.10 as the dipole moment per unit
volume generated in each mesoscopic tissue voxel located at r’.
The nominal macroscopic potential with respect to infinity at
any scalp location r is then given by the following integral over
the volume K
O(r,t) = .erK(r,r') o P(r',t)dK (r)
X (3.15)

Here K is the total volume of tissue with active brain
sources, generally the entire brain excluding ventricles. All
geometric and conductive properties of the head volume con-
ductor are included in the Green’s function G, (r,r’), which can
be viewed as the inverse electrical distance (squared) between a
source at r’ and a location r where the potential is obtained. In
an infinite, homogeneous, and isotropic volume conductor, the
electrical distance equals the actual distance, but this idealiza-
tion is a poor approximation for genuine heads because of
current-path distortions.

Although equation 3.15 may seem complicated, it provides
very useful information about the general relationship of poten-
tials to brain sources. Much of this general insight is relatively
independent of head-model inaccuracy. Let P(r’, t) be defined
such that the volume W in equation 3.10 is a voxel of 1 mm?. The
sources in a 1000-cm’ brain may then be represented by 3 mil-
lion discrete mesosources P,(t), taking the three components of
the vector P(r’, t) into account. The potential at any location is
simply the weighted linear sum over all sources, so equation
3.15 may then be expressed as a sum of 3 million terms:
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The fact that EEG may exhibit quite different frequency
content at different locations or at different scales is simply the
result of the selective weighting & of the scalar mesosource
components, P, (t), of each voxel.

For several reasons, scalp (EEG) or cortical-surface (ECoG)
potentials are believed to be generated almost exclusively by
cortical sources. First, sources close to cortical surfaces are
associated with larger Green’s functions [i.e., G (r,r") or & ].
Second, the large source-sink separations in cortical tissue cre-
ated by large pyramidal cells yield large mesosources P, (t) , as
indicated in equation 3.10. Third, the parallel arrangement of
pyramidal cells allows the vectors P(r’, f) to line up in the
smooth parts of cortex (i.e., the gyral crowns). In contrast, in
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cortical folds (which are also deeper), these vectors may tend
to cancel. As a result, for EEG and ECoG, sources in gyral
crowns generally generate larger surface potentials than sources
in cortical folds.

By contrast, external magnetic fields (detected by MEG)
are generated mostly by source vectors parallel to the local
scalp (and parallel to the plane of the MEG coil). To the extent
that cortical folds are perpendicular to local scalp (and per-
pendicular to the MEG coil), the dipole vectors contributing
to MEG tend to come mainly from the sources in the sides of
cortical folds if they are not cancelled by sources in the appos-
ing sides. This feature tends to allow MEG data to be fit to
localized source models even when the actual sources are
widely distributed (an outcome that can be good or bad,
depending on the application and on how the data are inter-
preted).

From these arguments we conclude that cortical anatomy
itself is the main determinant of the factors responsible for the
relatively large scalp potentials generated by cortical sources.
Nevertheless, EEG amplitudes can vary from a few microvolts
to more than several hundred microvolts across various brain
states. Large scalp potentials require that the mesosources P(r’,
t) be synchronous (i.e., in phase) over large cortical areas. The
general rule of the head is that source regions must be synchro-
nous over about 6 cm? or more of cortex in order to be record-
able on the scalp without averaging (Cooper et al. 1965;
Ebersole 1997; Nunez and Srinivasan 2006a). (The label syn-
chronously active in this context is based on cortical surface
recordings and should be viewed mainly as a qualitative
description.) In the case of dipole layers extending into fissures
and sulci, tissue areas larger than 6 cm? are apparently required
to produce measurable scalp potentials. The idea that scalp
potential magnitudes depend largely on source synchrony is
widely recognized in clinical and research EEG environments
where amplitude reduction is often characterized as desynchro-
nization (Kellaway 1979; Pfurtscheller and Lopes da Silva
1999). EEGs with typical amplitudes in the range 20-100 uV
apparently require synchrony over at least several tens of square
centimeters of smooth cortical surface. The largest scalp poten-
tials may require synchrony over 50-100 cm? or more (Nunez
and Srinivasan 2006a).

Since nearly all EEG signals are apparently generated by
cortical sources, it is often convenient to replace equation 3.15
by equation 3.17, which is the integral over the cortical surface,
with the mesosource volume elements W in equation 3.10
interpreted as cortical columns, and P(r/, ¢) interpreted as a
vector everywhere parallel to pyramidal cell axes (i.e., normal
to the local cortical surface). Scalp potentials are then expressed
in terms of the modified Green’s function G(r,r’) and the unit
vector (1), which is everywhere normal to the local cortical
surface and may be estimated with MRI images. Scalp poten-
tial (eq. 3.15) is then expressed as

O(r,1) = jj G, (r,r') o P(r',t)dS(r))

= [[6,(r.r") e as(x)P(x', S (x')
S (3.17)

58 | BRAIN-COMPUTER INTERFACES

(Note that equation 3.17 cannot be applied to ECoG because
the electrodes are too close to cortical sources for the
dipole approximation to be valid. ECoG depends much more
on the details of synaptic source distribution across cortex;
such cortical potentials may be estimated from distributed
microsources using equation 3.6).

THE INVERSE PROBLEM

The classical inverse problem in EEG is concerned with finding
the locations and strengths of the current sources on the right
side of equations 3.15, 3.16, or 3.17 from discrete samples of
the potential V. (with respect to some reference) on the sur-
face of the volume conductor. That is, the recorded potentials
V . are used to estimate the nominal potentials with respect to
infinity ®(r,t) (i.e., ® in simplified notation). In practice,
dipole searches employing sophisticated computer algorithms
are based on recordings at perhaps 20-128 or more surface
locations, either for fixed time slices (i.e., segments) or over
time windows. By contrast to the forward problem, the inverse
problem has no unique solution. If one dipole provides a rea-
sonable fit to surface data, two or three or 10 dipoles can pro-
vide even better fits. Scalp potentials can always be made to fita
wide range of distributed cortical sources. Within experimental
error, any scalp-potential map can be made to fit source distri-
butions that are exclusively cortical, or even made to fit sources
that are exclusive to cortical gyri. In the absence of additional
information, the constraints (e.g., physiological assumptions)
required to obtain these fits cannot generally be expected to be
accurate, and the inverse solutions (computed source locations)
are generally no better than the physiological assumptions and
head-model accuracy. As discussed in Nunez and Srinivasan
(2006a), many inverse solutions indicating that EEG generators
consist of a few isolated dipoles are inconsistent with known
physiology and anatomy. One warning sign of an inadequate
solution is failure to show that the estimated source-strength is
sufficient to account for scalp-potential magnitudes. Sophisti-
cated computer algorithms are useful only if they are based on
sound physiology; sophisticated mathematics can never com-
pensate for unrealistic physical assumptions.

QUANTITATIVE AND
HIGH-RESOLUTION EEG

MATHEMATICAL TRANSFORMATIONS OF EEG

Rereferencing of unprocessed EEG data provides the simplest
example of the many transformations that may be applied in
quantitative EEG analysis. Some data transformations have
clear physical and physiological motivations; others are purely
mathematical. Fourier transforms (see section on Fourier
Transforms in this chapter) are clearly useful across many
applications, mainly because specific EEG frequency bands are
closely associated with specific brain states. Other transforma-
tions have more limited appeal; in extreme cases they may be
no more than mathematics in search of applications. How can
we distinguish truly beneficial transformation methods from
useless mathematical exercises? One obvious but underused



approach is to apply each promising transformation method to
several physiologically based dynamic and volume-conduction
models. If the method produces transformed variables that
reveal important dynamic properties of the known sources
modeled in these simulations, it may be useful with genuine
EEG data; if not, the method is probably not worth using. Note
that even simple analytic head models like the n-sphere models
are quite valuable in such tests even though such head models
may not be very accurate. That is, simple head models provide
a critical “filter” through which any proposed method should
first pass before being tested further. Had this philosophy been
applied in EEG over the past 40 years or so (after computers
became readily available), the graveyard of erroneous EEG
reports would contain far fewer occupants. Examples of appro-
priate and inappropriate transformations are discussed in
(Nunez and Srinivasan 2006a).

The relationships between observed potential differences
vV =V(r, r, t) and brain sources P(r, t) depend on the anatomy
and physiology of brain tissue and the physics of volume con-
duction through the human head. Quantitative EEG analysis
consists of mathematical transformations of recorded poten-
tials to new dependent variables X and independent vari-
ables x ,x,,x,,..., that is,

Vi, r, 1) = X (%, %,,%;5...) (3.18)

The transformations in equation 3.18 can provide important
estimates of the behavior of source dynamics P(r, ) that supple-
ment the estimates provided by the unprocessed data V(r, r, t).
In the simple case of transformed electrode references, the new
dependent variable X retains identity as an electric potential.
With surface Laplacian transforms (i.e., in high-resolution EEG),
X is proportional to the estimated local skull current and
brain surface potential. Other transforms include Hilbert
transforms, wavelets, principal or independent components
analysis, constrained inverse solutions (source localization), cor-
relation dimension estimates, and several measures of phase
locking between scalp sites, especially coherence. Coherence
estimates are normally based on Fourier transforms (i.e., spec-
tral analysis). These methods are discussed in chapter 7.

FOURIER TRANSFORMS

Historically, and especially before spectral analysis came into
more common use in the 1970s, EEG frequency content was
often described by simply counting waveform zero crossings.
For pure sinusoidal signals, this approach accurately indicates
signal frequency; a 10-Hz sine wave has 20 zero crossings per
second. However, when the signal contains a mix of frequen-
cies, the number of zero crossings can yield a misleading pic-
ture. For example, a mixture of moderate beta (18-30 Hz) and
larger alpha (8-12 Hz) oscillations might be classified simply
as beta based on visual inspection of zero crossings (Nunez
and Srinivasan 2006a).

Fourier (or spectral) analysis expresses any arbitrary time
series as a sum of sine waves with different frequencies and
phases. The most widely understood and generally practical
algorithm is the fast Fourier transform (FFT). Each waveform

is expressed in terms of the amplitude or power (i.e., amplitude
squared) and the phase of each frequency component. The
phase information is required to estimate coherence between
EEG channel pairs for each frequency component. Practical
FFT analysis methods are detailed in several texts (Bendat and
Piersol 2001; Nunez and Srinivasan 2006a) and are reviewed in
chapter 7. The FFT is a starting point for the application of
various statistical tools including coherence.

Other approaches to spectral analysis include wavelets
(Lachaux et al. 2002), autoregressive models (Ding et al. 2000),
and Hilbert transforms (Bendat and Piersol 2001; Le Van Quyen
etal. 2001). These methods are sometimes more useful than the
FFT with short data epochs. Any of them can be applied to
EEG, but interpretation of the transformed variables provided
by methods other than FFT may depend on assumptions and
parameter choices. These limitations are substantial in some
applications and are generally not as widely appreciated as are
the minimal limitations of the FFT. Thus, it is often prudent to
apply different spectral analysis methods to the same data sets
and then compare the results. The validity of each mathemati-
cal tool can be assessed by comparing different methods applied
to identical data (both genuine and simulated).

EEG PHASE SYNCHRONIZATION
AND COHERENCE

In standard EEG terminology, synchrony is a qualitative term
normally indicating mesosources P(r,t) that are approximately
phase-locked (i.e., synchronized with respect to time), with
small or zero phase offsets. In this case, sources tend to add by
linear superposition to produce large scalp potentials. Thus,
the label desynchronization is typically used to indicate the
reduction of EEG amplitude, as, for example, in the case of
alpha-blocking during eye opening or during execution of
certain cognitive tasks.

The term coherence refers to the standard mathematical
definition, and it is equal to the normalized cross-spectral den-
sity function, typically estimated with FFTs. Coherence is a
measure of phase-locking, specifically the phase consistency
between channel pairs. Sources that remain synchronous (i.e.,
have zero or small phase lags) over some period produce large
coherence values over the same period. However, depending
on their phase offsets, coherent sources may or may not be syn-
chronous: two oscillations that remain approximately 180° out
of phase are fully asynchronous but exhibit high coherence.
Coherence is a squared correlation coefficient and is expressed
as a function of frequency band. For example, when some
study subjects perform mental calculations (with eyes closed),
many electrode pairs exhibit increased EEG coherence (com-
pared to resting) in the theta and upper alpha (~10 Hz) bands
and decreased coherence in the lower alpha band (~8 Hz)
(Nunez et al. 2001; Nunez and Srinivasan 2006a).

TRANSIENT AND STEADY-STATE
EVOKED POTENTIALS

Averaged evoked potentials (EPs) are generated by sensory stim-
uli such as light flashes, auditory tones, finger pressure, or mild
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electric shocks. EPs are typically recorded by time-averaging
single-stimulus waveforms as an attempt to remove any noise
or other sources that are not time-locked to the stimuli. Event-
related potentials (ERPs) (see chapter 12) are recorded in the
same way as EPs, but they normally occur at longer latencies
from the stimuli and are more related to endogenous brain
state. With transient EPs or ERPs, the stimuli consist of repeated
short pulses, and the number required to produce an averaged
evoked potential may be anywhere from about 10 (for visual
EPs) to several thousand (for auditory brainstem EPs). The
scalp response to each pulse is averaged over the individual
pulses. The EP or ERP in any experiment is a waveform con-
taining a series of characteristic components, or potential
peaks (local maxima or minima), typically occurring in the
first 0.5 sec after stimulus presentation. A component’s ampli-
tude, latency from the stimulus, or covariance (at multiple
electrode sites) may be studied, in connection with a cognitive
task (e.g., usually for ERPs) or with no task (e.g., usually for
EPs) (Gevins et al. 1983 Gevins and Cutillo 1995).
Steady-state visually evoked potentials (SSVEPs) (see chap-
ter 14) use a continuous, sinusoidally modulated stimulus,
typically a flickering light produced by special goggles and
superimposed on images from a computer monitor that provide
a cognitive task. The brain response in a narrow frequency band
(often less than 0.1 Hz) around the stimulus frequency is mea-
sured. Magnitude, phase, and coherence (in the case of multiple
electrode sites) may be related to different parts of the task.
SSVEPs have two main advantages over transient ERPs: the
large increase in signal-to-noise ratio within the narrow bands
studied; and the observation that cognition typically affects
select frequency bands. Thus, SSVEP largely avoids the ERP
artifact problems that often confound cognitive experiments.
SSVEP coherence reveals that mental tasks consistently
involve increased 13-Hz coherence between selected electrodes
and decreased coherence between other electrodes (Silberstein
et al. 2004). Binocular rivalry experiments using steady-state
magnetic-field recordings show that conscious perception of a
stimulus flicker is reliably associated with increased cross-
hemispheric coherence at 7 Hz (Srinivasan et al. 1999). These
data are consistent with the formation of large-scale cell assem-
blies (e.g., cortical dipole layers) at select frequencies with
center-to-center scalp separations of roughly 5-20 cm.

HIGH-RESOLUTION EEG

The process of relating recorded scalp potentials V(r ,r,.t) to
the underlying brain mesosource function P(r,f) has long
been hampered by reference-electrode distortions and by
inhomogeneous current spreading through the head volume
conductor. The average reference method (AVE) (chapter 6)
provides an approximate solution to the problem of reference-
electrode distortions but altogether fails to address the prob-
lem of inhomogeneous current spreading. These issues, plus
the severe limitations on realistic inverse solutions, provide
strong motivation to add high-resolution EEG estimates to the
standard toolbox. Two distinct approaches are dura imaging, in
which a head model is employed to find an estimated dural
potential map; and the Laplacian (Nunez and Srinivasan
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2006a), which requires no head model but is approximately
proportional to the dural potential when the cortical regions of
synchronous sources are not too large (e.g., when they are less
than about 40 cm? of smooth cortex). The spline Laplacian
completely eliminates the reference problem and provides a
partial solution to current spreading in the volume conductor.
Skull conductivity is lower than that of contiguous tissue by
factors of about 10-40; thus, most source current reaching the
scalp passes normal to the skull. Based on this factor and Ohm’s
law, the surface Laplacian L at scalp site 7 is related to the local
outer skull potential @, and the inner skull (i.e., outer CSF)
potential ®_ by the approximate relation (Nunez and
Srinivasan 2006a)

L =A (D, -P.,) (3.19)

n Kn

Here the parameter A depends on local skull and scalp
thicknesses and resistivities. The interpretation of L, depends
critically on the nature of the cortical sources. With very large
dipole layers, the potential falloff through the skull is minimal,
so that @ and @ _ have similar magnitudes and the surface
Laplacian is very small. Thus, very large dipole layers occupy-
ing a substantial portion of the upper cortical surface (as may
occur with the global spike and wave of epilepsy, and in the
lower-frequency part of the resting alpha-rhythm band) make
only small or negligible contributions to the Laplacian. By con-
trast, when cortical source regions consist of small to moder-
ate-sized dipole layers, the potential falloff through the skull is
substantial, such that ® <<®_, . Thus, for small to moderate-
sized dipole layers, with diameters less than around 5-10 cm,
the negative Laplacian is approximately proportional to the
dural surface potential. The Laplacian then acts as a spatial
filter that removes low-spatial-frequency scalp signals that are
caused by volume conduction or genuine source dynamics.
However, it cannot distinguish between these two.

Dura imaging and Laplacian algorithms remove (i.e., filter)
genuine large-scale cortical patterns in addition to volume-
conduction distortions. Raw scalp potentials and high-resolu-
tion EEG are selectively sensitive to source regions of different
sizes. Thus, they are complementary measures of neocortical
dynamics. High-resolution EEG supplements, but cannot
replace, unprocessed potentials.

Over the past 20 years, the author’s research groups have
tested the Melbourne dura-imaging and the New Orleans
spline-Laplacian algorithms in several thousand simulations
and with many sets of genuine EEG data (Nunez 1995; Nunez
et al. 2001; Nunez and Srinivasan 2006a). When applied to
EEG recorded with high-density electrode arrays, these two
completely independent algorithms provide nearly identical
estimates of dural potential patterns. That is, electrode-by-
electrode comparison of the two estimates yields correlation
coeflicients typically in the 0.85 and 0.95 ranges, with 64 and
131 electrodes, respectively. Note, however, that the actual
magnitudes of dura-image and Laplacian variables cannot be
directly compared because they have different units, micro-
volts and microvolts per square centimeter, respectively. In
idealized simulations with n-sphere models and 131 surface
samples, we evaluated algorithm performance by calculating



site-by-site correlations between the estimated and actual
dural surface potentials produced by a wide range of localized
and distributed source patterns in several four-sphere head
models. Both algorithms yield typical correlation coefficients
~0.95 in these simulations (Nunez et al. 2001; Nunez and
Srinivasan 2006a).

Although dura-imaging and spline-Laplacian algorithms
nicely supplement the unfiltered EEG, an additional caution-
ary note is appropriate. We have cited error estimates in terms
of correlation coeflicients rather than mean-square errors
because correlation coefficients provide the more appropriate
test when the high-resolution algorithm precedes normalized
operations (e.g., coherence estimates, which are relatively
insensitive to local signal magnitudes). Because genuine-tissue
properties, such as skull area resistance, are expected to vary
over the head surface, the parameter A_in equation 3.19 must
actually vary with location. Thus, the magnitude of the
Laplacian estimate provides a much less reliable indicator of
cortical source patterns than does its sign. Nevertheless, large
local Laplacians are normally expected to provide a good indi-
cation of local source regions (Nunez and Srinivasan 2006a).

THE BRAIN'S MAGNETIC FIELD

In this chapter, we have emphasized electric (i.e., EEG and
ECoG) rather than magnetic (i.e., MEG) recording because the
former (particularly in the case of EEG) is inexpensive, far
easier to employ than magnetic measures, and widely used for
BClIs. A short description of magnetoencephalography (MEG)
is included here to provide a somewhat broader perspective on
general BClI-related issues.

MEG is an impressive technology for recording the brain’s
extremely small magnetic fields (Hamalainen et al. 1993).
Available since the early 1980s, this technology has been pro-
moted as preferable to EEG for both genuine scientific consid-
erations and poorly justified commercial reasons. MEG is
advantageous in that it is selectively sensitive: it is much more
sensitive to sources P(r,t) oriented parallel to its sensor coils
(which are placed approximately parallel to the local scalp).
This implies that MEG tends to be more sensitive to tangential
dipole sources P(r,t) on sulcal walls and less sensitive to sources
along gyral surfaces (although the convoluted geometry of
cortex provides exceptions in many regions). By contrast, both
the unprocessed EEG and the Laplacian appear to be more
sensitive to sources in cortical gyri. Thus, either in the context
of source localization or for more general analyses of spatial-
temporal patterns, the relative merits of MEG and EEG depend
on the nature of the underlying mesosources P(r,t). However,
such source information is almost never available in advance
of decisions to choose between EEG and MEG systems.

MEG has certain important advantages and also some dis-
advantages when compared to EEG. An important advantage
of MEG arises from the fact that the skull and other tissues are
transparent to magnetic fields, which are therefore minimally
distorted between sources and sensors and are apparently close
to those produced by sources in a homogeneous sphere. For
this reason, there appears to be much less uncertainty in

models that relate current sources in the brain (where tissue
conductivities and boundaries are known only approximately)
to MEG, as compared to EEG. In practice, however, EEG has
an important advantage in that scalp electrodes are more than
twice as close to the appropriate cortical sources as MEG coils;
with today’s MEG systems, these coils must be placed 2-3 cm
above the scalp. Thus, MEG’s advantage of tissue transparency
is offset by its disadvantage in sensor location. Its main strength
is its selective sensitivity to tangential sources (but mostly those
unapposed from the opposite side of a cortical fold) when such
sources are of primary interest.

For certain applications, the identification of special source
regions may be particularly important. When they are located
in fissures or sulci, epileptic foci or primary sensory cortex
sources may be difficult or impossible to isolate with EEG
because they are masked by larger potentials originating from
cortical gyri. One can easily imagine clinical or other applica-
tions in which MEG may locate or otherwise characterize such
special sources, especially in candidates for epilepsy surgery. It
is important to recognize, however, that MEG’s advantage in
this regard occurs because it is relatively insensitive to gyral
sources, not because it is generally more accurate than EEG,
which it is not (Malmivuo and Plonsey 1995; Nunez and
Srinivasan 2006a).

On the practical side, MEG technology is expensive and
cumbersome. It must be used in a magnetically shielded cham-
ber and the coils must be supercooled with liquid helium.
These practical disadvantages, in addition to the others dis-
cussed in this section, make it a method that can be supportive
of, but not likely to be primary to, BCI development.

VOLUME CONDUCTION VERSUS
SOURCE DYNAMICS

The physics of EEG is naturally separated into two mostly dis-
parate subtopics: volume conduction and brain dynamics (or,
more specifically, neocortical dynamics). Volume conduction is
concerned with relationships between mesosources P(r,t) and
the resulting scalp potentials; the appropriate expressions are
equations 3.15, 3.16, and 3.17, which provide forward solu-
tions. Although the fundamental laws that govern volume con-
duction (i.e., charge conservation and Ohms law) are well
known, their application to EEG is, in understated physics par-
lance, nontrivial. The time variable in these laws takes on the
role of a parameter, and EEG time dependence is just the
weighted volume average of all contributing brain sources.
This is indicated most clearly in equation 3.16. The resulting
simplification of both theory and practice in EEG is substan-
tial: linear superposition of potentials due to multiple sources
represents an extremely valuable dry island in the present sea
of uncertainty about the details of volume conduction and the
dynamic behavior of sources.

Brain dynamics is concerned with the origins of time-
dependent behavior of brain current sources. It presents quite
a different story. In the simple example of the dependent source
in the electric circuit shown in figure 3.3, the functional rela-
tionship I =f(V ) originates from hidden interactions between

CHAPTER 3. ELECTRIC AND MAGNETIC FIELDS PRODUCED BY THE BRAIN | 61



circuit elements. We expect analogous (but far more compli-
cated) phenomena to occur in brains. That is, multiple brain
sources interact in cell assemblies (networks) to produce the
complex, fractal-like dynamic behavior that is recorded with
different methods (and provides neural correlates of conscious-
ness) (Nunez 2010). Although a number of plausible physio-
logically based mathematical theories have been developed, we
are far from any comprehensive theory of brain dynamics
(Nunez and Srinivasan 2006b; Nunez 2011). Nevertheless,
even very approximate, speculative, or incomplete dynamic
theories can have substantial value in supporting general con-
ceptual frameworks and in generating new experiments.

The relationship of the recorded potentials to the full
dynamics of the neocortex may be illustrated with an ocean-
wave metaphor. Spatial maps of any kind may be expressed as
a sum over spatial frequencies in two dimensions in a manner
similar to Fourier analysis in the one-dimensional time
domain. For example, ocean-wave energy is distributed over
more than four orders of magnitude of spatial and temporal
frequencies. The longest ocean waves, the tsunamis and tides,
have wavelengths of hundreds or thousands of miles. Wind-
driven waves have intermediate lengths. Ripples due to surface
tension have wavelengths of less than a foot. Similarly, electro-
physiology spans about five orders of magnitude of spatial scale
(and spatial frequencies) depending on the size and location of
electrodes.

Because of poor spatial resolution, EEG is sensitive to only
the very longest spatial wavelengths in the full spatial spectrum
of cortical dynamics. (The analogous ocean-wave measurement
would be surface displacement averaged over ocean patches a
thousand or so miles in diameter; only the tides, not the wind-
driven waves, would be observed in such experiments.)
Intracranial recordings of brain potentials (LFP and ECoG) are
sensitive to only a selected part of the cortical spatial spectrum.
Electrode size and location determine which part of this spec-
trum is recorded; and the recording may exclude much of the
long-wavelength dynamics. (By analogy, wave-height measure-
ments taken from a ship or low-flying helicopter see mainly
wave chop driven by local winds, missing tides and tsunamis
entirely. Such small-scale ocean data would fail to match any
conceptual framework based on tidal mechanisms.) Thus,
dynamic behaviors observed with intracranial recordings may
differ substantially from potentials recorded at the scalp.

The author has proposed one possible conceptual frame-
work for the dynamic behavior of cortical mesosources (Nunez
1995, 2010). According to this framework, P(r,t) is generated
by a combination of network (or, more accurately, cell assem-
bly) and global synaptic field sources. The latter are simply the
numbers of active excitatory and inhibitory synapses in each
tissue volume. The networks may be pictured as embedded in
global synaptic fields (including standing and traveling waves)
analogous to the social networks embedded in a culture. This
general idea is demonstrated by human alpha rhythms, which
consist of long-wavelength (low spatial frequency) potentials
plus more localized (apparent) network activity. The local cor-
tical patches where this activity occurs were recently identified
with modern Laplacian methods but were originally found
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years ago in classical EEG and ECoG studies by the pioneers
Grey Walter, Herbert Jasper, and Wilder Penfield (see Nunez
and Srinivasan 2006a for overview). Local cortical patches that
could reflect the cortical parts of thalamocortical networks
produce oscillatory alpha-band activity that may or may not
match global alpha frequencies (Nunez 1974, 2000a, 2000b,
2010, 2011). The label global suggests dynamics dominated by
long spatial wavelengths, implying large contributions to scalp-
recorded potentials but much smaller contributions to the
Laplacian. Substantial interaction between networks and global
synaptic fields is hypothesized, with global fields playing a cen-
tral role in functional integration of local and regional net-
works. This general conceptual framework addresses the
so-called binding problem of brain science: that is, how the
unity of conscious perception is brought about by separate and
distributed networks perhaps operating in nested hierarchies
(Nunez and Srinivasan 2006a, 2006b; Nunez 2010).

SUMMARY

The goal of this chapter has been to provide the reader with the
basic information needed to be an effective user of electric- or
magnetic-field recording methods in BCI research and devel-
opment. To this end we have addressed the generation, distri-
bution, and detection of these fields on micro-, meso-, and
macroscales, thereby accounting for the multiscale structure of
brain tissue. Current sources in the cortex generate potentials
that may be recorded at all three scales. The small and interme-
diate scales represented by LFPs and ECoG activity provide
more local details but only sparse spatial coverage. The large-
scale EEG covers much of the entire upper-cortical surface, but
it yields only very coarse spatial resolution. High-resolution
EEG, implemented as either Laplacian and dura image algo-
rithms, can supplement unprocessed EEG, providing some-
what better spatial resolution, but at the cost of eliminating the
very large-scale dynamics that may be of interest. Thus, unpro-
cessed and high-resolution EEG provide complementary mea-
sures of cortical dynamics. In all cases, the observed dynamic
behaviors of recorded potentials or magnetic fields are pro-
duced by the weighted linear sums (i.e., linear superposition)
of the underlying sources. Different brain regions and mea-
surement scales may exhibit quite different dynamics (e.g.,
dominant frequencies), but such differences are due only to the
different weights in the sums associated with different source
locations and recording methods.

Effective use of these methods in BCI research and devel-
opment also depends on understanding additional practical
issues: What are the key features of the electrodes (or magnetic
coils) that record these fields? How many are needed, where
should they be placed, and how should they be referenced?
How should the recorded data be analyzed to maximize the
signal-to-noise ratio and to focus on the measures best
suited for communication and control? These operational
questions are based partly on the fundamentals of brain phys-
ics outlined in this chapter and are considered in detail in
chapters 6 and 7.
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4 | SIGNALS REFLECTING BRAIN METABOLIC ACTIVITY

NICK F. RAMSEY

rain activity involves three types of processes: electrical,

chemical, and metabolic. Best known of these is the elec-

tromagnetic activity that results in a neuron’s action
potential, which is itself the result of chemical events occurring
in and around the neuron. Action potentials and other neu-
ronal electrical phenomena allow for electrical measurement
of brain activity with electroencaphalography (EEG), magneto-
encephalography (MEG), electrocorticography (ECoG), or
with microelectrodes implanted in the brain tissue. However,
these methods have a variety of disadvantages. EEG and MEG
sensors are located far from the neurons, and the signals
acquired do not allow precise identification of the active brain
areas. In addition, since the orientation of neurons relative to
the sensors strongly affects the measurements, some brain
regions are less visible to these sensors. Electrodes placed
directly on or within the cortex measure electric activity in
their immediate vicinity, but they can cover only a very limited
part of the brain. Thus, these methods based on electrical sig-
nals have significant inherent limitations. Brain activity can
also be detected by measuring chemical processes, but the
methods for doing so in humans (mainly by positron emission
tomography [PET]) are still rather crude, involve injection of
specially manufactured markers, and have poor temporal reso-
lution. Because of the limitations of electrical and chemical
methods, much effort has recently been invested in measuring
metabolic processes to study brain activity. These metabolic
methods are the focus of this chapter.

Metabolic processes involve the utilization of energy. When
neurons increase their firing rate, they use more energy. This
energy is supplied by chemical reactions in and around the neu-
rons. The increased metabolic activity increases the demand for
the basic fuels of metabolism: glucose (sugar) and oxygen. This
change in demand can be detected because it is accompanied by
increased blood flow to the region. Since blood flow in the brain
is highly controlled and locally regulated, it acts as a marker for
neuronal activity. This chapter explains how signals indicating
increased blood flow in the brain (also called the hemodynamic
response) can, even in humans, be detected and used to con-
struct detailed images of the brain that reveal brain activity.

OVERVIEW OF FUNCTIONAL
NEUROIMAGING

RESOLUTION

Ideally, an imaging technique should capture every event in
every neuron. Since this is currently not possible, our aims

instead are the highest spatial detail and highest temporal
detail possible. Spatial and temporal detail are both measured
in terms of resolution, the distance between two adjacent points
in space or time that can be distinguished from each other. For
example, in digital photography, a photo taken with a 1-Mpixel
camera produces an image consisting of squares and does not
show much detail. In contrast, a 10-Mpixel image will have
more squares and will display a lot of detail. The size of the
squares (much smaller for the higher-resolution image) is
called the resolution. The term resolution is also used in brain
imaging. However, since the measurements in brain imaging
are in three dimensions, the term voxel (volume element) is
used instead of pixel (picture element). A spatial resolution of 1
mm means that each voxel has a size of 1 mm along each side.

Temporal resolution reflects the time it takes to make one
measurement. Again using a familiar analogy, this time of dig-
ital video recording, we know that more frames per second
produce smoother and more detailed moving images and thus
give higher temporal resolution. Temporal resolution is typi-
cally measured in milliseconds (ms) or seconds (s). For both
spatial and temporal resolution, a smaller value (in mm or ms)
indicates higher resolution; conversely, a larger value indicates
poorer resolution.

Although electrical, chemical, and metabolic processes
can all be measured with current techniques, they do so with
different degrees of resolution and different degrees of overall
success depending on the type of process measured and the
properties of the measuring technique. Figure 4.1 shows
the properties of the most commonly used techniques to
measure brain activity. Various chemicals can be imaged with
PET, using specially manufactured markers that are injected
(Tai and Piccini 2004). However, temporal detail and spatial
detail are very poor when compared to images produced by
electrical and metabolic methods. It takes tens of minutes to
record one PET image of the brain, and the spatial resolution
is moderate at best (about 5 mm). In contrast, imaging of
electrical processes can give excellent temporal detail. With
electrical methods, one can detect and distinguish between
two events occurring within a few milliseconds of one another
in the same brain region. However, unless one places ele-
ctrodes within or on the surface of the brain, it is difficult to
pinpoint the precise location of this electrical activity, since
the flow of current in the brain is affected by less conductive
materials like thick membranes and the skull (chapters 3 and
6). Thus, the precise origin of the signals is uncertain, and the
images produced by electrical methods have low resolution
(1-2 cm).
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Figure 4.1 Resolutions of different brain-imaging techniques. Color gradient
represents the extent to which the brain can be imaged in one experiment.

TECHNIQUES FOR IMAGING BLOOD FLOW

The metabolic processes that are the focus of this chapter track
changes in blood flow and are the most recently developed of
the relevant imaging techniques. Methods that measure meta-
bolic processes give good spatial resolution (ranging from 5
mm to less than 1 mm), and all brain areas can be imaged. The
speed of image capture can be very high, and images can be
constructed in less than half a second. However, temporal
detail is only moderate because the change in blood flow itself
is much slower: it takes about 2 s for a blood vessel to react to
the increased oxygen demand, and it takes another 12 s for
blood flow to decrease afterward (Donaldson and Buckner
2001). Despite this limitation, the good spatial resolution and
broad coverage of the brain make blood-flow imaging an
intriguing and useful method for many neuroscientific endeav-
ors. For these reasons, blood-flow imaging has been used
increasingly in BCI research.

Currently, there are four major methods used in humans for
imaging changes in brain blood flow and its related processes.

. Functional transcranial Doppler (fTCD): This
method measures changes in blood flow in the
major arteries of the brain (Stroobant and
Vingerhoets 2000). Of the four metabolic
methods listed here, it is the easiest to use
because the equipment is mobile and afford-
able, and because it can be performed with a
small probe held against the side of the head
(above the cheekbone), allowing for measure-
ments in almost any setting. Although it is
quite sensitive, it can only measure differences
between the left and right hemispheres. Thus, it
is of minimal use for BCI purposes.

. Positron emission tomography (PET). In
addition to its use in tracking chemical events,
this technology can also track blood flow (Fox
et al. 1984). However, it is slow, and it requires
injection of radioactive compounds. Thus, it
has little appeal for BCI applications where
speed and ease of use are crucial.
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« Functional near-infrared spectroscopy (fNIRS).
This method measures blood flow by tracking
changes in the different forms of hemoglobin
(Villringer et al. 1993; Boas et al. 2004). The
changes in hemoglobin that accompany brain
activity are called the blood-oxygen-level-
dependent (BOLD) response (Ogawa et al. 1990).
NIRS uses infrared light of specific wavelengths
that passes through the skull and back out,
where it is detected. It has low spatial resolution
(on the order of centimeters) but reasonably
good temporal resolution. However, its temporal
resolution is limited to several seconds primarily
because of the slow rate of the hemodynamic
response (Vladislav et al. 2007). Since it is
relatively easy and convenient to use, it is an
attractive possibility for BCI development.

. Functional magnetic resonance imaging (fMRI).
fMRI also measures the BOLD response by
tracking the changes in blood flow indicated by
the relative amounts of the different forms of
hemoglobin (Ogawa et al. 1990). fMRI relies on
the distinctive responses of different forms of
hemoglobin to a high magnetic field. Although
this method is expensive and technically
demanding, it is the most sensitive of the four
hemodynamic methods and has the highest
spatial resolution. It is currently the most
widely used of the four hemodynamic imaging
methods listed here for both basic research and
BCI development.

These four methods will be described in greater detail in
this chapter, but to do so, we must first discuss the physiologi-
cal events and the factors that make it possible to obtain images
of brain activity based on blood flow. Let us first examine the
relationship between blood flow and brain activity.

BLOOD-FLOW RESPONSES TO BRAIN ACTIVITY

Oxygen transport is one of the key functions of blood.
Oxygenated blood is pumped from the heart through the arter-
ies to the smallest blood vessels, the capillaries that pass through
all the organs and muscles. There, it releases the oxygen that
supports metabolic processes, and it absorbs the carbon dioxide
produced by metabolic processes. The blood returns to the
heart via the veins and then circulates through the lungs where
it releases carbon dioxide and picks up molecular oxygen (O,).
The newly oxygenated blood returns to the heart, and the cycle
starts again. Each complete cycle takes about one minute. In the
blood, the transport of oxygen is carried out by hemoglobin
(Hb), an iron-containing complex protein that can bind O,. Hb
in the blood exists in two forms: deoxy-hemoglobin (deoxy-Hb),
which does not contain bound O,, and oxyhemoglobin (oxy-Hb),
which does. As blood passes through the lungs, each deoxy-Hb
molecule picks up four O, molecules and thereby becomes
oxy-Hb. When the blood passes through organs and muscles,
the oxy-Hb releases its oxygen and becomes deoxy-Hb.



When a brain region’s metabolic activity increases, its
oxygen consumption increases. After about a second or so, the
neurons begin to absorb more oxygen from the oxy-Hb in the
blood of the nearby capillaries (what happens during the delay
is not quite clear [see Hyder et al. 2006]). It is estimated that
oxygen consumption by neurons accounts for 80% of energy
use in brain tissue; in contrast, glial cells account for about 5%
and therefore contribute little to metabolic demand (Renaud
et al. 2009; Attwell and Iadecola 2002). The capillaries respond
to the neurons’ increased demand for oxygen by widening to
allow more fresh (oxy-Hb-containing) blood to flow into the
region. In this process, three important changes occur:

. the amount of blood (blood volume) in the
immediate vicinity increases

. the rate of blood flow increases

. oxy-Hb delivers oxygen to the cells and
becomes deoxy-Hb

When brain activity in the region falls back to its baseline
level, these three properties also revert back to their original
states. The four methods for imaging blood flow discussed in
this chapter measure one or more of these three changes.

The two methods most relevant to BCI technology are
functional near-infrared spectroscopy (fNIRS) and functional
magnetic resonance imaging (fMRI). They measure differences
in the color (fNIRS) or magnetic properties (fMRI) of Hb in its
two states:

. oxy-Hb is light red, whereas deoxy-HDb is dark red

. oxy-Hb is nonmagnetic (‘diamagnetic”), whereas
deoxy-Hb is slightly magnetic (“paramagnetic”)

Specifically, fNIRS measures the change in near-infrared
absorption as oxy-Hb becomes deoxy-Hb, whereas fMRI mea-
sures the change in magnetic properties that occurs with
change in the relative amounts of oxy-Hb and deoxy-Hb during
brain activity.

Brain activity involves communication between neurons.
Since a specific communication involves a sender and a receiver
(often located in a different part of the brain), it is important to
know whether hemodynamic changes are the same for both
sender and receiver, or whether they differ. Measuring com-
munication directly is not possible because each neuron is
connected to as many as 10,000 other neurons, forming a
highly complex system (Buzsaki 2006). Changes in communi-
cation can be measured indirectly by measuring single-neuron
firing rates or local field potentials (LFPs) (i.e., with microar-
rays, chapter 5), or by measuring larger-scale field potentials
with ECoG (chapter 15) or EEG (chapter 6). Changes in com-
munication can also be measured using {NIRS or fMRI imag-
ing of hemodynamic changes associated with communication.
These hemodynamic changes are most pronounced at the
receiving end, that is, at the nerve terminals, where presynaptic
neurons transfer neurotransmitters to postsynaptic neurons
(Logothetis 2008; Attwell and Iadecola 2002). (These terminals

are also largely responsible for the LFPs, and for ECoG and
EEG.) Hemodynamic changes are dramatically less pro-
nounced at the sending end, that is, at the neuron cell bodies,
which generate the action potentials that travel along the nerve
fibers to the terminals (Logothetis 2008). In sum, both the
hemodynamic changes and the field potentials measured from
the cortex originate mainly from the nerve terminals.

THE FOUR MAJOR METABOLIC
NEUROIMAGING METHODS

Let us now examine the four methods of blood-flow measure-
ment in more detail and evaluate their relative merits for
BCI use.

FUNCTIONAL TRANSCRANIAL DOPPLER

Blood is supplied to each hemisphere of the brain by three
main arteries: the anterior, medial, and posterior cerebral
arteries. Each arises from the Circle of Willis below the brain
and supplies a specific segment of the hemisphere (fig. 4.2).
When a person starts to perform a task, particular areas of the
cortex increase their activity level and require more oxygen.
This oxygen is delivered by the main arteries, which, in response
to the increased demand, increase the supply of oxygen-rich
blood by increasing the rate of blood flow in those arteries. In
functional transcranial Doppler (fI'CD) imaging, a Doppler
probe is placed in contact with the scalp and sends a sound
wave of constant frequency (on the order of 2 MHz) to one of
the three main cerebral arteries (Stroobant and Vingerhoets
2000). This sound wave enters the head right above the cheek-
bone through a triangular area of the skull that is sufficiently
thin for the sound to pass through. At the same time, the probe
detects the reflection of that sound wave. The frequency of the
reflected sound indicates the velocity of blood flow in the tar-
geted artery (Stroobant and Vingerhoets. 2000). A change
occurs because the traveling blood causes a phase shift in the
sound waves, which causes a velocity-specific change in the
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Figure 4.2 (A) The lobes of the human cerebrum. (B and C) The three main
cerebral arteries (see color key) supply different (and partially overlapping)
territories. B and C are lateral (LAT) and medial (MED) views, respectively, of
the left hemisphere. (Adapted from O’Rabhilly et al. 2004.)
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frequency of the sound that the blood reflects back to the
probe. fTCD is used clinically to detect abnormal blood flow
associated with brain pathology (e.g., stroke). When applied to
the measurement of brain function, it relies on the fact that the
rate of blood flow to a particular brain area changes when a
person starts to perform a task controlled by that brain area
(Stroobant et al. 2000).

At any one time, fTCD can target only one artery in each
hemisphere. Used in this way, it can, for example, determine a
particular person’s language lateralization (although language
function is located in the left hemisphere in more than 90% of
people, in some it is in the right hemisphere, and in others it is
bilateral [Deppe et al. 2000]). Despite its usefulness for gaining
this type of information, fTCD is unlikely to be useful for BCI
purposes because it measures changes that occur only in large
areas of brain (i.e., the large areas supplied by each of the three
principal arteries). Anything that happens in one of those large
areas will increase blood flow, so if fTCD were used for BCI,
many different brain functions (including motor imagery and
seeing someone else move) would trigger the BCI system and
cause frequent false detections.

POSITRON EMISSION TOMOGRAPHY

Positron Emission Tomography (PET) can produce images of
chemical processes (Cherry and Phelps 2002) and can also
produce images of metabolic processes. It does so by detecting
changes in blood flow (Fox et al. 1984). Although PET is very slow
in imaging chemical processes (i.e., requiring tens of minutes),
it is substantially faster in imaging blood flow (i.e., <1 min).

PET requires the injection of radioactive compounds pre-
pared in an on-site cyclotron that inserts a radioactive atom in
a specific marker molecule. (The radioactive isotopes used
have short half-lives and are administered at doses small
enough to preclude harmful biological effects.) In PET imag-
ing of blood flow, radioactive oxygen (**O) is first inserted into
water molecules, making them radioactive. The radioactive

water molecules are injected and pass through the body. Since
the blood-brain barrier is readily permeable to water, radioac-
tive water in the blood is exchanged with water in the brain.
This process occurs in proportion to the level of blood flow.
When the brain is active and blood flow to the brain increases,
the radioactive water concentrates in the brain.

After injection of the marker, the PET scanner starts to col-
lect images by measuring radiation with a ring of detectors in
the scanner. Whenever a radioactive oxygen atom (°O) releases
a positron that collides with an electron in the immediate sur-
rounding, the two particles annihilate each other and emit two
gamma photons traveling in opposite directions. These gamma
photons then hit blocks made of crystals (scintillators) that sur-
round the subject’s head in the scanner. As the photons impinge
on the crystal blocks, a brief flash of light occurs. This flash is
detected by high-performance optical cameras arranged
directly outside the crystals. Since the two photons travel in
opposite directions along a single line, they impinge on two
diametrically opposed scintillators. From detections of thou-
sands of such hits, the sources of emission from the brain can
then be reconstructed.

The image constructed by the PET scanner displays the
density distribution of the radioactive tracers in the brain.
When a brain region is active and blood flow in that region
increases, more radioactive water enters the brain tissue, and
the PET cameras detect the radioactivity to create a brain
image. However, since different parts of the brain have differ-
ent rates of metabolism, the areas with high radioactive-tracer
density are not necessarily those that are active. To determine
what area(s) are active, it is necessary to collect a reference
scan made while the subject is in the scanner but not perform-
ing a task. Subtraction of the reference image from the task-
activity image generates a difference image, which identifies
the areas that are active during the task. Examples of PET
images of the brain are shown in figure 4.3.

Temporal resolution for PET is modest, since at least 40 s
are needed to collect enough information to construct one

Figure 4.3 PET images of the brain of one subject. (Top) distribution of "®F-fluorodeoxyglucose ("*F-FDG), a radioactive marker of glucose metabolism, showing one

slice in each of the transaxial, coronal, and sagittal directions. (Bottom) Distribution of a radioactive marker of cerebral blood flow (O in water), reflecting brain
activity. (Courtesy of B. N. M. van Berckel, Free University Medical Center, Amsterdam, The Netherlands.)
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image. Spatial resolution is about 5 mm. A PET scanner is also
expensive because it is necessary to have a cyclotron in the
immediate vicinity since O decays rapidly, with a half-life of
about 2 min. For scanning, this rapid decay is an advantage
because it makes multiple scans possible within one session,
thus allowing for mapping of different brain functions within
an individual. (In contrast, a slow decay would cause radiation
from one scan to affect the next.) The expense of the cycloctron
and the need for injection of radioactively labeled compounds
are significant disadvantages of this method. As a result, inter-
est in "O-PET imaging diminished when fMRI emerged and
developed as a viable imaging method.

FUNCTIONAL NEAR-INFRARED SPECTROSCOPY

FUNCTIONAL NEAR-INFRARED SPECTROSCOPY

PRINCIPLES
fNIRS also measures blood flow. It reveals brain activity for
only the top few mm of cortex, is noninvasive, and is based on
the change in the blood’s color when oxygen is delivered to
brain tissue (Villringer et al. 1993; Boas et al. 2004). fNIRS is a
BOLD-response technology that measures the changes in the
relative levels of oxy-Hb and deoxy-Hb during brain activity.
Oxygen-rich blood, high in oxy-Hb, is present in the main
arteries of the brain, as well as in the smaller arteries and the
upstream segments of the capillaries. Oxygen-poor blood, high
in deoxy-HD, is present in the downstream segments of the
capillaries as it passes into the venuoles and then into progres-
sively larger veins, the largest of which, the superior venous
sinus, runs between the two hemispheres just below the skull.

When an experimental subject performs a particular task,
brain activity increases in those brain areas relevant to the task,
and the amounts of oxy- and deoxy-Hb change in the immedi-
ate vicinity of those areas. In the resting state (before a subject
performs a task), there is some baseline neuronal activity, some
ongoing metabolic activity, some deoxy-Hb produced, and
therefore some presence of baseline deoxy-Hb. When activity
in a particular brain region increases during task performance,
neuronal and glial metabolism both increase. At first, as the
cells take oxygen from the blood to support the increased
metabolism associated with neuronal activity, the level of
deoxy-Hb increases. The vascular system then responds quickly
to prevent oxygen deprivation in downstream brain regions,
and in doing so, it supplies much more oxygen-rich blood than
is necessary (Fox and Raichle 1986). This surge of fresh blood
causes the local concentration of oxy-Hb to increase and the
local concentration of deoxy-Hb to effectively drop (almost all
deoxy-Hb in the local vicinity is washed away). {NIRS takes
advantage of the fact that the relative amounts of oxy-Hb and
deoxy-Hb in the area change, and this change is proportional
to the level of neuronal activity. The changes in the oxy/deoxy
ratio can be detected because the absorbance spectra at near-
infrared wavelengths differ for oxy-Hb and deoxy-Hb (Boas
et al. 2004). That is,

. deoxy-Hb is dark red; it absorbs light of
wavelength around 690 nm (to a greater extent
than oxy-Hb does)

. oxy-Hb is light red; it absorbs light of
wavelength around 830 nm (to a greater extent
than deoxy-Hb does)

In a homogeneous medium, the attenuation of light is
expressed by the Beer-Lambert Law (Villringer and Chance
1997), which states that the attenuation, or absorbance, A, is
proportional to the concentration of the absorbing molecule:

A=cxexl (4.1)
where ¢ is the concentration of the absorbing molecule, ¢ is its
absorption coeflicient (characteristic for a particular material),
and [ is the optical path length. A change in the concentration
of the absorbing molecule, Ac, will produce a proportional
change in absorbance AA such that:

AA=Acxexl (4.2)

A can be detected by the fNIRS sensor at different time
points, so AA can be determined. Because the head provides a
complex heterogeneous medium for the path of light, the Beer-
Lambert Law is modified for fNIRS applications (Villringer
and Chance 1997) to include additional parameters that
account for the effects of light scattering (e.g., signal loss due to
rays deflected away from the sensor and increased path length
due torayszigzagging before reaching the sensor). Nevertheless,
the Beer-Lambert equation expresses the basic principle under-
lying fNIRS measurement of changes in brain activity.

In fNIRS, light of wavelengths 690 and 830 nm is shined on
the skull with probes positioned on the scalp (fig. 4.4). This
light is able to pass through skin and bone to reach the under-
lying brain tissue. Some of the light is absorbed by the brain
tissue. Some of the light is scattered, and part of this scattered
light is reflected back out of the head. Less reflection means
that more is absorbed. Since deoxy-Hb and oxy-Hb have
different patterns of absorbance at 690 and 830 nm, and since

Figure 4.4 An example of an fNIRS device with sources and sensors. The four
lights in the middle row are the illuminators, and the two rows at the edges
house the 10 detectors. (Reprinted from Biopac Systems; retrieved from
fNIRdevices.com.)
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the absorbance at a particular wavelength is proportional to
the concentration of the absorbing molecules, measurement of
the reflected light at wavelengths 690 and 830 nm reveals the
concentrations of the absorbing molecules, deoxy-Hb and
oxy-Hb, respectively. When brain activity increases, the
deoxy-Hb concentration first increases as the blood’s Hb releases
its oxygen to the cells. This is a small effect and is detected as a
small increase in absorbance at 690 nm (indicating more
deoxy-HD). After a few seconds, the flow of fresh oxy-Hb-con-
taining blood to the area increases, and the absorbance at 830
nm (indicating oxy-Hb) therefore increases. This is a much
larger effect because it is due primarily to the more than sufhi-
ciently increased blood flow to the area (Fox and Raichle 1986).

fNIRS HARDWARE
fNIRS devices consist of light-source/detector pairs (together
called sensors) positioned on the head (fig. 4.4). Up to about 52
pairs are currently possible, allowing for measuring a consider-
able part of the brain surface. As hair obstructs the passage of
light (and hair movement disturbs the signal), the best signals
are obtained from the forehead. Other positions are possible
but require careful repositioning of hair that might obstruct
the sources and detectors.

When the light source shines NIR light of a particular
wavelength through the skull at an angle, the light passes
through to the brain, penetrates a few mm into the cortex, and
is reflected back out of the head where it is detected by the
detectors located in its path. The deflections of the photons as
they cross the interfaces between the different tissues cause
them to follow a curvilinear path from the source to the detec-
tor. This path is called the photon banana (Hongo et al. 1995),
and its shape is determined by the optical properties of the
tissues. As the distance between the source and the detector
increases and absorption increases (due to the longer path
length), more of the banana passes through the cortex. This
effect is illustrated in figure 4.5. However, although increased
source-detector distance increases absorbance (due to longer
optical path length), it also results in more light scattering,
which degrades fNIRS sensitivity and spatial resolution. Thus,
the distance selected is a compromise between these two
opposing factors and should be appropriate for the particular
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application. From data obtained from an array of {NIRS sen-
sors, a map can be constructed of the hemodynamic changes
that correlate with task performance. This map looks similar to
fMRI maps, although the coverage is limited, and the spatial
resolution is much lower (fig. 4.6).

fNIRS is noninvasive, is relatively easy to use, and is porta-
ble and inexpensive compared to the other blood-flow mea-
surement technologies. Its temporal resolution is relatively
good (on the order of several seconds), but its spatial resolution
is relatively low (on the order of cm). Despite its limitations,
it has some promise as a method for BCI development. Further
details on fNIR techniques as well as NIRS use for BCIs are
discussed in chapter 18.

FUNCTIONAL MAGNETIC RESONANCE
IMAGING

The fourth metabolic imaging method that we discuss is fMRI,
which first emerged as a potentially useful imaging technology in
1990 (Ogawa et al. 1990; Kwong et al. 1992) and has developed
very rapidly since then. It provides excellent spatial detail and is
now one of the most widely used techniques for imaging brain
function. (A significant practical reason for its wide adoption is
also the fact that it uses the same MRI scanner that radiologists
use for a variety of clinical applications.) fMRI, like fNIRS, is a
BOLD-response method since it measures the relative amounts
of oxy- and deoxy-Hb in the brain tissue. It is noninvasive.

Before describing fMRI methods and their applicability for
BCI technology, we first need to describe the properties of an
MRI scanner and the underlying principles of magnetic reso-
nance (see McRobbie et al. 2007 for a detailed explanation of
MRI). An MRI scanner consists of six key components:

. alarge main magnet

. aradiofrequency transmitter
. areceiver antenna

. gradient coils

. afront-end computer

. areconstruction computer
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Figure 4.5 Example of an fNIRS sensor scheme. Because a beam of light may scatter before it exits the head, it may be detected by sensors at multiple locations.

(A) Possible source-sensor pairings for the 14 sources and sensors shown. (B) Effects of distance between source and sensors (nearby is first neighbor, next is

second neighbor). Note the banana shape of the path of the scattered beam from the source to the sensors it reaches. Rays travel farther and deeper for the

second neighbor. (Reprinted with permission from Gregg et al. 2010.)
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Figure 4.6 Brain-activity maps obtained with fNIRS and fMRI with three levels of
difficulty in a mental task. Color indicates strength of the activation (i.e., oxy-Hb
concentration). Note difference in spatial detail (resolution) between the two

techniques. (Reprinted with permission from Tsunashima and Yanagisawa 2009.)

THE MAIN MAGNET
The large main magnet is an aluminum tube, usually 2 meters
long, with a 100-cm wide tunnel running through its center.
Wires are wound around the tube to form several rings (fig.
4.7). MRI magnets do not use standard copper wire because
the high electric currents required to produce the high mag-
netic fields needed for imaging would make it difficult to cool
the wires and would increase the copper wire’s resistance,
thereby preventing the creation of the high magnetic field.
Instead of copper, MRI magnets use wire made of a supercon-
ducting material consisting of a combination of niobium-
titanium and copper. This superconducting material has zero
resistance to electric currents at very low temperatures. In
the magnet, the wire is immersed in an aluminum casing that
contains liquid helium maintained at —269 degrees Celsius
(4 Kelvin). At this temperature, the wire becomes supercon-
ducting. That is, it is possible to pass very high electric currents
without generating heat, thus creating a very strong magnetic
field. The magnetic field that results from passing high electric
currents through the cooled superconducting wire is called the
B, field. The strongest magnets currently in use generate a B
field of more than 20 Tesla (T). The strongest magnets produce
the highest-intensity MRI signals. (Note that the magnetic
strength used in human MRI scanners is limited by the need
for a tunnel large enough for humans [Robitaille and Berliner
2006]. The strongest magnets currently used in humans have
B, fields of 11.7 T. Most modern hospitals have a 3-T MRI
scanner for clinical diagnosis and research.)

Human tissue itself is not magnetic. However, it is rich in
hydrogen. The nucleus of a hydrogen atom (i.e., a proton) has
an intrinsic spin that is accompanied by a small magnetic
moment (dashed red line pointing up and to the right at the
instant depicted in figure 4.8) and an angular momentum.
Although these physical properties can be strictly described
only by quantum mechanics, it is still possible, under the
conditions typically present in an MRI scanner (McRobbie
et al. 2007), to describe the properties of a large collection of

Figure 4.7 Schematic of an MRI main magnet. The six inner red rings indicate
the wire bundles generating the main field (B ) inside the tunnel. The two outer
red rings generate a countering magnetic field to reduce the field outside the

scanner, allowing the MRI to be installed in limited space. (Reprinted with
permission from Cobham Technical Services; retrieved from http://www.
wordsun.com.)

protons by classic mechanics and electrodynamics. Normally,
the tiny magnetic fields created by the many spinning protons
(i.e., hydrogen nuclei present in human tissue) cancel one
another out because their axes of rotation (and magnetic
moments) are randomly oriented due to the Brownian motion
of the molecules.

In an external magnetic field, such as the B field of the MRI
scanner (dashed vertical blue line in fig. 4.8, conventionally
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Figure 4.8 A hydrogen nuclear proton spins and has a magnetic moment
(slanted dashed red arrow) that precesses around the axis of the B, field. The
behavior of one proton is shown. The net magnetic moment of all the protons
in the field (vertical dashed red arrow) aligns with the B, field (vertical dashed
blue arrow).
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defined as the +z axis), the tiny magnetic moments (e.g., slanted
dotted red line in fig. 4.8) that are created by the protons’ spin
experience a torque that causes them to precess (wobble)
around the axis of the B field’s magnetic moment (see circular
path of this precession in fig. 4.8). The magnetic moments of
just over half of these precessing (wobbling) protons (like the
proton shown in fig. 4.8) are oriented with the B field; they
precess around the +z-axis. The magnetic moments of the
remaining protons (not shown in fig. 4.8) precess around the
-z-axis. Since these precessions are not in phase with one
another, the sum of all the individual proton nuclear moments
yields a small net magnetic moment that is aligned with the B
field (dashed vertical red line in fig. 4.8). It is this small net
magnetic moment that allows the tissue to produce an observ-
able signal under the correct conditions. The frequency of the
precession (wobble) of the protons’ magnetic moments is pro-
portional to the strength of the B, field: in a higher B, field,
they precess faster.

Although many atoms other than hydrogen will respond to
a magnetic field in this way, hydrogen is by far the dominant
contributor to MRI signals for two reasons. First, hydrogen is
the most abundant atom in human tissue (about 65% of atoms
in biological tissue are hydrogen, predominantly present in
water and fat), and second, hydrogen is highly sensitive to
energy absorption (which translates to signal strength) in MRIL
Nuclei in other atoms such as carbon, phosphorus, and oxygen
are protected from magnetic manipulation by the large num-
bers of electrons surrounding them and acting as a shield.
Although these other nuclei are present in the human body
and can generate signals for MRI, their detection is quite diffi-
cult due to their low abundance and low sensitivity. For these
reasons, all current clinical MRI scans are based on signals
from hydrogen.

THE RADIOFREQUENCY TRANSMITTER AND

RECEIVER ANTENNA
The radiofrequency (rf) transmitter is the second essential com-
ponent of the MRI scanner. It sends brief rf pulses (too small to
be noticed by the subject) to the head while it is in the scanner.
The rf radiation is generally transmitted with its magnetic
component oriented perpendicular to that of the B field. As a
result, the net magnetic moment of the sample will now also
begin to precess around the axis of the magnetic component of
the rf pulse. (This brief rotation of the sample’s magnetic
moment also serves to bring the axes of precession of the indi-
vidual nuclear spins into phase coherence.) Typically, the rf
pulse is very brief (a few milliseconds) and is terminated when
the magnetic moment of the sample has rotated so as to be
perpendicular to the static B/ field. When the pulse is turned
off, the protons relax to their original orientation. From an
energetic standpoint, this entire cycle represents the excitation
of the protons to a higher-energy excited state (net magnetic
moment away from the B field toward the rf field) and then a
return to the ground state (net magnetic moment aligned with
the B field) by relaxation. During the relaxation step, many of
the protons emit energy in the form of rf radiation.

The energy, wavelength, and frequency of the rf radia-
tion that is absorbed, and then emitted, by the protons are
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determined by their gyromagnetic ratio (a constant unique to
every atom; e.g., hydrogen’s is 2.68 x 10° radian/[T x sec]) and
the strength of the static external magnetic field to which they
are exposed. In higher magnetic fields the protons absorb rf
radiation of higher energy (and therefore higher frequency).
Recall that in higher magnetic fields, the protons’ magnetic
moments also precess (wobble) faster (i.e., at higher frequency).
In fact, the frequency of the rf radiation that the protons absorb
is exactly equal to the frequency of their precession. This fre-
quency, called the Larmor frequency, is described by the Larmor
equation (see McRobbie et al. 2007). (Note that high magnetic
fields have a dramatic effect on the frequency of this preces-
sion. In the Earth’s magnetic field, the frequency is about 1 Hz,
but it is about 64 million Hz in a 1.5-T field.)

The specific Larmor frequency of the rf pulse that is
absorbed, and then emitted, by the protons is called the reso-
nance frequency (hence the name magnetic resonance imaging
or MRI). Thus, the Larmor frequency can be defined three
ways: the frequency of precession (wobble), the frequency of
the rf radiation that is absorbed, and the resonance frequency.
For each type of nucleus (e.g., hydrogen), this frequency
changes in proportion to the exact strength of the surrounding
magnetic field. In a higher magnetic field, the protons absorb rf
radiation of higher frequency; in a lower magnetic field, the
protons absorb rf radiation of lower frequency.

The receiver antenna (or receiver coil) detects the rf signals
emitted by the protons during their relaxation to the ground
state.

THE GRADIENT COILS
To identify the areas of the brain responsible for particular sig-
nals, the image reconstruction computer needs to be able to
distinguish the spatial origins of the detected signals. This
information is provided through the contribution of the gradi-
ent coils. The gradient coils consist of extra magnets lining
the inside of the main magnet (fig. 4.9). The gradient-coil

MRI scanner gradient magnets

Transceiver

Patient

Figure 4.9 Schematic of the MRI gradient coils. Each set of coils (coded by color
here) creates an additional magnetic field: x for right-to-left, y for front-to-back,
and z for foot-to-head. (Reprinted from http://www.magnet.fsu.edu.)
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magnets are weak compared to the main magnet, but by adding
to the B, field, they can create a gradient of magnetic fields
across the imaged tissue.

In an MRI scanner, when the gradient magnets are switched
on, different portions of the brain experience different magnetic-
field strengths due to the combined effect of the B field and
the gradient coils. Since different magnetic-field strengths
give different Larmor frequencies, the protons in different
locations in the brain will absorb (and then emit) rf radiation
of different frequency. Thus, in each voxel, the protons will
absorb, and then emit, the rf radiation that has exactly the res-
onance (Larmor) frequency corresponding to its local mag-
netic field, which is the combined result of the B field and the
gradient coils.

THE FRONT-END COMPUTER AND THE

RECONSTRUCTION COMPUTER
The front-end computer controls the pulse sequence (also called
the scanning protocol), which is a complex sequence of, and
combination of, rf pulses and gradient-coil settings used during
ascan. There are many different pulse sequences, each of which
results in a different type of image (i.e, anatomical, blood flow,
tumor detection, edema, etc.). For fMRI, only a few pulse
sequences can be used, and the one most widely used is called
echo-planar imaging (see Bandettini 2001).

The pulse sequence produces not only a gradient of field
strengths (and thus a gradient of Larmor frequencies), but it
also affects the relaxation times of the protons differently in
different locations. The reconstruction computer (or reconstruc-
tor) uses this information about the exact distribution of the
magnetic fields (created at each location by the gradient coils)
and the relaxation characteristics of the protons (manipulated
by the pulse sequence) to relate specific signals to particular
locations of origin.

fMRI MEASUREMENT OF THE BOLD RESPONSE
fMRI methodology produces maps of the hemodynamic
response to brain activity, based on the effect that local

deoxy-Hb has on the magnetic field. As noted earlier in this
chapter, the hemodynamic effect generates the BOLD signal
that was first described by Ogawa et al. (1990). The key prin-
ciple is that deoxy-Hb (which is paramagnetic) provides a dis-
turbance additional to the magnetic field created by the main
magnet and the gradient coils. Deoxy-Hb changes the strength
of the magnetic field in its immediate vicinity, so that the actual
local field strength is slightly lower than that predicted by the
pulse sequence. This decrease, due to the presence of deoxy-
HBb, is revealed as a tiny dark spot in the reconstructed image.
The intensity of the dark spot is correlated with the amount of
deoxy-Hb present.

Since fMRI scanning is very fast (it takes only seconds to
make an image of the whole brain, and on some scanners it
takes even less than a second), it is possible to create a series of
images (i.e., a movie) of the brain, based on the amount of
deoxy-Hb at specific locations in the brain over time. As
described in this chapter’s section Brain Activity and Blood
Flow, brain activity causes changes in the amounts of oxy- and
deoxy-Hb. At first, as oxygen is released to the cells, deoxy-Hb
increases, causing a darkening of the active part of the brain
image. Then, as the blood vessels respond to the cells’ need for
oxygen, a surge of fresh blood causes the concentration of
deoxy-Hb to decline, thereby causing the image to brighten at
the location of brain activity. Hence, during initiation of brain
activity, the image first darkens (due to higher concentration of
deoxy-Hb) and then brightens (due to lower concentration of
deoxy-Hb). The increase in brightness is proportional to the
amount of brain activity. Thus, maps of brain activity can be
created based on the changes in brightness of the fMRI image.
A set of such maps is shown in figure 4.10. In this way, fMRI
images can reveal the brain areas that are active during perfor-
mance of specific tasks.

Effective functional neuroimaging with fMRI requires
many scans because the BOLD effect is small and because head
movements, respiration, and blood-vessel pulsations introduce
considerable noise in the images (Jones et al. 2008). A variety
of software packages are available for fMRI data analysis;

Anatomy

fMRI T-map

Figure 4.10 fMRI scans of a study subject during right-hand finger tapping. The yellow arrow in the left image indicates the location and plane of the brain “slice”
imaged for fMRI. The image labeled anatomy shows the anatomical scan used for the display of activation. The image labeled fMRI shows an fMRI scan. The

image labeled T-map shows the T-map for the task. The level of gray intensity indicates the strength of activation (white indicates an increase in activity; black,
a decrease in activity). In the images labeled anatomy, fMRI, and T-map, the left side of the images is the right side of the brain (radiological orientation).
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these incorporate algorithms that reduce the impact of noise.
The most widely used programs are SPM (http://www.fil.ion.
uclac.uk/spm/), AFNI (http://afni.nimh.nih.gov/afni), FSL
(http://www.fmrib.ox.ac.uk/fsl/), and the commercial program
Brainvoyager (http://www.brainvoyager.com/). These pro-
grams all generate brain-activity maps based on statistical
measures such as t- or F-statistics. The activity maps for each
subject are typically called t-maps (Ramsey et al. 2002). In a
t-map, every voxel has a value that reflects the amount of signal
change attributable to the task performed during the scan,
divided by the unexplained variability of the signal. A higher
t-value means that the activity change stands out more promi-
nently from the noise.

TASK DESIGN FOR METABOLIC
NEURAL IMAGING

These techniques all produce functional images of the brain.
What the resulting maps represent depends on the task the
subject is performing during image acquisition. Thus, experi-
mental tasks are designed to reveal the specific parts of the
brain that perform particular functions (Ramsey et al. 2002).
This task design, or paradigm design, is a field in its own right
and merits some discussion here (Donaldson and Buckner
2001).

One main goal of functional neuroimaging is to reveal
which parts of the brain perform a particular function. For
example, in reading a book, it is not only the language network
that is active, but also visual systems, memory systems, and
even motor systems, all of which must participate in order to
read, comprehend, and interpret text, to move one’s eyes back
and forth, and to flip pages. Suppose that we want to learn
which parts of the brain are involved in language. We may per-
form fMRI scans while a person reads in the scanner. However,
scans of this activity alone would not provide informative
activity maps because the brain is always active, even during
sleep or during anesthesia. When a person performs a task,
many brain regions may be involved. What is needed is to find
the changes in the image that coincide with reading.

This is typically accomplished by designing a task that is
presented to the subject, usually with the use of specific soft-
ware such as “Presentation” (http://www.neurobs.com/) or
“Eprime” (http://www.pstnet.com/). For example, while in the
scanner, the subject might first see a blank screen for 30 s, then
see text to read for 30 s, and then a blank screen. This cycle
would repeat several times. Subsequent analysis would calcu-
late, for each voxel in the scans, the correlation between the
task (reading versus watching a blank screen) and the intensity
of the signal. The stronger the correlation, the more likely it is
that the voxel in the image is involved in the reading task. The
voxels are then superimposed on an anatomical scan to pro-
duce a map of brain activity related to reading (fig. 4.11).

Although this map reveals the anatomical location of
the brain regions that are active in reading, it also includes
areas that are merely correlated with the task but not necessar-
ily specific to language (e.g., the visual systems). To separate
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Figure 4.11 Example of an fMRI-generated image during a reading task in a
healthy volunteer. The view is from the left. Anterior is to the left. Significant

activity is shown in red.

out those systems, one can replace the blank screen in the
task with random drawings. With this task design, the visual
system would be activated during the entire task and can be
subtracted out to produce an activity map showing language
areas only.

BCI APPLICATIONS OF fNIRS AND fMRI

Metabolic functional imaging methods such as {NIRS or fMRI
can, in principle, be used as the basis for BCI technology.
Examples of this are discussed in greater detail in chapters 18
and 22. As with all BCI methods, it is essential that signals be
processed in real time so that feedback to the user can be pro-
vided in real time. From the studies discussed in chapters 18
and 22, it has become evident that people can learn to regulate
specific aspects of their brain activity as detected by fNIRS or
fMRYI, if they are given real-time feedback.

In a typical BCI experiment, the subject first performs a
localizer task, in which brain activity is recorded during per-
formance of a specific task (e.g., imagining hand movement),
alternated with a control task or rest period. The data are pro-
cessed, and a t-map is created to identify the brain areas
involved in the task. Next, a brain region is selected either
based on the location where the subject’s brain is activated by
the localizer task or based on an anatomical atlas of predefined
brain regions, or a combination of the two. In subsequent
imaging sessions the subject performs the same or a similar
task and receives immediate fNIRS- or fMRI-based feedback
regarding the level of the signal in the region of interest. This
feedback might, for example, be in the form of visual presenta-
tion of a vertical bar representing the level of activity in the
region. The subject tries to regulate the height of that bar, per-
haps based on mental imagery. The task can be a BCI-related
task such as moving a computer cursor to a target (e.g., Wolpaw
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et al. 2002), or moving a cursor to play a game of Pong™. With
continued training, the subject’s control of the brain activity
tends to improve. Control developed in this way might be
applied to an fMRI- or {NIRS-based BCI.

fNIRS-BASED BCls

BClIs using fNIRS certainly have the potential to provide very
basic communication capability to people with severe disabili-
ties (Coyle et al. 2007). Major advantages of {NIRS are that it is
noninvasive, portable, and relatively inexpensive. However, its
temporal resolution is limited since it measures the BOLD
response. Moreover, fNIRS imaging of blood flow is inferior to
that of fMRI both in spatial resolution and in that it reveals
activity for only the top few mm of cortex. Nevertheless, in the
future, with increases in the number of sensors and with stan-
dardization of placement methods, {NIRS-based BCIs might
constitute a practical option for people who need a basic com-
munication system. These issues and possibilities are discussed
further in chapter 18.

fMRI-BASED BCls

Realistically, fMRI-based BCls are at present not very practical
due to the high expense and bulk of the equipment, the need
for liquid helium to cool the superconducting coils, and the
need for an rf-shielded chamber. (Nevertheless, in the case of
patients in a vegetative state, fMRI signal modulation can be
useful [Monti et al. 2010]).) Although fMRI imaging itself is
fast, the BOLD response that it measures is slow (with a delay
of several seconds), so fMRI feedback is relatively slow com-
pared to feedback in BCIs that use electrical signals.

Nevertheless, since fMRI activity correlates closely with
electrical activity in the cortex (Ramsey et al. 2006, Hermes
etal. 2011), fMRI imaging can help to identify the most prom-
ising brain regions for BCIs that use other imaging methods.
This could be particularly valuable for supporting develop-
ment and use of invasive BCIs. Microelectrode arrays (chap-
ters 5 and 16) cannot be implanted throughout the entire
cortex, so it will be essential to develop methods for selecting
the best areas prior to implantation. For a prospective BCI
user, fMRI could identify the best areas for implanting arrays.
In addition, fMRI-based training prior to implantation might
lead to the identification of brain areas that were not consid-
ered promising prior to the training.

Such fMRI-aided preimplantation localization could be
especially valuable in BCI approaches that target higher corti-
cal functions such as language (Brumberg et al. 2010), particu-
larly because cortical localization for these functions varies
widely across individuals. Thus, preimplantation guidance that
can be provided by fMRI is likely to be important. Moreover,
because it is noninvasive, fMRI can also be used in large con-
trol studies aimed at identifying brain areas and functions and
in developing training protocols that may then be used for
BClIs for people with disabilities.

Recent studies suggest that with the use of advanced multi-
variate pattern analysis (e.g., Kamitani and Tong 2006), such

fMRI localization might become far more precise in the future.
Miyawaki et al. (2008) recently showed that with pattern analy-
sis they could determine which of a set of complex shapes (e.g.,
letters) a subject was looking at. One can imagine that with
extensive further development, it may be possible for fMRI
analysis to identify specific words a person wants to communi-
cate or specific actions to implement.

PROMISING FUTURE DEVELOPMENTS

Several areas of inquiry are likely to be particularly important
as BCI technology and metabolic methods develop further.
fMRI allows investigators and study subjects to discover the
tactics that work best for them in gaining control of signals
from specific cortical regions; the regions can then be targeted
as implantation sites for microelectrodes (or sensor placement
for a noninvasive portable NIRS system). fMRI can also track
the changes in brain activity that occur following practice and
can be used to identify the factors that contribute to those
changes. Thus, because it allows some of the key issues for
implanted systems to be investigated noninvasively in healthy
subjects and in individual patients, and over many brain areas,
fMRI is likely to play an important role in the development of
invasive BClIs.

Improved spatial resolution will play a critical role in the
importance of fMRI’s contribution to BCI technology. The
strength of the MRI magnet determines the spatial detail of
fMRI brain maps. With the advent of 7-T systems for human
use, it is already clear that functional maps can be obtained
with high spatial detail (at 1 mm resolution), a level of detail
not possible with standard 3-T fMRI scanners. These higher-
resolution maps provide even greater detail by distinguishing
the different gray-matter layers (Siero et al. 2011) and indicate
that brain functions may be more highly localized than previ-
ously thought (Formisano et al. 2003). Further research on
functional resolution with high-field fMRI will provide infor-
mation on the optimal spatial detail for intracranial BClIs, so
that it may be possible for an intracranial BCI to obtain output
commands with multiple degrees of freedom from a single
small multielectrode intracortical microarray (Hatsopoulos
and Donoghue 2009) or from one of the newly developed high-
density cortical surface (ECoG) arrays (e.g., as in Leuthardt
et al. 2009).

High-field MRI systems are currently being used to develop
new signal modalities including new methods for imaging
brain function. These include molecular imaging to measure
neurochemical processes directly, as is done in MRI measure-
ment of neurotransmitters and intracellular metabolic pro-
cesses (Jasanoff 2010; Zhu et al. 2011). The neurochemical MRI
modality is likely to be much more complex than the electro-
physiological modality, as each neuron may use more than one
neurotransmitter, and each transmitter may relate differently
to brain activity. fMRI may also be used to measure electro-
physiological events directly (so-called neuronal-current fMRI).
Thus far, this possibility been demonstrated only in in vitro
experiments (Petridou et al. 2006). If the neuronal-current
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fMRI approach works in humans, it would eliminate the issues
introduced by the delayed response of blood vessels that is
inherent in BOLD fMRI, and it would improve the accuracy of
localization. At this time, neither neurochemical nor neuronal
current MRI is yet available for use in humans.

SUMMARY

Although most BCIs use electrical signals as measures of brain
activity, metabolic signals can also be used. At present, two
metabolic methods used for BCls are functional near-infrared
spectroscopy (fNIRS) imaging and functional magnetic reso-
nance imaging (fMRI). Both methods measure the hemody-
namic response: they track changes in the relative amounts of
deoxy- and oxy-hemoglobin to measure changes in cerebral
blood flow and thereby infer changes in brain activity. The
temporal resolution of both methods is limited by the fact that
the hemodynamic response itself is slow; it is much slower
than the signals measured by electrical BCI methods. Spatial
resolution for fMRI is high (on the order of 1 mm), but it is low
for fNIRS (on the order of cms). Whereas fMRI can image the
entire brain, fNIRS is limited to the top few mm of the cortex,
just below the skull. On the other hand, fMRI is very expen-
sive, cumbersome, and technically complex, whereas fNIRS is
inexpensive and portable. At present, fMRI is likely to be most
useful as a noninvasive method for localizing (and possibly
training) brain function prior to implantation of microarrays
or other invasive BCI devices, whereas fNIRS may serve in
simple BCI systems that provide basic communication and
that are practical for long-term home use by people with severe
disabilities.
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5| ACQUIRING BRAIN SIGNALS FROM WITHIN THE BRAIN

KEVIN J. OTTO, KIP A. LUDWIG, AND DARYL R. KIPKE

he neural interface component of a brain-computer inter-

face (BCI) is the hardware device that detects brain

signals so they can be sent to other components of the
BCI for analysis and translation into useful commands. Since
different BCI systems record different brain signals from differ-
ent areas at different resolutions either noninvasively or inva-
sively and use them to control different types of effectors (e.g.,
computer cursor, switch, robotic arm), it is inevitable that BCI
designs and functional requirements vary over a broad range.
The design and functional requirements of a particular BCI are
driven by the BCT’s intended use and its intended target popula-
tion, people with severe disabilities. A BCI system that provides
cursor control for people with amyotrophic lateral sclerosis will
have a much different design and different functional require-
ments from one that is to control an anthropomorphic arm and
hand for an otherwise able-bodied amputee.

One of the major challenges in designing BCI systems is to
develop effective and versatile neural interfaces to detect the
neural signals that then undergo signal transduction to sup-
port the BCI system’s functional requirements. To accomplish
this, several primary requirements must be met:

. the interface must be safe

. the neural signals must have sufficient
information to support BCI use

. the interface must be reliable

. the degree of invasiveness must not exceed
what is absolutely necessary

In light of these requirements, research and development
of neural interface technologies have been guided by the broad
strategic goal of improving information content and reliability,
while minimizing risk and complexity. Since the characteris-
tics of the neural interface often become the rate-limiting
factor in a BCI’s performance, careful and appropriate design
of the neural interface is critical.

BCI neural interfaces currently fall into three major classes:

. electroencephalographic (EEG) scalp electrode
arrays that attach noninvasively to the skin to
record field potentials with relatively low
information content from very large and widely
distributed sets of neurons and synapses

. electrocorticographic (ECoG) electrode arrays
that are surgically positioned on the brain

surface to record field potentials with moderate
information content from smaller more
localized sets of neurons and synapses

. miniaturized microelectrode arrays that are
surgically inserted into the cerebral cortex to
record neuronal action potentials (spikes) from
individual neurons and/or local field potentials
(LFPs) from small highly localized sets of
neurons and synapses and that yield high
information content.

The typical strategy in engineering a neural interface is
to strive for the least invasive type that can provide brain sig-
nals with information content sufficient for controlling the
effector with the required reliability, safety, longevity, and cost-
effectiveness (Wolpaw et al. 2002; Wolpaw 2004).

This chapter focuses on intracortical BCI neural interfaces
that use microelectrode arrays permanently implanted in
movement-related areas of cerebral cortex to record from (and
possibly also to stimulate) individual neurons or local popula-
tions of neurons. A microelectrode array is designed to pene-
trate into the cerebral cortex and be positioned in close
proximity to the targeted neuronal population. The term micro-
electrode array, or sometimes just microelectrode, is used as the
general term to refer to any of several types of implantable,
multisite recording microelectrodes, including microwire
arrays, Utah electrode arrays, and Michigan arrays.

A microelectrode array detects the neural signals that are
then sent to other components of the BCI system for process-
ing. Thus, the microelectrode array is the intracortical BCI’s
signal transduction component. To create a complete intracorti-
cal BCI neural interface system, the microelectrode arrays
must be integrated with highly specialized low-power elec-
tronics for signal conditioning and communication, flexible
multichannel cables to connect the microelectrode and elec-
tronics, and associated hermetic packaging to protect the elec-
tronics and interconnects. The underlying premise driving
development of microscale neural interfaces for BCI systems is
that these interfaces can ultimately record neural signals with
the high information content needed for control of high-di-
mensionality prosthetic limbs and associated effectors.

Design of useful microscale interfaces for implantation in
the brain is particularly challenging because the microenvi-
ronment surrounding the interface is exquisitely sensitive to
the properties of the microelectrode. Adverse tissue responses
can occur, and the physiological states of nearby neurons and
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local neuronal networks can be affected. To be of practical use,
an implanted microelectrode must be reliable and long lasting,
and must function with high fidelity and with little adverse
tissue reaction.

Although engineering BCI intracortical neural interfaces
presents many challenges, a viable path for achieving this
goal exists. This path is based on current understanding of
microscale neural interfaces and implantable microelectrodes,
biological information about the brain tissue surrounding
microscale implants, and ongoing progress in the sophisticated
neurotechnology underlying implantable devices.

The outlook has brightened over the last 5-10 years through
steady advances in the collective understanding of microscale
neural interfaces and high-quality microelectrode technolo-
gies. Advanced next-generation microelectrode technologies
and materials are enabling new strategies and paradigms that
have the potential to avoid both biological failure (i.e., tissue
damage or poor functionality) and device failure. These
approaches make it more probable that performance can
achieve the ideal of 100% of the electrode sites working 100%
of the time for multiple decades in an individual using a high-
dimensional BCL

This chapter describes and discusses the current state of
intracortical neural interface technologies for BCI applications.
The first section provides an overview of the various intracorti-
cal microelectrode technologies now in use and under continu-
ing development. The second section discusses the basic
principles of extracellular neural recording and microelec-
trode-array design and analysis. The third section discusses the
performance of current types of implantable microelectrode
arrays. The fourth section discusses the local brain tissue
responses associated with these devices. The final section dis-
cusses strategies for improving implantable microelectrode
performance through advanced designs and technologies.

OVERVIEW OF IMPLANTABLE
MICROELECTRODES FOR BCls

The fundamental technical requirement for an intracortical
BCI neural interface is the ability to record neuronal spike
activity and/or LFPs from the target neural population with
sufficient quality, information content, stability, reliability, and
longevity to meet the needs of the BCI system. Intracortical
interfaces are of particular interest because they may be the
best method for acquiring the high-information content sig-
nals needed for applications such as controlling a robotic arm
with multiple degrees of freedom.

The various types of actual and proposed intracortical BCI
interfaces have developed largely from the rich history of
implantable microelectrodes used in neuroscience research
dating back over 60 years. In the 1950s, Strumwasser (1958)
implanted several 80-um stainless-steel wires into the reticular
formation of squirrels and recorded multiunit spike activity for
4 days. This approach was later improved by etching smaller-
diameter (30-um) platinum wires to a sharpened tip, enabling
single-unit recordings for over 3 days, and functional implant
durations of 3 months (Burns et al. 1973). Although it was
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hypothesized that the small diameter of these platinum micro-
electrodes would provide better single-neuron recording, their
fragility prevented pia mater penetration; and a harpoon-like
wire was needed to mechanically stiffen the microelectrode
during insertion. The first successful chronic microelectrode
arrays consisted of five insulated tungsten microwires etched
to sharpened tips bundled in plastic tubing (Marg and Adams
1967). Although these devices provided more control of elec-
trode spacing and implantation, their fabrication was fairly
labor intensive, and there was high manufacturing variability.
The seminal studies in direct brain control with intracortical
signals used microwire arrays of this kind (Fetz 1969; Schmidt
etal. 1977).

GENERAL CHARACTERISTICS
OF MICROELECTRODE ARRAYS

There is now a reasonably well-developed design space
for chronic microelectrode arrays in terms of materials, fabri-
cation technologies, packages, and component integration.
In the categorization scheme depicted in figure 5.1, a given
microelectrode array is first categorized by whether it is
designed and fabricated using bundles of microwires or
through micro-electro-mechanical systems (MEMS) micro-
fabrication processes, a broad class of technologies involving
microfabrication of silicon and polymer structures for minia-
turized sensors, actuators, and integrated microsystems.
MEMS microelectrode arrays are micro-machined at wafer
level from silicon and/or polymer substrates, whereas
microwire arrays are assembled from individual microwires.
A microelectrode array is further categorized by the details of
its fabrication process (e.g., planar, thin-film, or a bulk micro-
machined MEMS process), its materials (e.g., platinum or irid-
ium electrode sites, polymer or inorganic dielectric), and its
assembly/packaging. Various microelectrode array designs
have been validated to varying degrees through research use in
animals and/or early clinical testing of intracortical BCIs in
humans. Several of these designs are described in this chapter
in more detail.

To understand the functional requirements of microelec-
trode arrays and how these requirements are met by different
types of devices, it is useful to consider a canonical microelec-
trode array that has the following five primary functional com-
ponents.

. An array of electrode sites (or contacts) that are
the location of biopotential signal transduction
for recording. The sites are in direct contact
with brain tissue and support charge transfer
and capacitive current at their surface. The
most important factors in determining their
electrical characteristics are the site material
and the area, roughness, and shape of the
contact surface.

. The lead (or trace) that electrically connects the
electrode site to the separate electronics
interface. The lead is buried in the dielectrics
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Figure 5.1 Taxonomy of common implantable microelectrode arrays for BCI neural interfaces, based on their primary fabrication method and primary material.
The first level differentiates between bundles of microwires and MEMS technologies. The second and third levels involve progressively more specialized
processes and materials.

(see next item) and does not come into direct
contact with tissue. Its primary requirements
are: a sufficiently low resistance to minimize
signal loss between the electrode contact and
the electronics; sufficient flexibility and
robustness to avoid both breakage and
mechanical stress on the electrode contact; a
compatible and consistent fabrication process;
and negligible corrosion or cytotoxicity if the
surrounding dielectric covering is partially or
fully breached.

The dielectric, which is the material, or
composite material, that electrically insulates
each individual lead from the surrounding
tissue. The primary requirements are to
maintain sufficiently high electrical insulation
between the lead and the surrounding tissue
and to have sufficient flexibility, strength, and
robustness to remain intact for long implant
times. The dielectric is generally characterized
by its dielectric constant, leakage resistance, and
shunt capacitance, as well as the degree to which
it degrades over time in tissue. Although it may
be acceptable for dielectric characteristics to
change over time, the changes must be
predictable and not cause significant loss of
function (e.g., a conductance path to tissue).

The substrate, which is the component that
provides the structural integrity of each tine or
shank of the electrode array. Not all types of
microelectrode arrays have a distinct substrate
component; in some cases the dielectric material
and/or the leads provide both electrical
insulation and structural support. The substrate
can also provide an additional moisture barrier
between the dielectric layer and tissue.

Optional surface coatings, which may be used
to modify particular electrical, mechanical, or
biological characteristics of a microelectrode
array. Typically, a microelectrode’s substrate/
dielectric and its electrode sites are in contact

with the brain, and the substrate/dielectric
surface area is usually significantly larger than
the total surface area of all the electrode sites.
A functionalized dielectric coating may be used
to provide an additional moisture barrier
between the tissue and the lead, to fine-tune
device-tissue interface properties (e.g.,
roughness or lubricity), or to attenuate or
control tissue reactions. Additionally, an
electrode site coating can be used to fine-tune
the electrical characteristics of the site (e.g., to
lower its impedance, to sense neurochemicals,
or to deliver small doses of drugs).

These five primary components are interrelated through
materials, fabrication process compatibility, and application
requirements. For example, high-temperature silicon-oxide
and silicon-nitride thin films are often suitable long-term
dielectrics, but the high temperature at which these films must
be deposited precludes the use of metal leads (or traces). The
alternative is to use conductive polysilicon traces, but the
tradeoft is that polysilicon has higher resistivity than thin-film
metals.

MICROWIRE ARRAYS

Microwire arrays (fig. 5.2) continue to be a very important
technology for intracortical BCI neural interfaces. There are
many approaches to making microwire arrays, all of which
take the approach of assembling small-diameter (usually
10-100 pm) insulated wires into structured bundles. The pre-
cision and consistency of the bundle vary with the intricacy of
the assembly process. In these arrays, the recording sites are
the exposed tips of the individual microwires. The wires are
typically made of tungsten, platinum, or platinum/iridium
with a thin insulating coating of parylene, epoxylite, or Teflon™.
Although the microwire itself is a mature technology, notable
innovations have been made in the methods for fabricating
more precise arrays with more microwires (Nicolelis and
Ribeiro 2002; Nicolelis et al. 2003; Williams et al. 1999), for
machining the wire tips (Bullara et al. 1983), and for producing
“floating” arrays (i.e., arrays that are not rigidly anchored to
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Figure 5.2 Microwire arrays. (A) Schematic illustration of the structural components near the distal end of a single microwire. In the typical case, the uninsulated tip

of the microwire is the electrode site; the insulated aspect of the microwire serves as the interconnect component; and the insulative coating is the dielectric layer.
Microwires do not have a separate substrate component. (B) Scanning electron micrograph of the tip of a typical platinum-iridium (Ptlr) microwire formed through
laser ablation of the insulation at the tip and electrochemical shaping of the tip (Cogan 2008). (C) Bundle of precisely arranged microwires forming a Microwire
arrays (Nicolelis et al. 2003). (D) Microwire arrays with a ceramic platform and multiwire gold interconnect to create a “floating” implantable array for recording

and stimulating (Musallam et al. 2007).

bone or dura) (Musallam et al. 2007; Rennaker et al. 2005).
Twisted microwires (i.e., two microwires to form a stereotrode,
or four wires to form a tetrode) (Gray et al. 1995; McNaughton
et al. 1983) are used extensively in neuroscience research to
create a cluster of multiple, closely spaced sites at the end of a
single multistrand wire. Tetrodes have not been emphasized in
BCI research because clustered sites are not thought to signifi-
cantly improve the recording of unit activity from the target
pyramidal cells in the cerebral cortex (due to the size of these
cells and their moderate packing compared to other parts of
the brain). Nevertheless, the tetrode configuration does
improve single-unit discrimination in some areas of the brain,
such as the hippocampus.

NEUROTROPIC (CONE) ELECTRODE

The neurotrophic electrode (also called the cone electrode) is a
particular class of microwire-based electrode with a unique
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bioactive design strategy that induces neuronal processes
to grow close to the microwires (Brumberg et al. 2010; Kennedy
1989). The neurotrophic electrode consists of several micro-
wires inserted into a small glass cone that is open on both
ends and filled with a neurotrophic material. When this
electrode assembly is implanted in cerebral cortex, neuronal
processes grow, over several weeks, into and through the
cone so that a few neuronal processes are close to the micro-
wires within the cone (Kennedy et al. 1992). The neurotrophic
design concept is unique among microelectrode technologies
in that the cone creates a relatively closed environment for
the neural interface and that the neurotrophic material
induces targeted neuronal plasticity to establish a long-term,
bioactive neural interface. Although neurotropic electrodes
record reliably and with high signal quality, their disadvantage
compared to higher channel-count microelectrode arrays
is that each electrode assembly records from relatively few
neurons.



MEMS-BASED MICROELECTRODES

MEMS-based microelectrodes include the Utah electrode
array, the Michigan-style probe, and others. MEMS technol-
ogy represents a broad class of technologies involving micro-
fabrication of silicon and polymer structures for miniaturized
sensors, actuators, and integrated microsystems. MEMS-based
methods use significantly different microfabrication technolo-
gies from microwire arrays to create various types of implant-
able microelectrode arrays that are functionally equivalent to
microwire arrays in terms of neural recording and stimulation.
MEMS technologies use a broad range of conductive and
dielectric materials to make microelectrode arrays in many
sizes and architectures. These can be fabricated with high pre-
cision and consistency. The microfabrication and assembly of
MEMS arrays is generally more complex than that of microwire
arrays. These processes involve detailed sequences of selective
deposition or removal of patterned thin films of conductive or
dielectric materials on a substrate, and/or bulk micromachin-
ing of materials through etching, grinding, or sawing.

UTAH ELECTRODE ARRAY
The Utah electrode array (fig. 5.3) is a well-known MEMS
microelectrode array that has been systematically developed
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and refined over nearly 20 years (Bhandari et al. 2010; Campbell
et al. 1991; S. Kim et al. 2009). At present, it is probably the
most widely used type of implantable microelectrode array for
intracortical BCI neural interfaces. This device is fabricated by
micro-machining monocrystalline silicon blocks to form an
archetypal bed-of-nails architecture (fig. 5.3). Each rigid coni-
cal shank (or tine) of the Utah array has approximately one
conical recording site at its tip, making it functionally similar
to a single microwire. In earlier versions of Utah arrays the
site material was platinum and the dielectric was polyimide
(Campbell et al. 1991), but recent fabrication developments
have now transitioned to sputtered iridium oxide and parylene
(Bhandari et al. 2010). The typical arrangement is a 10 x 10
array of tines, with tine lengths of 1.5-2.0 mm, regularly spaced
at 400 pm, resulting in a 4 mm x 4 mm footprint on the cortical
surface. The Utah array is typically attached to skull-mounted
interface electronics (Nurmikko et al. 2010), to a connector
through a thin wire cable (Rousche and Normann 1998), or to
an electronics chip attached directly to the bond pads (S. Kim
et al. 2009). The array is surgically implanted into cortex using
a well-described surgical procedure and a specialized, high-
velocity inserter (Rousche and Normann 1992). The Utah array
has extended the design space of comparable microwire arrays
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Figure 5.3 The Utah electrode array (UEA). (A) Schematic illustration of the structural components near the distal end of a single tine of the UEA. The uninsulated

tip of the doped silicon tine is the electrode site; the insulated aspect of the tine serves as the interconnect component; the thin-film parylene coating and silicon
nitride are the dielectric component; the silicon tine itself is the substrate. (B) Scanning electron micrograph of the tip of a UEA tine (Bhandari et al. 2010). (C)
Scanning electron micrograph of the bottom (brain) side of the typical 10 x 10 UEA (100 tines, with 400-um separation) illustrating the “bed of nails” structure
(Bhandari et al. 2010). (D) UEA bonded to multiwire gold interconnect cable to create a “floating” implantable array for intracortical recording and stimulation

(Donoghue et al. 2007).
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Figure 5.4 The planar Michigan-style electrode array. (A) Schematic illustration of the structural components near the distal end of a single shank of a typical planar
Michigan-style electrode. The electrodes are a thin layer of metal sites at prescribed positions along the shank. Thin-film polysilicon or metal traces connect each

electrode site to a separate bond pad at the back end of the probe. The traces are buried in thin-film inorganic (typically silicon nitride and/or silicon dioxide) and/

or organic layers that comprise the dielectric component. The silicon back side of the electrode is the substrate. (B) Design layout of a typical Michigan electrode
having four shanks, each with four sites. (C) Scanning electron micrograph of the tip of a shank on a Michigan electrode showing six precisely arranged electrode

sites. (D) Examples of eight different site and shank designs for intracortical recording. (E) Michigan-style electrode array connected to a flexible thin-film polymer
ribbon cable to create a “floating” implantable array for intracortical recording and stimulation. (Courtesy of NeuroNexus, Ann Arbor, Ml.)

through its very precise and reproducible geometry and pack-
aging. Thus, for example, tine lengths, intertine spacing, and
total tine number may be readily varied. A clinical-grade ver-
sion of the Utah array was used in a seminal study of intracor-
tical BCIs in humans (Hochberg et al. 2006), and a number of
animal studies describe the use and performance of the Utah
array in chronic cortical recording (Suner et al. 2005) and
stimulation applications (Rousche and Normann 1999).

MICHIGAN-STYLE PROBE
The Michigan-style probe (fig. 5.4) is another well-known type
of MEMS microelectrode array. The seminal Michigan probe is
a planar device having a boron-diffused silicon substrate, a
silicon dioxide and silicon nitride dielectric stack, polysilicon
traces, and iridium electrode sites (Anderson et al. 1989;
BeMent et al. 1986; Hetke et al. 1990; Najafi et al. 1990; Wise
etal. 1970; Wise and Angell 1975; Wise et al. 2004). Through a
sustained development program, this base MEMS technology
has since been expanded to broader types of electrode designs,
materials, and microfabrication techniques to result today in a
broad-based Michigan-style microelectrode platform technol-
ogy that is used in a wide range of neural structures for diverse
neural interface applications.

In the canonical form, the Michigan-style probe technology
creates an array of planar electrode sites on thin (i.e., nominally
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5-50 pm thick) planar penetrating shanks (fig. 5.4A,B). The
probes are fabricated through lithographic patterning of thin
films of dielectrics and conductors on a silicon substrate to
form very precise arrays of recording (and/or stimulation)
sites. An integrated or separate thin-film ribbon cable, or inter-
connect, is bonded to the penetrating probe to connect to
another connector or to an electronics interface. This technol-
ogy has a broad design space that allows designs that have
almost any reasonable one-, two-, or three-dimensional layout
of electrode sites across one or more planar shanks. Michigan-
style probes offer unique advantages over alternative types of
electrode technologies. These include greater site-packing den-
sity, reduced tissue displacement per site, reproducibility, and
precise two- and three-dimensional geometries. Michigan-
style probe technologies have been successfully commercial-
ized and validated in neuroscience research. The in-vivo
performance of various types of Michigan probes is well
described (e.g., Csicsvari et al. 2003; Drake et al. 1988b; Kipke
etal. 1991; Ludwig et al. 2006; Vetter et al. 2004a), and ongoing
development is directed at translating this technology for clin-
ical applications, including BCI systems.

OTHER MEMS-BASED PROBES
Since the seminal Michigan probe first established the feasibil-
ity of planar, thin-film microelectrode arrays (Drake et al.



1988), the broad class of photolithographically defined, planar
MEMS technology has been advanced by a number of research
groups (Han and McCreery 2008; Kewley et al. 1997; Kovacs
et al. 1994; McCarthy et al. 2011a; McCarthy et al. 2011b;
McCreery et al. 2007; Moxon et al. 2004; Muthuswamy et al.
2005; Neves 2007). There are now various microfabrication
processes, assembly technologies, and integrated microsystems
that significantly expand the design space of this class of micro-
electrode array technology.

Interest in developing implantable microelectrode arrays
that are more flexible and robust than thin silicon probes has
motivated the development of thin-film polymer and hybrid
polymer-silicon microelectrode arrays (Fernandez et al. 2009;
Guo et al. 2010; Lee et al. 2004a; Rousche et al. 2001; Schuettler
et al. 2005; Seymour and Kipke 2007; Seymour et al. 2009;
Seymour et al. 2011; Stieglitz et al. 2000; Yu et al. 2009). It has
been suggested that the lower elastic modulus improves the
flexibility of these materials to reduce the elastic mismatch with
brain tissue and provide enhanced compliance that may mini-
mize the motion of the device relative to the surrounding cortex
(Lee et al. 2005; Subbaroyan et al. 2005). As discussed in this
chapter, this approach may help to reduce the reactive tissue
response (Fernandez et al. 2009; Mercanzini et al. 2008).

In sum, over the past two decades it has become clear that
chronic intracortical neural recording is both technologically
teasible and useful for basic neuroscience studies and in neuro-
prosthetic applications and that microelectrode technologies
make this possible. The current challenges are to increase reli-
ability, longevity, and signal fidelity, as well as overall safety.

BASIC CONCEPTS OF NEURAL
RECORDING WITH CHRONICALLY
IMPLANTED MICROELECTRODES

No matter what the source of the brain signals or the recording
techniques on which a BCI is based, a BCI’s efficacy is a func-
tion of the quality of the recorded neural signals used as an
input to the system. In this context it is useful to consider the
fidelity of the neural recording, that is, the extent to which the
characteristics of the recorded signal match the underlying
neuronal signal source(s). In the simplest formulation, maxi-
mizing the information content of the cortical-control signal
for input to a BCI is an exercise in attaining sufficient neural
recording fidelity.

The overall strategy to attain sufficient fidelity of chronic
extracellular neural recording is to maximize and maintain
sensing of the neuronal signals of interest by the electrodes and
to reduce the obscuring sources of noise. This involves using
microelectrode arrays that have sufficient selectivity, sensitiv-
ity, and stability to record large-amplitude signals from the
targeted neuronal populations, while also minimizing the
interfering and additive noise sources. To address this issue
effectively, it is important to understand how a recording
microelectrode registers signals, the factors that influence
neuronal signal characteristics in chronic neural recordings,
and the factors that influence the contributions of noise sources
in these recordings.

HOW A RECORDING MICROELECTRODE
REGISTERS SIGNALS

The biopotential at the electrode surface is the combined result
of neural signal sources in the vicinity of the electrode site that
are conducted through the encompassing brain tissue from
their points of origin to the electrode surface (Bretschneider
and De Weille 2006). The neural signal sources are membrane
currents that underlie action potentials and synaptic potentials
among the neurons of interest. Brain tissue is a volume con-
ductor that, to a first approximation, is assumed to be linear,
resistive, and homogeneous, but not necessarily isotropic (see
chapter 3, this volume). The numerous sources and sinks from
active neurons (and glia cells) within a brain region are assumed
to combine linearly to create a fluctuating electric field that is
sampled by the small area of the electrode site. For implanted
electrodes the biopotential characteristics (e.g., spike ampli-
tudes and waveforms and local field potential spectra) may be
affected by reactive tissue responses that develop over time and
that change the local tissue conductivity. They can also be
affected by neuronal damage, degeneration, or morphology
changes that may develop from the presence of the microelec-
trode array.

The biopotential at the microelectrode site is transduced to
an electronic current in the electrode trace by complex, but
well-described electrochemical processes at the electrode-tis-
sue interface (Cogan 2008; Merrill et al. 2005; Robinson 1968).
This signal transduction occurs through two types of reversible
electrode-electrolyte interface currents. The first is a capacitive
displacement current resulting from the intrinsic capacitance
of the electrode-tissue interface. The second is a chemical cur-
rent resulting from intrinsic oxidation-reduction reactions at
the electrode surface. Extracellular spike recording occurs
mainly through capacitive currents because of the small
amount of charge displacement in the small and fast extracel-
lular spikes. Extracellular action potentials have amplitudes of
about 50-500 pV and bandwidth of about 500-5000 Hz. Local
field potentials relevant to BCIs have amplitudes of about
10-800 pV and bandwidth of about 0.1-200 Hz. Recording
local field potentials may, in general, involve both capacitive
displacement currents and oxidation-reduction currents
depending on the bandwidth and amplitude of the signals.

The lumped-element functional model shown in figure 5.5
provides useful representations of the primary functional ele-
ments of chronic extracellular neural recording. This model
represents extracellular recording from K neurons using an
electrode array containing L electrode sites and a separate elec-
trode site to provide the voltage reference signal. Each record-
ing channel has three functional submodels arranged in series
(see fig. 5.5A): biopotential sensing to represent the summation
of biopotentials within the recording volume of an electrode
site; neural interface tissue impedance to represent the conduc-
tivity of the local tissue surrounding an electrode site; and
an electrode-tissue interface to represent electrochemical and
electrical characteristics of the electrode.

In its simplest formulation (fig. 5.5A), the biopotential-
sensing submodel can be considered as a summation node to
linearly combine neural sources scaled by source amplitude
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and inverse distance from the electrode. A higher level of detail
would also include integration of biopotentials across the elec-
trode site, which becomes important when considering record-
ing selectivity and sensitivity. Note that in this treatment, the
electrode site is not considered to be a simple point but rather
a surface having a particular geometric surface area. (This is
important, because, for example, a 750 um? circular site has a
diameter of 30 um, which is a significant dimension relative to
the size, location, and packing density of neurons, and the dis-
tribution of charge on the electrode surface.) Intrinsic neural
noise that results from neural activity that is either too small or
too distant to be identified or that is unrelated to BCI control is
represented by the V. input to the summation node.
Extrinsic biological noise associated with voltage perturba-
tions caused by muscle activation (e.g., electromyographic
activity [EMG] from cranial or extraocular muscles), by eye
movements (electrooculographic activity [EOG]), by heart-
beats (electrocardiographic activity [ECG]), and motion
artifacts are represented by the lumped input, V, .

The neural interface tissue impedance submodel (fig. 5.5B)
represents the tissue impedance surrounding an electrode site
due to the localized reactive tissue response. Although the
extent of the localized tissue impedance variations and the
corresponding effects on chronic neural recordings are not
fully understood, the model in figure 5.5B captures two of the
observed characteristics of tissue impedance: a resistive com-
ponent associated with conductance pathways in the extracel-
lular space and a complex impedance component associated
with cellular encapsulation around the electrode site.

The biopotential signal transduction at the electrode-tissue
interface and transmission of the resulting electronic signal
through the electrode traces to the electronics interface are
represented with the lumped-element equivalent circuit sub-
model shown in figure 5.5C (Merrill et al. 2005; Robinson
1968). The voltage source, E, , represents the half-cell potential
of the electrode-tissue interface. The capacitor, C , represents
the double layer capacitance. The resistor, R , represents the
resistance to the transfer of charge that occurs through Faradaic
currents. The constant phase element (CPE) impedance repre-
sents charge-transfer variations resulting from the surface
morphology of the electrode site and the ion-diffusion nonlin-
earities in the diffusion region. The resistor, R, represents the
resistance to ion movement in the diffusion region. The capac-
itor, C,, and resistor, R, represent the shunt or leakage path-
ways from the insulated electrode traces to the bulk tissue. The
resistor, R, represents the resistance in the electrode trace from
the electrode site to electronics interface. The voltage source,
Voo Tepresents the lumped electrode intrinsic noise sources
that arise from several biophysical and electrical phenomena.
The primary source is associated with the electrode-tissue
interface and caused by Brownian motion of electrons, drift
and diffusion of charged ions due to concentration gradients,
and oxidation/reduction reactions occurring at the electrode/
electrolyte interface (Hassibi et al. 2004; Kovacs 1994; Robinson
1968; Schmidt and Humphrey 1990; Shoham and Nagarajan
2003). The magnitude of the noise depends on the site mate-
rial, size, and surface morphology, and contamination.
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Additional noise sources include random fluctuations and
instability in the half-cell potential caused by disturbances of
the double-layer capacitance and contamination of the elec-
trode surface, thermal noise (also referred to as Johnson or
Nyquist noise) due to the random motion of electrons in the
electrode trace, and frequency-dependent 1/f noise (also
referred to as flicker or pink noise). To a reasonable first
approximation, these noise sources can be modeled as thermal
(Johnson, 2005) noise and represented by the voltage source,
Ve =(4kTZAf)?, where k is Boltzmann’s constant, T is Kelvin
temperature, Z is electrode magnitude impedance, and Af is
the frequency range of interest.

This functional systems-level model of extracellular neural
recording is useful for associating electrode performance char-
acteristics, such as recording selectivity, sensitivity, and signal-
to-noise ratios, with electrode design and usage parameters,
such as electrode site size, electrode materials, and placement
of electrode sites within the targeted brain region. However,
the model’s structure and assumptions do not map directly to
underlying detailed biophysical mechanisms (e.g., biopotential
sampling, resistive paths through the neural interface, and
electrode site morphology are interrelated with complex
spatial and electrical characteristics). More sophisticated
models require finite-element analysis of the neural sources,
neural interface tissue impedance, and electrode-electrolyte
interface.

FACTORS THAT INFLUENCE NEURAL SIGNAL
FIDELITY IN CHRONIC NEURAL RECORDINGS

In the context of electrode design and analysis, neural signal
fidelity can be considered in terms of general sensor attributes
of sensitivity, selectivity, and stability.

Recording sensitivity can be defined as the ratio of the
differential change in the recorded signal (i.e., V, in fig. 5.5A)
to a differential change in the underlying signal source (i.e.,
V). Under this definition, the maximum sensitivity is 1 (i.e.,
all differential charge of an input spike is transduced to the dif-
ferential charge of an output spike in the electrode trace).
Sensitivity varies inversely with electrode site size because the
relative contribution of any one targeted neural signal source
in the transduced signal generally decreases as biopotentials
are integrated across a larger site area. Sensitivity is also affected
by the shunt pathway (C, and R ), resistive losses in the tissue
(R, and R ), and resistive losses in the electrode trace (R)).

Recording selectivity can be defined as the degree to which
an electrode preferentially records a targeted group of neuron
signal sources and excludes unwanted neural signal sources.
As such, selectivity varies inversely with electrode site size
because a larger sensing area will tend to integrate biopoten-
tials from more neural signal sources.

Recording stability can be defined as the degree to which
the functional characteristics of the electrode array—including
biopotential sensing, neural interface tissue impedance, and
electrode-tissue interface components—do not change over
time. Well-designed electrodes have relatively stable electrode-
tissue interface characteristics (which suggests that recording
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Figure 5.5 Lumped-element functional models of neural recording with a microelectrode array. (A) System model of extracellular neural recording from K neurons
with an electrode array with L channels. The three components for each channel are biopotential sensing (S), tissue interface impedance (Zm”), and electrode
equivalent impedance (Z___) (note that j can range from 1 to L). (B) Lumped-element equivalent circuit for impedance changes in the neural interface associated

with reactive tissue responses. This model incorporates adjacent cellular layers of glia and macrophages as a membrane capacitance, a membrane conductance
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resistance, and a membrane area-scaling term (m) related to encapsulation thickness and cell-to-cell adhesion within the cellular layer. The extracellular pathway

between cells is defined as a resistance. (C) Lumped-element equivalent circuit for the microelectrode site. R, access resistance of the site; C
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limitations, and associated interface complexities; voltage source E, , half-cell potential of the electrode-electrolyte interface; v
electrode trace resistance.

interface; C,,, shunt capacitance; R, leakage resistance; R
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stability depends mainly on the Biopotential Sensing and
Tissue Interface blocks shown in fig. 5.5). Stability can be
affected by variability in the neural signal source, which can
occur if a neuron is damaged or degenerates, or undergoes
morphological or electrophysiological changes. It can also be
affected by time-varying changes in reactive tissue responses
around the electrode.

Thus, the basic strategy for optimizing neural signal fidelity
is to design electrodes to have sufficient sensitivity, selectivity,
and stability to maximize the contributions of neural signals of
interest and minimize the contributions of the various noise
sources (see next section). That is, the strategy is the familiar
one of maximizing the signal-to-noise ratio. The primary fac-
tors in neural signal amplitude are the distance of the neuron
from the electrode site, the magnitude and spatial distribution
of its current sources and sinks, and the size of the electrode
site. The largest deflections in extracellular potentials occur
close to the largest membrane current, which, under typical
circumstances, is assumed to be the point of origin of the
action potential, the cell body/axon hillock. The extracellular
potential falls off with distance from a current source as 1/r
(i.e., with r the distance from source to electrode site). For neu-
rons with morphology and channel distributions that approxi-
mate a localized and paired current source and sink (i.e., a
current dipole, as is typically assumed for spiking cortical
pyramidal cells), the extracellular interactions between source
and sink lead to a fall-off in extracellular potential as roughly
1/7%. In addition, neurons with larger cell bodies and dendritic
processes tend to have larger membrane currents compared to

smaller neurons. These factors contribute to causing spike

the double-layer

di”

the charge-transfer resistance; CPE (constant phase element), the generalized phase shift (time delay) associated with site morphology, diffusion

additive noise sources in the

elec-ns’

recordings to be biased toward larger neurons over smaller
neurons, and toward neurons that are closer to electrode sites
over neurons that are farther from electrode sites. In order to
maximize recording selectivity and sensitivity, the electrode
site size should be matched to the cell sizes, cell-packing den-
sity, and current source amplitudes.

FACTORS THAT INTRODUCE NOISE
IN CHRONIC RECORDINGS

Intrinsic electrode noise is minimized first through appropriate
selection of materials and electrode design to lower the elec-
trode impedance (i.e., noise power varies with impedance).
The trace resistance can be reduced through proper selection
of trace material and size, and the shunt pathways can be min-
imized through selection of high-quality dielectric materials
(which can generally be accomplished without performance
trade-offs). The double-layer capacitance and charge-transfer
resistance are a function of material and site size. The spread-
ing resistance is a function of site size. The net trade-off is
that increasing site size to lower electrode impedance has the
general effect of decreasing recording selectivity and sensitiv-
ity. Advanced microelectrode site materials, such as iridium
oxide thin-films (Cogan et al. 2009) and conductive polymers
(Abidian et al. 2010; Abidian et al. 2009; Ludwig et al. 2011;
Ludwig et al. 2006; Venkatraman et al. 2011), can significantly
lower electrode impedance without changing the electrode
site size.

Intrinsic neural noise sources can be minimized by increas-
ing recording selectivity and by positioning the electrode site
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close to the neurons of interest. However, this generally involves
minimizing the electrode site area, which usually causes higher
electrode impedance (and thus, intrinsic electrode noise) and
lower recording stability.

The contributions of extrinsic biological noise can be
minimized through appropriate signal referencing and sig-
nal conditioning (Horsch and Dhillon 2004; Kovacs 1994;
Linderman et al. 2006; Ludwig et al. 2009; Schmidt and
Humphrey 1990; Shoham and Nagarajan 2003; Webster 1998).
The importance of proper referencing is discussed extensively
in chapters 3, 6, and 15 in this volume (also see Donoghue
2007). Typically, referencing is accomplished either by record-
ing from an additional microelectrode site or by recording
from a relatively large electrode positioned in a location with
minimal neural activity; the recording from the additional ref-
erence is subtracted to remove correlated noise across channels
(Blanche et al. 2005; Henze et al. 2000; Ludwig et al. 2009;
Nelson et al. 2008; Vetter et al. 2004b; Webster 1998; Williams
et al. 1999). Each type of configuration involves associated
trade-offs.

An alternative solution is to use a common average refer-
ence (AVE or CAR), commonly employed in EEG to help
detect small signals in very noisy recordings (Cooper et al.
2003; Oftner 1950; Osselton 1965) (see chapters 6 and 7, this
volume). Unlike more complex posthoc methods of removing
noise from recorded signals (Aminghafari et al. 2006; Bierer
and Andersen 1999; Oweiss and Anderson 2001), CAR is a
computationally simple technique and therefore amenable to
incorporation into the recording hardware (i.e., on-chip) and
to real-time BCI applications. As its name implies, the record-
ings from all the microelectrodes are averaged, and the average
is used as the reference to be subtracted from each individual
site (Ludwig et al. 2009). Through the averaging process, signal
or noise that is common to all sites (i.e., correlated) (e.g., 60-Hz
noise or motion artifact) remains on the CAR and can thus be
eliminated from each site’s recording.

CHRONIC RECORDING PERFORMANCE
OF INTRACORTICAL
MICROELECTRODE ARRAYS

A steadily growing body of evidence indicates that reliable
chronic recording of information-rich neural activity is feasi-
ble with intracortical microelectrode arrays. However, the
present technologies do not yet achieve the chronic perfor-
mance levels that are possible. In addition to various material-
and device-related failures, biological processes also contribute
substantially to the degradation of recording performance.

A concise general description of the chronic-recording
performance of intracortical microelectrode arrays is challeng-
ing because of the inherent complexity and variability of
chronic microscale neural interfaces and because of the diffi-
culty of quantitatively assessing recording performance.
Looking across many studies using several types of microelec-
trode technologies, and considering the highest-quality micro-
electrodes and implant techniques, four general observations
emerge (Hochberg et al. 2006; Jackson and Fetz 2007; Kim
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et al. 2008; Kipke et al. 2003; Liu et al. 1999; Maynard et al.
1997; McCreery et al. 2004; Nicolelis et al. 2003; Rousche and
Normann 1998; Santhanam et al. 2006; Suner et al. 2005; Vetter
et al. 2004b; Ward et al. 2009; Williams et al. 1999).

The first observation is that recording performance (i.e.,
signal longevity, reliability, and quality) generally degrades
over weeks to months, such that the information-rich neural
signals required for high-dimensional BCI control diminish
and are eventually lost. The second is that chronic recordings
over time typically do not fail completely; there are usually
some remaining neural signals available across an array, typi-
cally lower-quality multineuron activity or LEPs. The third
observation is that over time, neural signals from a particular
microelectrode, or from a microelectrode array as a whole, are
generally variable and not reliable; good and bad recording
days often alternate, with little ability to predict, observe, or
control the transition. The fourth observation, coming usually
from anecdotal reports and representing the exception rather
than the rule, is that there are particular cases in which
single-neuron recording is stable, at a particular site or at least
somewhere on the array, for long periods of time (i.e., one to
several years).

Meaningful assessment of chronic-recording performance
over time involves evaluation of several interrelated recording
characteristics, including signal quality, array yield, signal
stability, recording longevity, and overall reliability. Although
there are not yet definitive, universally accepted quantitative
measures of these characteristics, a growing literature is begin-
ning to quantify electrode performance in these terms (Kipke
et al. 2003; Liu et al. 1999; Liu et al. 2006; Nicolelis et al. 2003;
Suner et al. 2005; Vetter et al. 2004a). Qualitative inferential
comparisons among different types of microelectrode arrays
are common, but meaningful quantitative comparisons are
limited because of different experimental preparations, tech-
niques, and analysis algorithms (Polikov et al. 2005; Suner
et al. 2005; Ward et al. 2009; Williams et al. 1999). Moreover,
development of relevant performance measures for recording
LFPs is particularly problematic because the amplitude and
bandwidth characteristics of these signals make it difficult to
distinguish them from nonneural background noise. Thus,
LFP recording performance is typically assessed indirectly by
measuring the performance of BCIs that use these signals.

SIGNAL QUALITY

For action potential (spike) recordings, signal quality is typi-
cally expressed as a signal-to-noise ratio, in which the signal is
defined as the amplitude of identified spikes, and the noise
level is defined in terms of either the root-mean-square (RMS)
level of the recording after the identified spikes are removed, or
as 2-6 standard deviations from the average signal level. Signal
quality is important for intracortical BCI applications because
it directly affects the reliability of the spike trains (i.e., the
timing of identifiable single-neuron or multineuron spike
activity) that provide inputs to BCI decoding algorithms (see
chapters 7, 8, 16, 17, in this volume). In typical cases, signal-to-
noise ratios of about 2.5 to 4 (i.e., spike amplitudes 2.5-4.0
times higher than the RMS noise level) are interpreted as



multineuron activity and accepted as the lowest useful level
of spike activity. Signal-to-noise ratios greater than about
4.0 are interpreted as single-neuron activity. Most microelec-
trode sites with useful signals have multineuron activity or
one or two discriminable single neurons plus multineuron
activity.

ARRAY YIELD

The array yield is operationally defined as the fraction of elec-
trodes on an array that record discriminable spike activity (or
appropriate LFPs) of sufficient quality over a given time inter-
val. Array yield is important because it measures the number
of spike trains providing input to the BCI decoding algorithm.
In studies in rats the daily array yield over postimplant periods
of weeks to several months was typically 50-90% (Vetter et al.
2004a; Ward et al. 2009). Comparable array yields have been
reported in nonhuman primate studies (Nicolelis et al. 2003;
Suner et al. 2005). Initial studies of intracortical BCIs in
humans showed similar daily array yields over a period of sev-
eral months (Hochberg et al. 2006). Both within and across
studies, the large variability in array yield reflects the current
limited ability to make precise a priori assumptions about a
particular level of chronic recording performance.

SIGNAL STABILITY

Signal stability can be defined as the likelihood of recording the
same set of putative neurons on a given microelectrode site
over specified time periods. Signal stability is important
because it directly relates to the day-to-day consistency of spike
discrimination settings and BCI decoding algorithms. If neural
signals are highly stable, spike discrimination settings will
require minimal adjustment, and decoding algorithms will
receive consistent sets of inputs from day to day. Although
fraught with caveats, signal stability is typically measured by
tracking the consistency of brief (about 1-ms) extracellular
spike waveforms, sometimes augmented with spike train sta-
tistics such as the interspike intervals (Chestek et al. 2007;
Dickey et al. 2009). It is particularly difficult to confirm that
day-to-day recordings of an action potential with a stable volt-
age-time wave shape are from the same neuron over time.

In alandmark study, Harris et al. (2000) used simultaneous
intracellular recordings and extracellular tetrode recordings to
investigate the reliability of manual spike sorting by experi-
enced operators. Despite the experience of the operators and
the availability of multidimensional tetrode recordings, signifi-
cant rates (as high as 30%) of both Type I (false-positive) and
Type II (false-negative) errors were found. Additionally, the
measured waveform features of the extracellular spike wave-
forms were found to change up to 30% over a 24-hr period
(Santhanam et al. 2007). Thus, it appears that not only are there
inherent technical difficulties in recording from the putative
same neuron (judged by its spike waveform), but it is also dif-
ficult to discern the discrimination errors. Nevertheless, and
regardless of confidence in, or ability to, record from individ-
ual neurons over short and long time frames, significant levels
of BCI control have been achieved with chronic recordings and

have been found to be quite robust (Chestek et al. 2007;
Ganguly and Carmena 2009; Heliot et al. 2010; Hochberg et al.
2006; Santhanam et al. 2006; Velliste et al. 2008).

LONGEVITY OF RECORDING

Recording longevity can be operationally defined as the length
of time over which the neural recordings maintain consistent
recording quality, array yield, and stability characteristics. A
number of investigators have recently reported viable neuronal
recordings extending over months or longer using microwire
arrays (Nicolelis et al. 2003), ceramic-substrate arrays (Moxon
et al. 2004), Utah arrays (Suner et al. 2005), and Michigan
arrays (Vetter et al. 2004a). A recent, systematic study was con-
ducted to compare objectively the performances of these vari-
ous microelectrode arrays (Ward et al. 2009). This report
confirmed the various longevities previously reported and
indicated largely comparable performance of the different
microelectrode technologies. However, this comparative-
performance study was conducted using rat brain exclusively,
and therefore did not take into account some of the potential
failure modes for implants in larger brains (e.g., high accelera-
tion movements of the head in nonhuman primates [Santhanam
et al. 2007]).

OVERALL PERFORMANCE

In addition to considering the chronic performance of micro-
electrode arrays, it is important to consider the performance of
the intracortical implant procedure itself. What risks are asso-
ciated with receiving an intracortical BCI neural interface; and
what is the likelihood of the implant attaining and maintaining
a useful level of function? Most of the animal studies in this
area have not been designed to address these questions in a
comprehensive manner, and the relevant clinical experiences
have been limited. An ad hoc, qualitative assessment across
animal studies, combined with one of the few studies to report
both implant successes and failures (Williams et al. 1999), sug-
gests that in experienced labs with validated protocols and
trained personnel, roughly 60-90% of implants result in at
least a nominal level of useful performance. The most impor-
tant salient aspect of this assessment is that while the likeli-
hood is high, it is well below 100%. That is, any given implant
procedure is likely to be successful to some degree, but success
is not guaranteed. Although clinical studies to date have been
very limited, they support this general observation (Hochberg
et al. 2006).

Taken as whole, the animal and human studies to date sug-
gest that long-term, information-rich neural recordings from
intracortical electrodes are ultimately feasible. Nevertheless,
the transition of BCI intracortical neural interfaces from
research grade to clinical grade has yet to be accomplished.
This transition involves two classes of tasks: first, to increase
the number of sites on an array that record viable signals, to
improve the recording fidelity signal on each of these sites, and
to increase day-to-day recording stability; second, to increase
the longevity and reliability of the recordings from weeks to
months and (eventually) to decades.
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BRAIN-TISSUE RESPONSES TO
INTRACORTICAL MICROELECTRODE
ARRAYS

In addition to assessing chronic recording performance, intra-
cortical microelectrode arrays must be evaluated with regard
to any localized tissue responses that occur around the implant.
Although the detailed relationships between brain-tissue
responses (i.e., histology) and chronic neural recording perfor-
mance (i.e., function) are not well understood, it is reasonable
to expect that they are closely related because functional char-
acteristics result directly from the state of the neurons within
the field of interest and from the electrical characteristics of the
electrode-tissue interface (Liu et al. 2006; Nicolelis et al. 2003;
Polikov et al. 2005; Rousche and Normann 1998; Schwartz
et al. 2006; Williams et al. 1999; Biran et al. 2005; Purcell et al.
2009a; Purcell et al. 2009b; Silver and Miller 2004). Although
elucidation of these reactive processes is just beginning, it is
generally expected that better understanding of the dynamic
biological processes surrounding a microscale neural interface
will guide development of advanced microelectrode designs
that are better able to record chronically from information-rich
sources. This will be necessary if intracortical recording is to be
used for controlling BCIs, particularly those capable of com-
plex applications (i.e., multidimensional movement control).
The common working hypothesis is that degradation of
recording performance over time is caused by deleterious brain-
tissue responses, and improvement of long-term recording per-
formance involves attenuating, mitigating, or appropriately
guiding these brain-tissue responses (Kennedy et al. 1992; Lee
et al. 2004b; Maynard et al. 1997; Rousche et al. 2001; Shain et al.
2003; Stensaas and Stensaas 1978; Suzuki et al. 2003; Takeuchi
et al. 2004; Zhong and Bellamkonda 2007). In this section of the
chapter we review current understanding of the complex and
nuanced relationship between the electrode-brain microenvi-
ronment and a microelectrode’s functional performance.

THE MICROENVIRONMENT SURROUNDING
AN IMPLANTED MICROELECTRODE ARRAY

The brain and spinal cord are enclosed within the meningeal
membranes and cushioned by cerebrospinal fluid. In a typical
region of brain, cells (i.e., neurons and glia) fill about 78% of
the volume, microvasculature about 2%, and extracellular
space about 20% (Nicholson and Sykové 1998; Tsai et al. 2009).
In humans, the average cell density across cortex is about
100,000 cells/mm?®, with significant variations among cortical
regions and among layers within a region (reviewed in Tsai
et al. 2009). The average neuronal density is about 30,000 neu-
rons/mm?® (Tsai et al. 2009), resulting in a glial to neuronal cell
ratio of about 2:1. The vasculature length in human cortex is
about 0.4 m/mm’. In mouse, average microvessel diameter is
about 4 um, and the average distance from any spot in cortex
to the closest vessel is 13 pm (Tsai et al. 2009). The overall
composition of brain tissue in the cerebral cortex is illustrated
in figure 5.6, which shows a detailed image of the microenvi-
ronment of the rat cerebral cortex at the scale of a typical
implantable microelectrode shank.
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Figure 5.6 Brain tissue microenvironment around a microelectrode implanted in
rat cerebral cortex, with cortical surface at the top. The image is a montage of
64 three-dimensional images collected on a Zeiss LSM META system with
spectral unmixing. Cyan, CyQuant-labeled cell nuclei; purple, NeuroTrace-
labeled Nissl substance; yellow, Iba1-labeled microglia; red, GFAP-labeled
astrocytes; green, EBA-labeled blood vessels. (Image courtesy of C. Bjornsson,
Rensselaer Polytechnic Institute, modified for this chapter [Tsai et al. 2011].)

To illustrate the scale of implanted microelectrodes relative to the density of
the primary brain-tissue elements, the outline shapes (dotted lines) of two
typical microelectrode shanks/tines (50-um diameter and 400-um separation)
are superimposed on the montage. The left microelectrode depicts a single
site at the tip (e.g., a microwire or Utah electrode array). The right
microelectrode depicts a tip site and an array of sites along the shank

(e.g., a Michigan-style electrode array). Their respective approximate
recording volumes (i.e., about 100-um radius from electrode site) are

shown in blue.

It is important to note that, through the course of normal
activity, the brain and spinal cord move relative to the skull and
vertebrae (e.g., with respiration, heartbeat, bodily movements).
This movement is particularly prominent in primates.

LOCALIZED TISSUE DAMAGE ASSOCIATED
WITH MICROELECTRODE INSERTION

Implanting a microelectrode array into the cerebral cortex
requires incising, or at least penetrating, the meninges, including
the dura mater, the arachnoid, and the pia mater. Arachnoidal
penetration releases cerebrospinal fluid, and arachnoidal and



pial penetration disrupts vasculature. Cortical insertion displaces
or damages neurons, glia, and intracortical microvasculature.

The localized injury response due to microelectrode array
insertion starts immediately. This localized response involves
the four primary constituent elements in the microenviron-
ment: neurons, reactive cells (i.e., microglia, macrophages, and
astrocytes), blood vessels, and extracellular matrix. Given the
packing density of blood vessels and the size and shape of micro-
electrodes, the initial electrode insertion penetrates the blood-
brain barrier (BBB) at some point, resulting in edema as well as
a release of erythrocytes and macrophages into brain tissue
(Schmidt et al. 1993). The simple presence of a typical micro-
electrode shank (nominally 15 x 50 pm, inserted 2.5 mm into
cerebral cortex) would be expected to displace or destroy about
120 glia, about 60 neurons, and about 80 tiny blood vessels.

In addition to this volumetric estimation of the cellular,
vascular, and extracellular damage, compressive damage occurs
due to the viscoelastic nature of the neural tissue. Bjornsson
et al. (2006) used a novel ex-vivo preparation to compare the
tissue distortion in thick slices from rat brains as a function
of insertion speed and device sharpness. By fluorescently
labeling the vasculature and observing the tissue deformation
via microscopy, they reported that damage due to severing,
rupturing, and dragging of vasculature was common as far as
300 um away from the insertion site. The acute tissue disrup-
tion and damage from microelectrode-array insertion has also
been studied by measuring changes in local pH levels in the
extracellular space surrounding the electrode shank as a func-
tion of insertion speed (fig. 5.7) (Johnson et al. 2007).

Despite these observations of the local tissue injury typically
incurred by microelectrode array insertion, it is particularly
noteworthy that adjacent electrode tracks from the same array

2 mm @ 0.05 mm/s
e

2mm @ 0.5 mm/s

can show very different tissue reactions (Rousche and Normann
1998; Williams et al. 2007), and that different ranges of tissue
damage can be observed at different locations on a single elec-
trode track (Stensaas and Stensaas 1976). These findings sug-
gest that the heterogeneity of the tissue at the microscale level
results in variable localized injuries. Kozai et al. (2010) used a
two-photon imaging technique to produce a 3-D reconstruc-
tion of the subsurface neurovasculature prior to inserting an
electrode and showed that proper selection of the insertion
location based on this imaging could produce a >80% reduc-
tion in vascular damage. This suggests that imaging or other
preimplant information may lessen localized tissue damage
due to insertion.

In sum, it appears that, regardless of the mitigation strate-
gies that might be used to minimize insertion damage, some
initial vascular damage and subsequent BBB disruption are
unavoidable given the size, stiffness, and sharpness of current
types of implantable microelectrode arrays. In addition to
rupturing the BBB barrier, array insertion injures or destroys
neurons, oligodendrocytes, astrocytes, and microglia and thus
initiates some degree of initial reactive tissue response. In the
presence of a chronically implanted array, the initial response
perpetuates inflammation and subsequent tissue responses,
leading to a chronic brain tissue response. Interestingly, the tissue
damage decreases if the array is removed (Biran et al. 2005).

CHRONIC BRAIN-TISSUE RESPONSES

The chronic tissue response is a time-varying, complex
sequence of events that involves many signalling molecules
and cell types. The chronic inflammation that follows
device insertion is not unique to microscale devices such as
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Figure 5.7 Insertion damage measured by spatiotemporal variations in extracellular pH (pHe) levels along an electrode shank inserted 2 mm deep at three different

speeds (A, 0.05 mm/sec; B, 0.50 mm/sec; C, 1.00 mm/sec). Spatiotemporal pHe plots reveal more robust longer-term acidosis with slow insertion speed (e.g., A),
as well as variability in the response along the probe shank. The upper plots give a detailed picture of the pHe response during the act of insertion (duration of
insertion indicated by gray bars at bottom). The lower plots show a 10-min response window. A triphasic acidic-alkaline-acidic waveform, which includes

substantial longer-term acidosis, is evident following the slowest insertion (A). Insertion speeds of 0.50 and 1.00 mm/sec (B and C) typically elicited a biphasic
alkaline-acidic waveform with a muted acidosis trough. (From Johnson et al. 2007, with permission.)
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microelectrode arrays. It also occurs with implantation of elec-
trodes for deep brain stimulation (Haberler et al. 2000; Moss
et al. 2004; Nielsen et al. 2007). However, due to the small size
of the microscale devices, and especially because of their use in
recording rather than stimulation, the chronic brain tissue
responses due to this persistent neuroinflammation are likely
to affect their performance and reliability over the long term.

CELLULAR RESPONSES
Microglia are the first class of cells that respond in the localized
injury after device insertion. Within the first day activated
microglia are observed around the implanted devices
(Szarowski et al. 2003). Cytokines and chemokines, the inflam-
matory molecules that activate the microglia, are present near
to and adsorbed onto the implanted device. The microglia
change from a ramified (i.e., resting) morphology into an
amoeboid morphology similar to that of macrophages (Fawcett
and Asher 1999). In this activated state microglia behave simi-
larly to macrophages, propagating the inflammatory cascade
through the release of additional cytokines and through
attempting to phagocytize the implanted device. Using the
immunostain ED-1, which is specific for both microglia and
macrophages, Winslow and Tresco (2010) determined that
these cell types were still active 12 weeks after insertion of a
typically sized microwire but that they were largely confined to
an area <100 um from the electrode (see fig. 5.8A,B). This
finding suggests persistent neuroinflammation. In the same
study, the presence of IgG immunoreactivity surrounding the

O

80

electrode tracks confirmed this conclusion and indicated
leakiness in the BBB as well.

Astrocytes are a second class of cells that participate in the
localized injury response. Astrocytes typically perform sup-
portive roles for the neuronal environment, regulating nutri-
ents and neurotransmitters, as well as helping to form the BBB.
During a chronic tissue response, and apparently due to the
same cytokine signaling to which the microglia respond, astro-
cytes assume a reactive phenotype characterized by hypertro-
phy, proliferation, and secretion of various neuronal growth
inhibitory molecules (e.g., NG2 chondroitin-sulfate proteogly-
cans [Levine 1994] or Nogo protein [GrandPre et al. 2000]).
During this activation, the astrocytes can form a glial sheath
around the microelectrode (Edell et al. 1992; Turner et al.
1999) (see fig. 5.8C,D), which is probably part of the process
of reformation of the BBB during which reactive astrocytes
up-regulate gap junction proteins (connexins) to enable the
formation of tight junctions (Haupt et al. 2007).

Neurons themselves can also be affected by the chronic
tissue response. Although a related signal cascade has not been
defined, the tissue response is typically accompanied by long-
term neuronal death or damage in the area adjacent to the
microelectrode, creating what may be referred to as neuronal
kill-zone, or perhaps more accurately, a neuronal depletion
zone (Biran et al. 2005; Edell et al. 1992; Polikov et al. 2005)
(see fig. 5.8E). This finding was subsequently correlated with
chronic local inflammation around the electrodes (McConnell
et al. 2009a). In addition to the anatomical depletion zone,
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Figure 5.8 Chronic tissue responses from microwire implants in rat motor cortex 12 weeks after implantation. (A) Microglia as a function of distance from the
implant, as indicated by average ED-1 immunoreactivity (+ standard deviation). (B) Average surface plot for ED-1 immunoreactivity showing symmetrical

distribution around the microwire. Scale bar = 100 um. (C) Astrocytes as a function of distance from the implant as indicated by average glial fibrillary acidic
protein (GFAP) immunoreactivity (+ standard deviation). (D) Representative horizontal section illustrating the hypertrophic astrocyte response, as indicated by
GFAP immunoreactivity (pink). DAPI (4',6-diamidino-2-phenylindole) staining (blue) indicates the presence of additional cell types near the electrode-tissue
interface. Scale bar = 100 pm. (E) Average number (+ standard deviation) of NeuN-labeled neuronal cell bodies as a function of distance from the implant.
There is a significant decrease (*p < 0.05) in the number of neuronal nuclei within 50 mm of the microwire, as compared to the average number in unimplanted

tissue (indicated by the light gray horizontal line). (From Winslow and Tresco 2010, with permission.)
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physiological (i.e., functional) effects may also develop, either
through network restructuring due to synaptic damage or
through creation of silent neurons (Henze et al. 2000).

Oligodendrocytes have also recently been shown to contrib-
ute to the reactive tissue response. Loss of myelin occurs
around devices implanted for 2, 4, and 12 weeks (e.g., Winslow
and Tresco 2010). These effects also extend along a cortical
column, suggesting widespread physiological influence
(Woolley et al. 2009). Demyelination, a hallmark of many neu-
rodegenerative diseases, causes slowing of action potential
conduction and thereby disrupts normal function. One possi-
ble (although unproven) mechanism of neuronal silencing is
based on Hebbian dynamics (Hebb 1949). The hypothesis is
that the synaptic inputs from these slowed axons, because they
no longer synchronize with inputs from other axons, gradually
weaken to the point that the neurons giving rise to these slowed
axons are essentially disconnected from the network.

EXTRACELLULAR MATRIX CHANGES

Extracellular matrix changes may also occur in response to
injury from penetrating electrodes. In spinal cord injury, glial
scar formation is associated with production of extracellular
matrix proteins (e.g., y1 laminin, type IV collagen, al laminin)
by reactive astrocytes (Liesi and Kauppila 2002). Several
reports suggest that these extracellular matrix changes also
occur with penetrating injury in the cortex (Liu et al. 1999;
Stensaas and Stensaas 1976) and that they probably contribute
to the observed increases in the impedance spectra. However,
due partly to a lack of adequate methods, there are little data
that directly address the role of extracellular matrix changes
associated with chronic microelectrode arrays.

ASSESSING TISSUE RESPONSE OVER TIME

Several recently developed histological methods are helping to
elucidate changes at the cellular level and in the extracellular
matrix. For example, a new device-extraction histological
method avoids the potential for artifactual overlabelling of the
tissue near the microelectrode array by immunohistochemical
antibodies and biomarkers. Although in situ histology (e.g.,
fig. 5.9) (Woolley et al. 2011) can provide detail at the level of
the interface that cannot be gathered with traditional methods,
such in-situ methods provide only end-point data. In contrast,
in-vivo imaging (e.g., Kleinfeld and Griesbeck 2005) can repeat-
edly assess the chronic tissue response as it develops over time.
As this technique develops further, it may provide enhanced
information regarding the timing and composition of the
chronic reactive tissue response over the lifetime of the array.

Figure 5.10 gives a qualitative summary of the reactive
tissue responses resulting from chronic implantation of a
microelectrode into cerebral cortex from the time of electrode
insertion through 6 weeks after implantation.

ASSESSING THE EFFECT OF TISSUE RESPONSE
ON MICROELECTRODE PERFORMANCE

The acute and chronic tissue responses discussed above may
affect electrode performance. Measuring the impedance of the

Figure 5.9 In situ histological image of neural interface microenvironment with
electrode placed in motor cortex. Single optical section (approximately 50 pm
into a 300-um-thick sagittal section through the motor cortex) at the site of a
silicon Michigan microelectrode array implanted 1 week prior to imaging.
Yellow, GFAP; red, ionized calcium-binding adaptor molecule 1 (Iba1); cyan,
receptor-interacting protein (RIP). Scale bar=200 pm. (From Woolley et al. 2011.)

device-tissue interface in vivo is a way to assess the effect of
chronic tissue response on performance (Grill and Mortimer
1994). Williams et al. (2007) observed a gradual and significant
increase in tissue impedance over the first seven days after
implantation of a microwire array in somatosensory cortex of the
rat. This increase did not occur for all arrays; rather, it occurred
for those that exhibited an extensive GFAP reaction in post-mor-
tem histology, indicating a high degree of encapsulation.

A lumped-parameter circuit model was developed to delin-
eate the real and imaginary contributions to the impedance
from the electrode, the cells, and the extracellular space
(Williams et al. 2007). Subsequently, McConnell et al. (2009a)
described a more detailed model to quantitatively correlate
impedance parameters with histological measures of GFAP
and 4,6-diamidino-2-phenylindole (DAPI). The results of these
impedance studies have been corroborated by the observation
in glial cell cultures of three-dimensional, high-density glial
growth around neural probes (Frampton et al. 2010). Increased
glial sheathing was correlated with increased impedance
(Frampton et al. 2010). These studies provide longitudinal data
that corroborate earlier histological observations regarding the
progression of the stereotypical chronic brain tissue response
to an implanted microelectrode array.

IMPORTANT REMAINING QUESTIONS

Several important questions remain to be answered concern-
ing the chronic brain-tissue response to an implanted micro-
electrode array and its effect on electrode performance.

Does the astrocyte sheath progressively condense in the area
surrounding a microelectrode array, and does it thereby increase
the tissue impedance between neuronal signal sources and elec-
trode sites? Some of the earlier studies involving earlier types of
microelectrode arrays and insertion techniques support this
hypothesis (Turner et al. 1999; Williams et al. 2007). However,
several recent studies that use current types of microelectrodes
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Figure 5.10 Summary of typical chronic brain-tissue responses to an implanted microelectrode in cortex. The chronic phase involves varying degrees of dynamic

neuroinflammatory processes triggered by reaction to the implanted electrode as a foreign body. (A) Acute injury response characterized by cellular damage, local

bleeding, localized ischemia, and edema develops immediately after electrode insertion. (B) The early phase of the chronic response involves activated microglia

(purple) and reactive astrocytes (yellow), accompanied by some degree of damage or loss of neurons (blue). (C and D) The chronic response persists throughout

the lifetime of the implant and involves a spectrum of responses, which may include progressive neuronal degradation, condensation of reactive astrocytes into a

sheath around the electrode, ongoing low-level microglia activation, and a leaky blood-brain barrier. The factors leading to progressive encapsulation of the

electrode by reactive cells, including condensation of reactive astrocytes (illustrated by transition from panel C to panel D), are not completely understood.

Encapsulation seems to be a function of electrode design, surgical techniques, and localized characteristics of the electrode-tissue microenvironment.
(From the authors, in collaboration with W. G. Shain, University of Washington, Seattle.)

and techniques (McConnell et al. 2009b; Winslow et al. 2010;
Winslow and Tresco 2010) suggest that progressive encapsula-
tion through a condensing astrocyte sheath is not inevitable.

What is the actual cause of the gradual loss of signal over
time? Is it neuronal degeneration, silent neurons, or discon-
nected neurons? Recent demyelination data suggest that the
latter two may have a prominent role in the loss of signal
(Winslow and Tresco 2010).

Is the persistence of the inflammatory and microglial com-
ponents of the chronic tissue response the cause of recording
unreliability and failure? Several studies indicate persistent
inflammation with chronic neural microimplants (Winslow
and Tresco 2010; Woolley et al. 2009; Biran et al. 2005; Polikov
et al. 2005; Szarowski et al. 2003; Turner et al. 1999). Careful
experimental studies of effectors known to trigger various
tissue response processes are likely to guide development of
electrode designs and techniques that minimize deleterious
tissue responses.

METHODS TO ADDRESS DEGRADATION

OF SIGNAL QUALITY CAUSED BY

TISSUE RESPONSE
Although there is growing understanding of the response
of brain tissue to a chronically implanted microelectrode
array, direct and detailed information providing mechanistic
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links between the chronic tissue state (i.e., histology) and the
concurrent recording characteristics of the microelectrode
(i.e., function) is relatively sparse, and the causative links now
drawn are mainly inferential. The progressive degradation of
neural recording characteristics probably results from a com-
plex interplay of multiple mechanisms. Several putative mech-
anisms are discussed here.

Since the brain reacts to the typical implanted microelec-
trode array as a foreign object, the constitutive properties of the
device (e.g., its materials, mechanical characteristics, shape, and
size) are all expected to determine the brain’s reactive response
to some degree. In accord with biocompatibility considerations
of material-host responses, high-quality microelectrode materi-
als can be selected so that the microelectrode remains intact
within the brain and does not elicit significant deleterious bio-
logical responses to the materials themselves (Kipke et al. 2003;
Stensaas and Stensaas 1978). Appropriate materials include
thin-film dielectrics made of parylene C or silicon-oxide, and
electrode sites made of platinum, platinum/iridium, iridium, or
poly(3,4-ethylenedioxythiophene) (PEDOT) (Abidian et al.
2009; Cogan et al. 2009; Ludwig et al. 2011; Ludwig et al. 2006;
Wilks et al. 2009). Although these materials do not at this time
seem to cause functional loss, it is possible that they do induce
deleterious responses that might become apparent as micro-
electrode technologies continue to be refined.



Biofouling (i.e., the adsorption of molecules to the electrode
sites) has been hypothesized to be a cause of the chronic tissue
response and degradation of recording. One approach to deter-
mining the effect of biofouling on device performance is to
remove the biofouling at some point after implantation. This
has been achieved by passing small amounts (hundreds of nA)
of direct current from the electrode sites to a distant ground
(Johnson et al. 2005; Otto et al. 2006). Although this produces
significant reductions in impedance, and occasionally, the
reappearance of large-amplitude neural signals from individ-
ual microelectrode sites, this approach is not a viable long-
term solution to biofouling because its repeated use would be
likely to progressively degrade the electrochemical state of the
electrode site.

An alternative approach is to minimize biofouling by coat-
ing the device with anti-biofouling materials prior to insertion.
These coatings may block the initial protein adsorption of the
cytokines and chemokines and thereby create a stealth environ-
ment for the microelectrode array (i.e., in which the microelec-
trode array and/or site is not sensed by nearby neurons and
glia). The most successful anti-biofouling agent used thus far is
polyethylene glycol (PEG) (Alcantar et al. 2000). Recent in-
vitro results indicate that coating with PEG reduces protein
adsorption on the microelectrode surface (Sommakia et al.
2009). This suggests that PEG may prevent the initial precursor
proteins that cause biofouling from adsorbing onto the micro-
electrode array. Whereas these initial results are encouraging,
the longevity of these coatings in vivo is still unknown.

Another promising point of inquiry is the mechanical mis-
match between the relatively soft brain and the relatively stiff
electrode. Typical microelectrodes are 3-6 orders of magni-
tude stiffer than brain tissue, creating a mechanical mismatch.
For example, the elastic moduli of silicon and polyimide are
166 gigapascals (GPa) and 2.5 GPa, respectively, while the
estimated elastic modulus of brain tissue is only about 5 kPa
(comparable to room temperature gelatin). It has been difficult
to test directly and in isolation the hypothesis that this mis-
match causes tissue damage and tissue response. Several mod-
eling studies have reported simulations showing higher strain
fields near the tip of stift electrodes compared to less stift elec-
trodes (Lee et al. 2005; Subbaroyan et al. 2005). The effect of
the softness of the electrode surface has also been studied, but,
as with electrode stiffness, the effects of electrode softness have
been difficult to isolate and measure. The addition of a rela-
tively soft hydrogel coating does not appear to significantly
affect the tissue response (Kim et al. 2010). Although stiffness
and hardness are likely to be factors in performance degrada-
tion, recent results showing minimal tissue responses to con-
ventional stiff and hard electrode types (Winslow et al. 2010),
suggest that they are not major factors.

Micromotions, operationally defined as small (i.e., submi-
cron to micron) movements of the electrode relative to the sur-
rounding tissue, may also have a role in signal degradation.
These movements may be caused by normal brain pulsations
(e.g., respiratory and cardiac) and by movements of the brain
associated with bodily movements, and they may be exacer-
bated by tethering of the array to the dura or the skull and by
the mechanical mismatch of the electrodes relative to the brain.

The movements of the electrodes relative to the brain tissue
have been hypothesized to induce a chronic inflammatory
response due to repeated cellular disruption or strain. Whereas
this is a reasonable hypothesis, the micromotions that actually
occur in vivo have not been precisely measured or linked to
particular brain-tissue response processes (Liu et al. 2006;
Schmidt and Humphrey 1990; Subbaroyan et al. 2005).

STRATEGIES FOR DEVELOPING
NEXT-GENERATION INTRACORTICAL
BCI INTERFACES

The engineering science behind implantable microelectrode
technologies and applications has advanced to the point of
enabling data-driven, rational development of next-generation
intracortical BCI interfaces. This heralds a remarkable new
era in the arc of microelectrode technologies that began over
50 years ago when readily available laboratory materials and
techniques were used to make the early microwire arrays. The
scientific results from these early studies sparked the introduc-
tion of newly developed MEMS technologies to enable the
development of more sophisticated and specialized types of
microelectrodes, thereby significantly expanding the micro-
electrode design space. Now, the primary challenges have
moved beyond simply making high-quality microelectrode
arrays and getting them into the brain. Rather, the challenge
now is to develop advanced designs, materials, and techniques
that more effectively integrate with the brain at cellular and
subcellular scales and that function reliably for many years. As
this advanced functionality brings emerging clinical applica-
tions into focus, the additional challenge of clinical translation
of the microelectrode technology comes to the forefront.

Advanced strategies for microelectrode design that maxi-
mize the quality, stability, and reliability of neural recordings
can produce high-fidelity neural recordings. In addition, inno-
vative approaches to signal processing will also further improve
the quality of signals going into the neural decoding algo-
rithms. These include topics addressed in other chapters such
as referencing strategies, multichannel denoising and filtering
techniques, and blended approaches that combine spike
recordings with local field potentials (e.g., Gaumond et al.
2004; Ludwig et al. 2009).

A general strategy is starting to emerge for developing
next-generation intracortical microelectrode arrays. This strat-
egy has four coupled elements.

MINIMALLY DAMAGING SURGICAL
INSERTIONS AND IMPLANTS

Although injury associated with microelectrode insertion and
implantation is not a definitive predictor of long-term chronic
performance, the components of the initial injury (i.e., bleed-
ing on the brain surface, meningeal reaction, intracortical
microhemorrhages, cellular damage) drive inflammatory
responses and tissue-repair processes in the early postimplan-
tation period. There is limited, if any, capacity to restore lost
or damaged neurons in the electrode’s microenvironment.
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Insertion approaches that minimize damage include precise
control of the insertion trajectory, position, speed, and depth,
as well as well-designed electrode leading edges. After implan-
tation the microelectrode array should be able to move with
small, normal brain movements. Finally, dural sealing and/
or repair are essential in order to prevent fluid seepage from
the microelectrode insertion point and to minimize dural
adhesions to the electrode interconnects outside the brain
(Nunamaker and Kipke 2010; Nunamaker et al. 2011).

MICROELECTRODE ARRAYS WITH
ADVANCED CONSTITUTIVE PROPERTIES

There is a compelling data-driven and intuitive rationale for
developing microelectrodes that are smaller, more flexible, and
perhaps have open mesh-like architectures. At the same time,
the microelectrodes must have suitable electrical characteris-
tics for high-quality bioelectrical signal transduction and con-
nection to electronics. They must also have sufficient strength
and robustness for surgical handling and insertion into the
cortex. Finally, the microelectrode arrays and their coatings
must have sufficient integrity to remain intact and functional
for long periods of time.

In one in-vivo study, researchers investigated in rat subcu-
taneous tissue the effect of single polymer fibers with diameters
of 2-27 pm (Sanders et al. 2000). The results showed a marked
decrease in capsular thickness around fiber diameters in the
2.1 to 5.9-pum group. Other studies showed that the geometric
dimensions of adhesive substrate patterns determined whether
apoptosis (programmed cell death) occurred, and affected
growth by controlling cellular spreading (Chen et al. 1997;
Chen et al. 2004; Turner et al. 2000). These results led to the
hypothesis that microelectrodes with dimensions of less than
7 um would significantly reduce the brain-tissue response
by preventing cellular adhesion to and growth on the electrode
surface.

This hypothesis was confirmed in a cross-disciplinary
study that added a thin (5-pm) polymer lateral extension to a
conventional microelectrode shank. Called the subcellular edge
electrode, or SEE probe (see fig. 5.11A), this device was pro-
duced in several different forms, and the chronic tissue
responses they induced in rat cerebral cortex were evaluated
(Seymour and Kipke 2007; Seymour et al. 2011). As shown in
figures 5.11C and D, the SEE probe induced significantly less
encapsulation than a conventional shank electrode, and pre-
served healthy neurons in the surrounding tissue. One partic-
ularly striking result was a significant decrease in encapsulation
density around the lateral edge of the thin platform: encapsula-
tion density at the lateral platform edge was reduced to about
50% of the level around the conventional microelectrode
shank. Moreover, neuronal loss was significantly reduced:
within the first 25 um it was 30-48% less than for the con-
ventional shank. These findings led to further technology
development to make functional versions with an open archi-
tecture and with small electrode sites positioned on the lateral
edge (see fig. 5.11B). Initial short-term in-vivo testing of
this subcellular edge electrode found that the edge sites
recorded, on average, higher amplitude spikes than nearby
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planar control sites. This electrode technology continues to be
developed for chronic recording applications.

MICROELECTRODE ARRAYS WITH
BIOACTIVE SURFACES

In addition to meeting stringent size, mechanical, and electri-
cal requirements, the surfaces of a microelectrode array should
be designed to interface with the surrounding cells and extra-
cellular substances in a manner that localizes and minimizes
foreign-body responses and that promotes tissue integration.
This might be achieved with thin, conformal coatings (Pierce
et al. 2009) and/or precisely controlled surface morphologies
for the dielectric and substrate components and for the elec-
trode sites. The basic strategy is to attenuate proinflammatory
signalling, reduce biofouling, maintain the BBB, and promote
neuronal growth and maintenance (Azemi et al. 2011; He et al.
2006; He et al. 2007).

ACTIVE CONTROL OF LOCALIZED
BRAIN-TISSUE RESPONSES

Beyond designs and technologies for the microelectrode array
itself, an additional innovative direction would be active
management of localized, dynamic brain-tissue responses.
Such interventions would most probably employ localized or
systemic delivery of therapeutics targeting localized inflamma-
tory processes (Abidian et al. 2010; Abidian et al. 2009;
Anderson 2008; Purcell et al. 2009b). This concept may extend
to feedback control based on electrode functional perfor-
mance, local tissue conditions, or the state of the subject.
The strategy would be to facilitate self-repair of the intracorti-
cal interface. This strategy might become a component of
intracortical implant systems that are capable of reliable, stable
functional performance over years to decades.

LOOKING TO THE FUTURE

What is the developmental path from the current state of
microelectrode technology to realization of a clinical-grade
intracortical BCI neural interface that is used to control a life-
like prosthetic arm and hand with normal movement? Ongoing
research and development should be increasingly driven by
the results of highly focused engineering and scientific studies
of critical biological processes and device technologies. As
such, improved methods for quantitative analysis of the tissue
responses around a chronic microelectrode array are needed
to evaluate their relationship to recording performance.
Investigation of detailed mechanisms of electrode performance
(and failure) must extend beyond correlational analysis of
tissue responses and electrode-array performance. Further-
more, as we seek to develop microelectrode arrays that will
function for decades in humans, it will be critical to have
improved methods to evaluate safety and effectiveness, includ-
ing perhaps accelerated lifetime testing.

Finally, although the focus of this chapter has been on neural
recording, recent advances in neural interface technology
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(B) Scanning electron micrograph of a prototype SEE probe having a conventional-sized stabilizing shank with a thin, lattice-like lateral platform. The scale bar
equals 100 um. (C) Qualitative and quantitative results around two nonfunctional SEE probes. Top left: GFAP (red) and OX42 (green) antibodies label astrocytes

and microglia, respectively (scale bar = 100 pm). Top right: GFAP (red) and NeuN (green) label astrocytes and neuronal cell bodies, respectively (scale bar = 100

pm). Bottom left: normalized mean nonneuronal density as a function of distance from probe interface (p < 0.05). Bottom right: Mean neuronal density as a

function of probe interface (p < 0.05). The advanced architecture featuring dimensions less than 7 um and large perforations in the substrate improved the chronic

neural interface through reduced encapsulation and reduced neuronal loss. (D) Schematic illustration of electrode placement, comparing SEE and conventional

probes, and showing the corresponding average nonneuronal density regions. Histological results indicated that the best electrode placement would be at the
lateral edge. (Scale bar = 100 um.) (Seymour and Kipke 2007; Seymour et al. 2011.)

and pilot studies in nonhuman primates and humans (Bak
et al. 1990; Bartlett et al. 2005; Bradley et al. 2005; Schmidt
et al. 1996) suggest that intracortical electrical microstimula-
tion may be a valuable method for providing sensory feedback
in a BCI (see chapter 16, in this volume). Microstimulation
requires only an energy source, uses the same physical encod-
ing parameters to interface with every sensory system (i.e.,
stimulus frequency, duration, shape, and amplitude in volts or
amperes), and provides stimuli that can be highly controlled in
location, temporal characteristics, and other parameters
(Koivuniemi et al. 2011; Koivuniemi and Otto 2011; Romo
et al. 1998; Rousche and Normann 1999; Rousche et al. 2003;
Salzman et al. 1990; Scheich and Breindl 2002; Talwar et al.

2002). Several recent studies integrating cortical microstimula-
tion into a BCI task (Fitzsimmons et al. 2007; Marzullo et al.
2010; O’Doherty et al. 2009) showed that, in some cases,
response latencies are shorter than with natural sensory stimu-
lation. These reports indicate the potential value of intracortical
microstimulation for providing sensory feedback in a variety of
tasks. On the other hand, cortical microstimulation is highly
artificial in that it bypasses earlier precortical stations of sen-
sory processing and simply translates peripheral differences in
sensation location and strength into differences in the location
and strength of cortical stimulation. Thus, its usefulness for
BCI applications remains to be determined. Whereas numer-
ous physiological and technical issues remain to be resolved,
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intracortical microstimulation, perhaps delivered by the same
microelectrode arrays used to record, could provide an impor-
tant additional feature for the development of BCI systems
capable of complex control applications.

SUMMARY

A wide variety of different microelectrode designs have proved
capable of recording intracortical signals safely and effectively
for prolonged periods. The results suggest that chronic recording
of neural spike trains from many (e.g., 200+) microelectrodes
simultaneously for periods of months to years should be tech-
nologically feasible. Thus, practical BCI systems that use these
signals appear to be attainable. At the same time, if clinically
practical intracortical BCIs are to be realized, the reliability,
stability, and signal quality of the implanted devices have to be
substantially improved. The current science and technology
base is sufficiently mature and robust to support progressive
advances to implantable microelectrode arrays that meet the
necessary clinical requirements. Success will depend on care-
ful science and engineering approaches that incorporate
knowledge of the relevant and most critical biological, physi-
cal, and chemical factors, and their interrelationships.
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RAMESH SRINIVASAN

ost brain-computer interfaces (BCIs) determine

their user’s wishes by recording electromagnetic

signals noninvasively from sensors on or above the
scalp. As described in chapter 3 of this volume, the two princi-
pal noninvasive extracranial methods that are used for BCIs
are electroencephalography (EEG) and magnetoencephalogra-
phy (MEG). Chapter 3 describes the generation of EEG and
MEG signals by the dipole current sources produced by neural
activity and the principles that determine their distribution
through the head. This chapter addresses the methods for
recording these signals. EEG is the main focus because it is by
far the most commonly used noninvasive BCI methodology.
EEG is inexpensive, convenient, and amenable to diverse envi-
ronments and has been developed commercially into portable
and even wireless designs for a wide variety of purposes. EEG
in general and EEG-based BCI technology in particular have
generated a substantial body of theoretical and practical
research literature. In contrast, only a few research groups are
actively working on MEG-based BClIs, because MEG instru-
mentation is expensive, cumbersome, and not practical for
everyday use. As a result, at least to date, MEG is used mainly
as a research tool for BCI technology.

In the first part of this chapter we consider practical aspects
of EEG and MEG recordings. In the remainder we consider the
critical physical issues associated with use of these methods.
These issues will be addressed by using both real EEG data and
simulations in idealized physical models of the head to clarify
the key features of EEG and MEG signals. Physical models of
EEG and MEG recordings underlie source analysis methods
and are constructed based on the fundamental properties of
the electric and magnetic fields generated by current sources in
the brain. We focus on the two main practical issues in the
acquisition of EEG signals: reference location and number of
electrodes. The models will help us understand the impact that
these two experimental parameters have on spatial properties
of recordings. We conclude by considering alternative choices
regarding data-acquisition strategy in the specific context of
BCI applications.

EEG RECORDING
EEG ELECTRODES

Every EEG recording involves at least three electrodes: a ground
electrode and two recording electrodes. Figure 6.1 depicts
EEG recording from a human subject who is conductively

isolated from the ground of the power supply. The ground elec-
trode is connected to the amplifier ground, which is isolated
from the ground of the power supply. As described in detail in
chapter 3, potential differences V (t) - V() measured on the
scalp are generated by brain current sources P(r, t) (current
dipole moments per unit volume) and by biological artifacts.
Environmental electric and magnetic fields can also generate
scalp potentials, mostly due to capacitive coupling of body and
electrode leads to ambient electromagnetic fields (e.g., from
power lines and other electric equipment.)

In figure 6.1, the potentials at scalp locations 1 and 2 with
respect to an external ground (“infinity”) are given by V (¢) +
V) and V() + V, (t), respectively, where V (¢) is the
common mode potential (the potential common to both loca-
tions that is caused mostly by power-line fields). Electrocar-
diographic (ECG) signals and other factors can also make
contributions. EEG systems as exemplified by figure 6.1 use
differential amplifiers, which are designed to reject the
(spatially constant) common-mode potential V() and
amplify the potential difference between pairs of scalp loca-
tions such that the output voltage E(t) is proportional to scalp
potential differences generated within the body (Kamp et al.,
2005), that is,

E(t) = A[V,(H) =V, (1)] (6.1)
where A is the total system gain typically due to several ampli-
fier stages. The ground electrode that is placed on the scalp,
nose, or neck provides a reference voltage to the amplifier to
prevent amplifier drift and to facilitate better common-mode
rejection. As shown in figure 6.1, the ground serves as a refer-
ence for the differential amplifier. The remaining unwanted
contribution from the common-mode signal is due mainly to
unequal contact impedances of the two recording electrodes
(Ferree et al., 2001).

Traditional EEG practice provides guidelines for contact
impedances, typically requiring impedances of less than 10 kQ
(Picton et al., 2000). This can be achieved by abrading the scalp
at the electrode site and using a conductive gel or paste between
the electrode and the scalp. When using modern amplifiers
that have large input impedances (e.g., 200 MQ), electrode-
contact impedances of ~30-50 k) (relatively large compared
to traditional guidelines) can easily be tolerated without
degrading EEG quality (Ferree et al., 2001); the only noticeable
effect is to increase power-line artifacts at 50 Hz (Europe, Asia,
Africa, Oceania) or 60 Hz (North and South America), which
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Figure 6.1 The major components of a typical EEG recording system are
shown. Electrodes record scalp signals due to brain current sources (arrows);
the signals are passed through differential amplifiers sensitive to potential
differences between electrode pairs and insensitive to common-mode
potentials (the generally much larger, spatially constant potentials over the
scalp). Modern EEG systems record simultaneously from about 32-131 scalp
locations. Analog filters low-pass filter (see chapter 7) the input signal, typically
removing substantial EEG power above about 50 or 100 Hz. High-pass analog
EEG filters typically remove substantial power below about 0.5 Hz (depending
on the application). A notch filter (chapter 7) may or may not be used to
remove the power-line frequency (e.g., 60 Hz in the United States, 50 Hz in
Europe and Asia). The scalp signal is substantially boosted by amplifier gains
(e.g., amplified 20,000 times). In modern EEG systems the amplified analog
signals are sampled and digitized, and numbers are assigned to successive
segments of the waveforms. This step is called analog-to-digital conversion
(ADC). It requires calibration by measuring the ADC output produced by a
known calibration signal. EEG waveforms may then be displayed on a
computer screen and stored for additional processing. In BCl systems, online
processing of the EEG signals often starts with frequency analysis (using the
fast Fourier transform [FFT] or another method) of each data channel. See
chapter 7 for more information about low-pass, high-pass, and notch filtering
as well as the FFT and other frequency analysis methods. (Adapted from
Cadwell and Villarreal, 1999, and Fisch, 1999.)

can easily be removed from the data by online analog filters or
by postprocessing with digital filters (see chapter 7, in this
volume). This tolerance for higher-impedance electrode con-
tacts that is provided by high-input-impedance amplifiers
allows the use of electrodes embedded in small sponges con-
taining conductive saline solution. These sponge-saline elec-
trode systems have higher contact impedance than the
conductive-gel electrode systems traditionally used for EEG.
On the other hand, application of the electrodes is significantly
faster: a large number (e.g., 128) of sponge-saline electrodes
can be placed in 15 minutes, as compared to 20 minutes or
more with conventional gel electrodes. The major disadvan-
tage of sponge-saline electrodes is their limited recording time
(about an hour) because impedances rise as the sponges dry.
Both conductive-gel and sponge-saline electrode systems
use metallic electrodes usually made from tin (Sn), silver/
silver-chloride (Ag/AgCl), gold (Au), or platinum (Pt). Sn elec-
trodes are the least costly but introduce low-frequency noise
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below 1 Hz. In applications where low-frequency recordings
are essential (e.g., most event-related potential [ERP] record-
ings; see chapters 12 and 14, in this volume), Ag/AgCl
electrodes are typically used. Most commercial EEG elec-
trode systems use Ag/AgCl electrodes. Au electrodes also
minimize drift and show less high-frequency noise than Ag/
AgCl electrodes.

Conductive-gel and sponge-saline electrodes are often
referred to as wet electrodes. Because of the inconvenience and
messiness of the typical electrode gels and the short useful
lifespan of the electrode saline solutions, there has been much
interest in recent years in developing dry electrodes, electrodes
that do not require the low-impedance contact with the scalp
that gel and mild skin abrasion provide to wet electrodes.
The sensor material of a dry electrode can be an inert metal
(e.g., platinum, gold, or stainless steel) or even an insulator.
Whichever material is used, there is generally a capacitive cou-
pling between the skin and the electrode. A number of differ-
ent dry electrodes have been described (Taheri et al., 1994;
Searle et al., 2000; Popescu et al., 2007; Matthews et al., 2007;
Sullivan et al., 2008; Sellers et al., 2009; Gargiulo et al., 2010;
Grozea et al., 2011), and several are available from commercial
vendors (e.g., Nouzz [http://nouzz.com], Quasar [http://www.
quasarusa.com]). However, problems related to movement,
environmental noise, and degradation of the sensor materials
in contact with sweat on the skin have been identified but are
not yet adequately resolved. Thus, although anxiously awaited
by many in the EEG community, dry-electrode technology is
still evolving. For the practicality of noninvasive BCIs, the suc-
cessful development of dry electrodes could represent an
extremely significant advance.

It is also worth noting that several options that reduce (but
do not eliminate) the need for conductive gel (or saline) and
skin abrasion are currently available (Brunner et al., 2011).
Active electrodes, electrodes that amplify the EEG signal at the
electrode, are offered by many commercial vendors (although
they are typically quite expensive). Another option is active
shielding of the connection between the electrode and the
amplifier in order to prevent capacitive coupling with the envi-
ronment (Twente Medical Systems International, http://www.
tmsi.com).

BIPOLARITY OF EEG RECORDING

As emphasized in chapter 3, it is important to recognize that
there are no monopolar recordings in EEG. All EEG recordings
are bipolar: it is always necessary to use electrode pairs to mea-
sure scalp potentials because such recording depends on cur-
rent passing through a measuring circuit (Nunez and
Srinivasan, 2006), and each electrode in the pair is active (i.e.,
its voltage fluctuates over time). Thus, no EEG recording mea-
sures the voltage difference between an active electrode and an
inactive, or unchanging, electrode. Typically, one of the two
electrodes is designated as the recording electrode and the other
electrode is designated the reference electrode. In reality, the
EEG signal depends equally on the potentials at both the
recording electrode and the reference electrode positions.
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In most EEG practice, the potentials at all the other
(typically 32-256) electrodes are recorded with respect to one
electrode selected as the reference electrode. Any particular
choice of reference placement has advantages and disadvan-
tages that depend on the locations of the sources generating
the EEG signals. Because we usually do not know with preci-
sion the locations of the sources before recording EEG, it is
often not obvious in advance which will be the best reference
location. References are frequently chosen without clear under-
standing of the biases they impose on the recording. For exam-
ple, manyresearchers have used and may still use the linked-ears
or linked-mastoids reference, but there is minimal theoretical
justification for this choice. Another popular choice is the
common-average reference. The properties of these two popu-
lar reference choices are discussed in detail later in this chapter.
Fortunately, it is possible to reference all the electrodes to a
single electrode, and then, by simple subtraction in postpro-
cessing, change the effective reference to another recording
site. Other simple linear transformations are also possible and
often useful, including the nearest-neighbor (Hjorth) Laplacian
and common-average reference (discussed later in this chapter
and in chapter 7, this volume). Thus, when all electrodes are
referenced to a single electrode during recording, the choice of
that reference electrode can be arbitrary since the data can
easily be rereferenced in postrecording data processing.

EEG ELECTRODE MONTAGE

The positions of the electrodes are referred to collectively as
the electrode montage. In practice, these vary considerably
across laboratories. Standard electrode-placement strategies
use the International 10-20, 10-10, and 10-5 placement sys-
tems shown in figure 6.2 (Oostenveld and Praamstra, 2001).
These montages are based on systematic extensions of the stan-
dard clinical-EEG 10-20 electrode montage (Kiem et al., 1999),
and they are widely (but not universally) used. The basis of
these standard electrode placements is to define contours
between skull landmarks (e.g., nasion and inion) and to subdi-
vide the resulting contours in proportional distances. The
standard 10-20 system uses proportional distances of 20% of
the total length along contours between skull landmarks,
whereas the 10-10 and 10-5 systems use 10% and 5% dis-
tances, respectively. Figure 6.2 shows the standard 10-20
system consisting of 21 electrodes indicated by black circles.
The standard nomenclature used to identify electrodes by
the major skull bones is indicated on each of these electrodes
(AES, 1994). Note that electrodes on the left side are odd-
numbered, whereas electrodes on the right side are even-num-
bered, and that midline electrodes are indicated by z. The
10-10 system consists of 74 electrodes: it includes the 10-20
electrodes (black circles) as well as 53 additional electrodes
(gray circles). Possible intermediate electrodes defined by
the 10-5 system are indicated by dots or open circles. The
68 open-circle electrodes (named by extending the standard
nomenclature), combined with the 10-10 system, comprise
a subset of 142 electrodes that provides a more complete
and homogeneous coverage of the head (Oostenveld and

Praamstra, 2001). EEG caps with 128 of these electrodes are
widely available commercially. It should be noted that for large
numbers of channels (>64), other placement systems have been
developed, with the goal of obtaining more regularly spaced
sampling of scalp potentials, an approach that is potentially
advantageous for source localization and high-resolution EEG
methods (Tucker, 1993).

SAMPLING RATE

EEG signals are detected by the electrodes, amplified and fil-
tered by analog circuits, and then digitized. The analog circuits
remove both low- and high-frequency noise and all signal
components that have frequencies greater than the Nyquist
limit (see chapter 7, in this volume), which is defined by the
sampling rate of the analog-to-digital converter (ADC). The
discrete sampling of continuous signals is a well-characterized
problem in time-series acquisition and analysis (Bendat and
Piersol, 2001). As discussed in chapter 7, the central concept is
the Nyquist criterion: f, >2f  wheref, isthe digitization (i.e.,
sampling) rate and f _is the highest frequency present in the
signal. For example, if the highest frequency in a signal is 20
Hz (20 cycles per second), a minimum sampling rate of 40 Hz
(one sample every 25 msec) is required. This frequency ensures
that each peak and each trough in the 20-Hz oscillation is sam-
pled once so that we can detect that oscillation. Sampling at a
lower rate will cause aliasing, defined as the misrepresentation
of a high-frequency signal as a low-frequency signal because
the sampling rate of the ADC is lower than the Nyquist limit. If
a time series has been aliased by undersampling, no digital
signal processing method can undo the aliasing because the
information necessary for accurate representation of the time
series is not present in the digitized data.

In conventional digital EEG practice, a sampling rate is
selected and the aliasing error is avoided by applying a low-
pass filter (see chapter 7, in this volume) to the analog signal.
(As the name implies, a low-pass filter allows only signals of
frequency below a given value to pass.) This filter eliminates
power (i.e., amplitude squared) at frequencies greater than the
maximum frequency determined by the Nyquist limit. In prac-
tice, it is most common to use what is termed the Engineer’s
Nyquist criterion (or the Engineer’s Nyquist limit) by which the
low-pass filter is typically applied with a cutoff frequency that
is 2.5 times smaller than the sampling rate (e.g., if the frequen-
cies of interest are less than 30 Hz, the cut-oft frequency is 30
Hz, and the sampling rate is at least 75 Hz). This more restric-
tive limit, the Engineer’s Nyquist limit, is used to account for the
possibility of phase-locking between the sampling and high-
frequency components of the signal (Bendat and Piersol, 2001).
(Phase locking occurs if the ADC and a high-frequency com-
ponent of the signal are synchronized.) That is, if phase-locking
occurs and the ADC rate is only twice that of the component,
the component will always be sampled at the same points in its
cycle, and this will produce a distorted measure of its ampli-
tude. For example, if it is always sampled at its negative and
positive peaks, its measured power will be falsely high, whereas
if it is always sampled at its zero-crossings, its power will be
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Figure 6.2 The standard 10-20, 10-10, and 10-5 electrode montages. The 10-20 montage is indicated by the 21 electrodes shown as black circles. The 10-10
montage (totalling 74 electrodes) consists of the 21 electrodes of the 10-20 montage (black circles) plus 53 additional electrodes indicated in gray. The additional
electrodes of the 10-5 montage are indicated by the black dots and the open circles. The 68 open circles and the 74 10-10 electrodes together comprise a

142-channel montage that provides a more complete and homogeneous coverage of the head. The nomenclature for the standard 10-20 and 10-10 and 10-5

extensions is indicated. Note that electrodes on the right side have even numbers and electrodes on the left side have odd numbers, while electrodes along the

midline are indicated by z. (Reproduced with permission from Ooostenveld and Praamstra, 2001.)

measured as zero. Using the Engineer’s Nyquist criterion
prevents such distortion.

Typically, the analog signal from each EEG channel is sampled
200-1000 times/sec, digitized (assigned numbers proportional
to instantaneous amplitude), and converted from ADC units to
volts. In conventional clinical EEG practice, these samples are
then stored on a disk. In BCI applications and in certain clinical
applications, they are also processed online (see chapters 7 and
8, in this volume) to produce a real-time output.
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AVOIDING, RECOGNIZING, AND ELIMINATING
NONBRAIN SIGNALS (ARTIFACTS)

Nonbrain physiological sources make substantial (and unde-
sirable) contributions to EEG recordings. These include
primarily signals from cranial muscle activity (measured by
electromyography [EMG]), eye movements (measured by
electrooculography [EOG]), and heart muscle activity (mea-
sured by electrocardiography [ECG]). EMG artifacts are



broadband high-frequency artifacts observed above ~10 Hz.
EOG artifacts generated by eye blinks or eye movements and
ECG artifacts generated by the heart have stereotypical wave-
forms that can be easily identified in an EEG record (Fisch,
1999). Mechanical effects from electrode or cable movement
typically induce low-frequency (<2 Hz) oscillations, abrupt
baseline shifts, or high-frequency transients (electrode pops).
As noted earlier, higher electrode impedance will increase
power-line (50-60 Hz) artifacts. Other kinds of environmental
sources can also contaminate EEG recordings. One obvious
consequence of all of these artifacts is potentially to reduce
the signal-to-noise ratio for the EEG features used to produce
BCI outputs. Moreover, artifacts (especially EMG) masquerad-
ing as EEG can give the false impression of EEG-based
BCI control and/or interfere with the user’s acquisition of
actual EEG-based BCI control (e.g., McFarland et al., 2005).
Although nonbrain activity may be useful for some purposes
(e.g, EMG switches for assistive communication), in the
context of BCI research and development, nonbrain activity
constitutes artifact that needs to be avoided, detected, and
eliminated.

Many of the potential artifacts in EEG signals occur at
higher frequencies (e.g., power-line noise (50/60 Hz) and
EMG activity). This suggests the possibility of using the ampli-
fier’s low-pass filter to remove the high-frequency artifacts.
However, the choice of filter settings requires careful consider-
ation. Clearly, a low-pass filter must be set to ensure removal of
power at frequencies above the Nyquist criterion. However,
severe low-pass filtering increases the risk of allowing muscle
artifact (i.e., EMG) to masquerade as EEG. This can occur
because EMG is normally recognized by its power at high
frequencies (well above the EEG frequency range); removal
of high-frequency EMG by a low-pass filter will actually
prevent recognition of EMG artifacts present in the low-
frequency range. As a result, the remaining low-frequency
EMG can be mistaken for EEG (Fisch, 1999). For example,
suppose that an analog filter is used to remove most power at
frequencies greater than 30 Hz, thereby obtaining a much
cleaner-looking EEG signal. The remaining signal might
well contain significant muscle artifact in the 8-30 Hz range
(the mu and beta bands), and it will be much more difficult to
recognize this artifact without the higher-frequency informa-
tion to provide guidance. In particular, such subtle muscle
artifacts could substantially reduce the signal-to-noise ratio in
the beta band or even the mu band. It is important to recognize
that EMG artifact can contaminate EEG signals even when
they are recorded over central head areas (e.g., Goncharova
et al., 2003).

Many commercial EEG systems have notch filters (see
chapter 7, in this volume) to remove power-line interference
(60 Hz in North and South America; 50 Hz in Europe, Asia,
Africa, and Oceania). On the other hand, the appearance of
such noise serves as a warning that electrode impedance
has risen (or that the electrode may even have lost contact
entirely). Thus, automatic removal of power-line noise takes
away a useful check on system function. Furthermore, if EEG
processing and analysis are based on FFT or other spectral-
analysis methods, the presence of moderate 60-Hz noise has

no practical effect on the lower frequencies that contain
most of the EEG information. This suggests that the best strat-
egy (particularly for BCI research studies) for minimizing con-
tamination with artifact is to identify useful EEG features in
frequency bands that are less likely to have artifacts and to
carry out the comprehensive topographic and spectral analyses
needed to distinguish EEG from non-EEG (particularly EMG)
signals.

MEG RECORDING

In addition to the generation of electrical signals, brain-current
sources can also generate an external magnetic field that can be
detected with specialized sensors. Detection of these magnetic
signals is performed by MEG (see chapter 3, this volume) (see
Hamaleinen et al., 1993, for a detailed review). MEG methods
record the small magnetic field generated by the brain using a
superconducting quantum interference device (SQUID) mag-
netometer. SQUID devices were first used to detect the mag-
netic field of the brain in the 1970s (Cohen, 1972) and are
sensitive detectors of magnetic flux. As discussed in chapter 3,
it is important to recognize that the magnetic fields associated
with brain activity are not coupled to the brain’s electrical fields;
that is, they are not the more familiar electromagnetic fields

When compared to EEG recording, MEG has advantages
and disadvantages. For BCI applications, a major disadvantage
of MEG is that the magnetic fields associated with brain
current sources are very small relative to the ambient magnetic-
field variations that are outside experimental control (e.g.,
fluctuations in the Earth’s magnetic field). Moreover, MEG (like
EEG) has the usual problems of noise from power-line fields.
Thus, as typically used, an MEG SQUID coil is able to detect
the small magnetic field generated by the brain only when the
subject is placed in a specially shielded chamber, usually made
of high-permeability mu-metal (Hamaleinen et al., 1993), in
order to minimize contamination of the recording by the exter-
nal magnetic field. Superconductivity is essential to the func-
tion of the SQUID coils, so the coils are maintained at very low
temperatures in a helium-containing insulated (Dewar) cham-
ber. The main practical effect of this elaborate system is that
the measurement point is about 1-2 cm above the scalp
surface. This substantial distance from the sources of brain
activity reduces spatial resolution significantly.

Individual SQUID coils, called magnetometers, can be
arranged in different configurations to accommodate different
purposes. The simplest configuration is a single magnetometer.
An array of 100-200 magnetometers can provide coverage of
the entire head. Each one detects only the radial component of
the magnetic field generated by brain sources. Another
common coil configuration is an axial gradiometer, which con-
sists of a pick-up coil and a compensation coil located above the
pick-up coil; the two coils are wound in opposite directions to
cancel noise produced by nonbrain magnetic fields. Although
both the simple magnetometer and the axial-gradiometer coil
configurations have spatial resolution comparable to (but
sometimes poorer than) EEG (Malmivuo and Plonsey, 1995;
Srinivasan 2006; Srinivasan et al., 2007), they are both more
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sensitive than EEG to a particular subset of sources. Whereas
EEG detects activity from both tangential and radial sources,
MEG is sensitive to sources oriented tangentially to the detec-
tors and is blind to sources pointed radially (Nunez and
Srinivasan, 2006). This property of MEG is identically valid in
spherical models of the head (see chapter 3 in this volume) and
is approximately valid in realistic models that include the fields
produced by return currents. MEG’s preferential sensitivity for
tangential sources has particular value in studies of primary
sensory areas of the brain that are located in sulcal folds ori-
ented tangential to the MEG coils (Hamaleinen et al., 1993).
This preferential sensitivity to tangential sources, discussed in
more detail later in this chapter, accounts for the main practi-
cal distinction between EEG and MEG.

A recently developed MEG system implements a planar
gradiometer; it consists of two adjacent coils (with parallel axes)
wound in opposite directions. This configuration measures the
gradient of the radial component of the magnetic field in one
direction. The planar gradiometer strategy is similar to the
bipolar EEG recording strategy (see EEG Reference Electrode
Selection, in this chapter) and imparts to MEG a potentially
much higher spatial resolution than is possible with conven-
tional MEG.

A major advantage of MEG over EEG is that MEG provides
a true field measure at a specific point, whereas EEG measures
the potential difference between two points on the head. Thus,
MEG does not require the choice of a reference sensor. As
explicated in the EEG Reference Electrode Selection section of
this chapter, reference selection is a critical factor in EEG
recording, since an improper choice can result in data that are
misleading or even entirely useless. Furthermore, MEG is less
distorted by the head openings and other tissue inhomogene-
ities that can distort EEG. (Because current follows the paths of
lowest resistance, such irregularities may cause EEG electrodes
to record substantial scalp currents produced by sources located
far from the recording sites.) These and other considerations
such as signal-to-noise ratio and electrode density must be
taken into account when assessing the relative advantages and
disadvantages of EEG and MEG for a particular application.
Other practical issues, such as temporal filtering and analog-
to-digital conversion (ADC) are identical for EEG and MEG.

COMPARISON OF EEG AND
MEG IN SENSITIVITY AND
SPATIAL RESOLUTION

To some degree, EEG and MEG complement each other in
their sensitivities to cortical activity. This is illustrated in figure
6.3 in which each arrow indicates a cortical dipole. In cortex,
EEG is most sensitive to correlated dipoles located in cortical
gyri (e.g., regions a-b, d—e, and g-h in fig. 6.3). EEG is less
sensitive to correlated dipoles located in cortical sulci (e.g.,
region h-i). It is insensitive to apposing sets of correlated
dipoles (i.e., sets that cancel each other due to their opposite
orientations) located in sulci (regions b-c-d and e-f-g) and
randomly oriented dipoles (region i-j-k-1-m). In contrast,
MEG is most sensitive to correlated and minimally opposed
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Figure 6.3 Sources of EEG and MEG signals. Neocortical sources can be
pictured generally as dipole layers (or dipole sheets) that fold in and out of
cortical fissures and sulci, with mesoscale source strength (see chapter 3, in this
volume) varying as a function of cortical location. EEG is most sensitive to
correlated dipole layers in gyri (such as regions a-b, d-e, and g-h), less
sensitive to correlated dipole layers in sulci (such as region h—i) and insensitive
to opposing dipole layers in sulci (such as regions b-c-d and e-f-g) and
randomly oriented dipoles (such as region i—j—k—I-m). MEG is most sensitive to
correlated and minimally opposed dipole layers in sulci (such as region h-i) and
much less sensitive to all the other sources shown, which are radial, opposing,
or randomly oriented dipole layers.

dipoles located in sulci (e.g., region h-i) and much less sensi-
tive to all the other dipoles shown (i.e., radial, random, or
apposed dipoles). Subcortical structures such as the thalamus
make negligible contributions to EEG and MEG signals because
of their smaller surface areas and greater distances from the
sensors (Nunez, 1981).

It is not generally true that MEG has better spatial resolu-
tion than EEG, despite the fact that this idea has entered
into the common folklore of the neuroscience community.
This reality can be appreciated by direct examination of the
properties of volume conduction in EEG and field spread in
MEG (Malmivuo and Plonsey, 1995; Srinivasan et al., 2007).
Figure 6.4 shows the sensitivity distributions for a single EEG
electrode (yellow circle in figure inset) and a single MEG coil
(small green line seen exterior to the head in inset). For this
figure Srinivasan et al. (2007) defined a sensitivity function
that describes the contribution of sources at each location to
the signal recorded by the sensor. Figure 6.4A shows that the
EEG electrode is most sensitive to sources in the gyral crown
closest to the electrode. Although sensitivity falls off with dis-
tance from the electrode, gyral crowns distributed elsewhere
over the hemisphere contribute roughly half the potential of
the crown directly beneath the electrode. Sources along sulcal
walls, even when close to the electrode, contribute much less to
the EEG than sources in the gyral crowns. Figure 6.4B shows
the sensitivity of the same electrode after applying a Laplacian
transformation (see Surface Laplacian section later in this
chapter; see chapters 3 and 7, in this volume). As expected, the
sensitivity of the EEG Laplacian is highest for the gyral crown
directly beneath the electrode. At the same time, the Laplacian
is far less sensitive to distant gyral crowns and thereby provides
a far more localized measure of source activity. Figure 6.4C
shows the sensitivity distribution of an MEG coil located 2 cm
above the EEG electrode. The sensitivity function has local



Figure 6.4 Brain sensitivity distributions associated with (A) the raw scalp EEG,
(B) a surface Laplacian of scalp EEG, and (C) MEG, for a single EEG electrode
location (yellow circle at right inset) and a single magnetic coil position (green
line at right inset). The cortical surface was constructed from the MR of one
subject. Simulated dipole sources P(r, t) (dipole moment per unit volume,
100,000 in one hemisphere) were assumed to be normal to the local cortical
surface. Scalp surface potentials, scalp Laplacians, and surface normal
magnetic fields due to each dipole were calculated at the electrode and coil
locations shown in the inset based on a concentric three-ellipsoid head model.
(See Srinivasan et al., 2007, for details of these simulations.) The potentials,
Laplacians, and magnetic fields were normalized with respect to their maximum
values (i.e., +1 and -1 on the scale bar) so that the relative sensitivity of the
three measurements could be compared. (A) The EEG electrode is most
sensitive to the gyral sources under the electrode, but this electrode is also
sensitive to large source regions in relatively remote gyral crowns; it is much
less sensitive to sources in cortical folds. (B) The Laplacian is most sensitive to
gyral sources under the electrode; sensitivity falls off very rapidly at moderate
and large distances. (C) The MEG is most sensitive to sources in cortical folds
that tend to be tangential to MEG coils. Maximum MEG sensitivity occurs in
folds that are roughly 4 cm from the coil in directions tangent to the surface.
Regions in blue provide contributions to MEG of opposite sign to those of
yellow/orange, reflecting dipoles on opposite sides of folds; these tend to
produce canceling magnetic fields at the coil.

maxima on sulcal walls. Since apposing dipoles in sulcal walls
(e.g., regions b—c-d and e-f-g in fig. 6.3) have opposite effects
on the coil because of the reversal in source orientation, oppos-
ing sulcal walls with correlated activity are expected to make
only small or negligible contributions to MEG.

It is clear from figure 6.4 that the MEG coil, like the EEG
electrode, is sensitive to a wide area of the cortex. Indeed, esti-
mates of the area of sensitivity (Srinivasan et al, 2007;
Malmivuo and Plonsey, 1995) indicate that MEG is sensitive to

a somewhat wider region of cortex than EEG. This effect is a
direct consequence of the greater distance between sources
and sensors in MEG than EEG. The recent developments in
MEG hardware (i.e., planar gradiometer coils) potentially pro-
vide much better spatial resolution (analogous to the role
played by close bipolar EEG recordings). Nevertheless, even
with advances in MEG recording technology, the main differ-
ences between EEG and MEG are not related to spatial resolu-
tion. The main difference between EEG and MEG is that they are
preferentially sensitive to different sources. The choice of method
depends on the location, orientation, and size of the source
region, which is rarely known in advance. The main advantage
of MEG for source localization is that the model of the spread
of the magnetic field is much simpler and better understood
than models of volume conduction of electric current. The
main disadvantage of MEG is the cost and complexity of the
instrumentation as compared to EEG.

EEG REFERENCE ELECTRODE SELECTION
CHOICE OF A REFERENCE ELECTRODE SITE

One of the most important issues in any EEG recording strat-
egy is the choice of reference-electrode location. Figure 6.5
shows examples of a visual evoked potential (VEP) recorded at
a right occipital electrode (O, in the 10-20 electrode system;
location X in figure 6.5A and 6.5C), with the reference mathe-
matically (see Bipolarity of EEG Recording section above and
chapter 3, in this volume) shifted to different electrode posi-
tions. Because the occipital cortex contains striate and extras-
triate visual areas, the VEP is reasonably expected to include
signals generated by sources in occipital cortex. Figure 6.5A
shows the VEP with the reference mathematically shifted to
each of three different electrodes within 2.7 cm of the vertex
electrode (C,), which was the reference-electrode position
used for the recording. The VEP is often characterized in terms
of the magnitude of the positive and negative voltage peaks.
The amplitude of the first positive deflection, peaking at
approximately 120 msec poststimulus, is reduced by about
one-third as the reference site is changed from the midline
position (1) to either of the other two positions (2, 3). Amplitude
differences are also evident at other peaks in the evoked-poten-
tial waveform. Figure 6.5B shows the same VEP with the refer-
ence site shifted to three midline frontal locations (4, 5, 6)
separated from one another by less than 2.7 cm. The first posi-
tive peak is reduced in comparison to reference positions near
the vertex shown in figure 6.5A, and the shape of the evoked
potential is considerably altered between 100 and 350 msec
poststimulus. When the reference is located at frontal sites, the
VEP is dominated by a faster oscillation than that seen in the
waveform obtained when the reference is close to the vertex
(compare figs. 6.5A and 6.5B). Figure 6.5C shows the VEP
with the reference site mathematically shifted to the left mas-
toid (7) or temporal electrodes (8, 9). The positive peak occur-
ring 120 msec poststimulus is no longer distinguishable from
noise, and the first distinct peak occurs 200 msec poststimulus.
Thus, both the amplitude and temporal structure of the VEP
recorded at a location over the occipital lobe can be altered
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Figure 6.5 Influence of the reference-electrode site on the visual evoked potential (VEP). The original VEP (A) was recorded at the occipital location O, (site X on
the head in A) with respect to a Cz reference (site 1). All other sites in the three images were also recorded with respect to the Cz reference. This allowed the VEP
to be referenced not only to site 1 but also to be rereferenced to sites 2 and 3 in A, to sites 4, 5, and 6 in B, and to sites 7, 8, and 9 in C. This produced nine
examples of the VEP, shown in the traces on the left. As discussed in detail in the text, it is clear that the choice of the reference location has a substantial influence
on VEP waveforms, even when the references are located seemingly far from the primary visual cortex under O,. (Adapted with permission from Nunez and

Srinivasan, 2006.)

considerably by the choice of reference site. Which is the true
VEP? The answer is all of them. VEPs depend on the location
of both the so-called recording electrode and the so-called ref-
erence electrode. The different waveforms and peak amplitudes
seen in figure 6.5 suggest that the sources and/or the volume
currents caused by visual stimuli are not tightly confined to
primary visual cortex, and thus that both electrodes (i.e., the
so-called recording electrode and the so-called reference elec-
trode) may be affected by them. VEP sources may be widely
distributed, and/or the head volume conductor may provide
low-resistance pathways over large distances. In fact, both of
these possibilities probably occur and affect the VEPs.

Is there an ideal, or correct, reference position? Although

the EEG folklore suggests that an inactive electrode is the ideal
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reference electrode, this notion stems from the unfounded idea
that if a recording electrode is near a generator (i.e., a dipole
source) and the reference electrode is far from it, the reference
electrode can be considered to be at an infinite distance and
therefore to be inactive. If this idealized picture were accurate,
one could truly record potentials with respect to a standard
zero-potential reference. However, the so-called inactive elec-
trode may or may not be a good reference. Whether or not it is
depends partly on the size of the generator region, which itself
depends on several factors. Dipole layers of synchronous and
partly aligned cortical neurons that extend over large areas of
the cortical surface appear to be the primary generators of
scalp EEG; thus, generator dimensions can easily be as large as
tens of centimeters. With head diameters on the order of



20 cm, it is generally not possible to find a point on the head at
a sufficiently large distance from the generator regions to be
considered to be at an infinite distance away. Because of volume
conduction, locating a reference electrode at a place where
there is no underlying generator is not sufficient for it to be
considered at infinity. Furthermore, low-resistance current
paths in an inhomogeneous or anisotropic head can make
electrical distances shorter than actual distances. Even if there
is no generator activity directly beneath the electrode, for a ref-
erence to be considered at infinity, the electrical distance
between the reference and recording electrodes must be very
large in comparison to the generator region.

Because all sources and sinks of interest in EEG are located
in the head, which is partly isolated (electrically) from the
body except for the relatively narrow path through the neck,
the current produced by brain sources is expected to be mostly
confined to the head (Nunez and Srinivasan, 2006). We expect
minimal current flow through the relatively narrow neck
region. (Indeed, if neck geometry did not severely restrict neck
currents, scalp potentials would often be greatly contaminated
by ECG sources, which are about 100 times stronger than EEG
sources.) Thus, for EEG, a reference on the neck is essentially
the same as a reference anywhere on the body (if we disregard
the minimal additional series resistance of the rest of the body)
(Nunez and Srinivasan, 2006).

A REFERENCE ELECTRODE TEST

A simple test can reveal whether any candidate reference loca-
tion can be considered a true reference (ie., at infinity).
Suppose, for example, that we suspect that there is beta activity
localized in right motor cortex. If this assumption of a localized
generator region is correct, any location on the left side of the
head might qualify as a suitable reference. We might, for exam-
ple, choose a putative reference over left prefrontal cortex. The
critical reference test is to see whether the appearance of the
beta activity remains constant as we change the reference loca-
tion from left frontal to, for example, left temporal or left mas-
toid or left neck. If the amplitude and frequency are unchanged
with such changes of reference location, then the true reference
test is passed. If, on the other hand, the recorded beta activity
changes as the reference location changes, the candidate refer-
ence location fails the true reference test, probably because the
postulate of a localized source region is incorrect.

The examples of a VEP recorded at the occipital channel
shown in figure 6.5 indicate that none of the reference sites
examined passes the true reference test. The peak amplitudes
and temporal waveforms change with the reference location.
For each set of reference locations (fig. 6.5A, B, or C), shifting
the reference locally even among the three closely spaced elec-
trodes has substantial effects on the peak amplitudes and fre-
quency content of the VEP. The implication is that, with each
of these reference locations, the potential difference between
the recording electrode and the reference electrode reflects a
somewhat different set of sources. The distribution of sources
underlying this VEP example may be sufficiently large and
widely spread to prevent any location on the head from quali-
tying as at infinity.

The unavoidable conclusion is that no sufficiently distant
reference point is generally available in EEG recording. We
rarely know in advance where EEG sources are located (or if
they are indeed localized at all), and thus we rarely know
whether a true reference location exists or, if it does, where it is.
Even in cases where the sources are truly localized, their loca-
tions must be known in advance in order to choose the appro-
priate reference. Thus, the (perhaps painful) truth about EEG
references is that there is no essential difference between
recording and reference electrodes: in EEG, we measure poten-
tial differences between two locations on the head, and these
differences depend on the locations of both electrodes, as well
as on the brain source configurations and locations. That is,
every EEG recording is a bipolar recording: it reflects the volt-
age difference between two active electrodes.

CLOSELY SPACED ELECTRODES

In spite of the fact that all EEG recordings are in fact bipolar,
EEG terminology usually uses the term bipolar recording to
refer to the special case of measuring the potential difference
between two electrodes that are relatively close to one another.
Today, the term bipolar recording is used most commonly in
clinical environments. As two electrodes are moved closer and
closer together, they provide a progressively better (or more
fine-grained) estimate of the local gradient of the potential
(i.e., voltage) along the scalp surface on the line between the
two electrodes. As discussed in chapter 3, the electric field is
proportional to current density along the scalp surface. When
the two electrodes are placed close together, the recorded
potential difference is roughly proportional to the current den-
sity tangential to the scalp. The current flows from higher to
lower potential.

Bipolar recordings with closely-spaced electrodes (i.e.,
<2-3 cm apart) are better for localizing sources (at least ideal-
ized superficial sources) than are recordings that use a single
fixed reference at some relatively distant location. The use of
bipolar electrode pairs for measuring local tangential electric
fields is an improvement over distant-reference recordings in
the sense that both electrodes are explicitly acknowledged to
be active (and the reference issue becomes moot). If the bipolar
pair crosses isopotential lines, it senses current flow from
regions of higher to lower potential. In contrast, if the bipolar
pair is placed along an isopotential line, zero potential differ-
ence is recorded. Clinical electroencephalographers often use
different bipolar pairs to emphasize different sources, and to
make qualitative judgments of their orientation and localiza-
tion based on long experience with such methods (Pilgreen,
1995; Fisch, 1999). In addition, raw EEG may be recorded with
respect to a distant fixed reference and later converted to bipo-
lar recordings by subtraction (see Bipolarity of EEG Recording
section above and chapter 3, this volume), provided that the
recording electrodes were placed sufficiently close together.

Figure 6.6 provides an example of three additional sets of
VEP recordings, this time using bipolar electrode pairs. Each
set consists of VEPs from 6 different bipolar pairs. Each pair
consists of a fixed (central) recording electrode (X in the figure)
and an electrode at one of six surrounding positions, all at a
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distance of ~2.7 cm from X. In each plot, the six black curves
indicate the bipolar potentials, while the thick gray line is the
mean of all six bipolar potentials. These bipolar VEPs are con-
siderably different from the VEPs shown in figure 6.5, which
used distant references. Peaks are still evident at 100 and 200
msec poststimulus, but the slower oscillation evident in figure
6.5A and the potentials at 300 msec or later are reduced in
each set of bipolar VEPs shown in figure 6.6. The positive peak
at 120 msec poststimulus is clearest in figure 6.6B, where five
of the six bipolar pairs exhibit a positive peak. The bipolar
VEPs in figure 6.6B are generally larger than the bipolar VEPs
in figures 6.6A and C. This implies that some of the source
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activity is localized in brain tissue immediately beneath the
central electrode (X) of figure 6.6B. In figures 6.6A and C, the
different bipolar pairs show 120-msec peaks of opposite polar-
ity, and these average to near zero (i.e., the gray traces). This
implies the presence, at the central (X) electrodes of figures
6.6A and C, of tangential currents passing from regions of
higher potential to lower potential. Thus, although the bipolar
VEPs reveal a source below the central electrode of figure 6.6B,
they provide little evidence for sources below the central
electrode of figure 6.6A or 6.6C.

The analysis of close bipolar pairs illustrated in figure 6.6
can be an effective strategy to identify local generators. By
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Figure 6.6 Examples of VEPs from bipolar electrode pairs. Starting from VEPs recorded with a reference at the vertex, the VEPs from bipolar electrode pairs were
calculated by taking the difference between the VEP recorded at the central electrode in each set (referenced to the vertex) and the VEP at each of the six
surrounding electrodes (also referenced to the vertex). In this way the effect of the original (i.e., the vertex) reference electrode cancels exactly. The separation
distance between bipolar electrode pairs is 2.7 cm. Each plot (A, B, C) corresponds to a different right-posterior-area location of the center electrode in each set.
The six different black VEPs in each plot come from the six bipolar pairs for the set of placements shown at the right. The thick gray line in each plot is the average

of its six bipolar VEPs. See text for discussion.
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placing the reference electrode nearby rather than at a distant
location on the head, we limit the sensitivity of each pair of
electrodes mainly to local sources. In fact, when 32 or fewer
electrodes are available, closely spaced bipolar recordings are
perhaps the best option available to improve the spatial resolu-
tion of the EEG (Srinivasan et al., 1996). Closely related to this
strategy is the Hjorth or nearest-neighbor Laplacian (Hjorth,
1975) discussed in this chapter.

LINKED-EARS AND LINKED-MASTOIDS
REFERENCE

The linked-ears or linked-mastoids reference is a popular refer-
ence strategy. However, the main reason for their widespread
use appears to be tradition rather than a compelling theoretical
justification. That is, there is no compelling reason to believe
that this reference approximates an ideal reference (i.e., a refer-
ence at infinity).

Published EEG studies typically implement the linked-ears
or linked-mastoids reference in two major ways. One, which
we call the physically linked-ears (or the physically linked-
mastoids) reference, is to physically link the ears (or mastoids)
by a wire and use this wire as the reference. Alternatively, with
the mathematically linked-ears (or mastoid) reference, each
scalp potential (V) is recorded with respect to a reference
placed at one ear (V_- V), with the potential at the second
ear measured with respect to the first ear (V_, - V). The
mathematically linked-ears reference is calculated by subtract-
ing half this potential difference from each scalp potential,
creating an artificial reference at the average potential of the
two ears or mastoids.

It is now widely appreciated that the physically linked ref-
erence is actually a random reference, meaning that the effec-
tive reference site generally varies across subjects and/or over
time in the same subject because of unequal electrode contact
impedances (Nunez, 1991; Nunez and Srinivasan, 2006).
Furthermore, the relatively low (~10-20 kQ) impedance of the
electrode contrasts sharply with the high-input impedance of
modern amplifiers. (The goal of high-input impedance is to
limit drastically the current flowing across the scalp-electrode
boundary; in this way, the act of measuring the scalp voltage
has a negligible effect on that voltage.) Physically linking the
ears or mastoids permits more current to flow across these
scalp-electrode boundaries, tending to make the scalp poten-
tial artificially similar on the two sides of the head.

As a result of these complications of the physically linked
reference, use of the mathematically linked reference has
gained in popularity. The mathematically linked reference is
calculated to create an artificial reference at the average poten-
tial of the reference sites 1 and 2 (which are on the left and right
ear, or left and right mastoids):

0.-w-( B v (B

2 (6.2)

Although the mathematically linked reference has been pro-
posed as a solution to the reference problem, it actually falls

quite short of this goal. Potential differences between electrode
pairs depend on head-current patterns due to sources that are
not necessarily close to the electrodes. With linked references,
potentials depend on head currents at three different locations
(i.e., the two ears and the recording-electrode position). This
may further complicate, rather than simplify source-distribution
estimates. The apparent symmetry of equation 6.2 is misleading:
a linked reference may artificially correlate potentials recorded
near the mastoid regions and thereby yield erroneous estimates
of hemispheric source asymmetries (Srinivasan et al., 1998a).

COMMON AVERAGE REFERENCE

The average reference (AVE) (also called the common-average
reference [CAR] or global-average reference) is now widely used
in EEG studies. This AVE reference does have some theoretical
justification (Bertrand et al., 1985). When one records data from
N electrodes, the measured potentials V (n = I, 2,. .. N) are
related to the scalp potential ®(r) (with respect to infinity) by

V, =®(r,) - d(r,) 6.3)

where 7 is the position of the n™ electrode and r, is the
reference-electrode site. If we designate the average of these
measured potentials as V, ., the potential at the reference site
can be written in terms of the scalp potentials as

1
D(r)=—Y D)=V,
NS (6.4)

The first term on the right side of equation 6.4 is the average of
the scalp surface potentials at all recording sites. Theoretically,
this term vanishes if the electrodes are postitioned such that
the mean of the potentials approximates a surface integral over
a closed surface containing all current within the volume.
Because only minimal current flows from the head through the
neck even with the reference electrode placed on the body;, it is
a reasonable approximation to consider the head to be a closed
volume that confines all current. As a consequence of current
conservation, the surface integral of the potential over a volume
conductor containing dipole sources must be zero (Bertrand
et al.,, 1985). In this case, then, the reference potential can be
estimated by the second term on the right side of equation 6.4
(i.e., by averaging the measured potentials and changing the
sign of this average). This reference potential can be added to
each measurement V using equation 6.3, thereby estimating
the reference-free potential @(r, ) (i.e., the potential with respect
to infinity, at each location).

Because we cannot measure the potentials on a closed sur-
face surrounding the brain, the first term on the right side of
equation 6.4 will generally not vanish. For example, the distri-
bution of potential on the underside of the head (within the
neck region) cannot be measured. Furthermore, the average
potential for any group of electrode positions (given by the
second term on the right side of equation 6.4), can only approx-
imate the surface integral over the volume conductor. Thus,
this is expected to be a very poor approximation if applied with
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the standard 10-20-electrode system. As the number of elec-
trodes increases to 64 or more, the error in the approximation
is expected to decrease. Thus, like any other choice of refer-
ence, the average reference provides biased estimates of refer-
ence-independent potentials. Nevertheless, when used in
studies with large numbers of electrodes (e.g., 128 or more)
that are spread widely over the head, the average reference
seems to perform reasonably in providing reference-indepen-
dent potentials (i.e., in approximating an ideal reference)
(Srinivasan et al., 1998a).

Figure 6.7 illustrates a simulation of scalp potentials gener-
ated by two dipole sources, one radial (i.e., perpendicular) to
the scalp and one tangential (i.e., parallel) to the scalp. The
radial source (i.e., the lateral blue minus sign in fig. 6.7A) is
located at a depth comparable to that of the surface of a cortical
gyrus located just beneath the skull. The tangential dipole (i.e.,
the medial red plus and blue minus signs in fig. 6.7A) is located
somewhat deeper, at a depth comparable to that of a gyrus
located in the superficial part of the medial wall of one of the
cerebral hemispheres. Figure 6.7A shows the location of the
two sources (blue and red symbols) and the reference-inde-
pendent potentials (with respect to infinity) obtained from 111
electrode locations on the surface of the outer sphere in a four
concentric-spheres head model (see chapter 3, in this volume).
The average nearest-neighbor (center-to-center) separation

between these electrodes is 2.7 cm. The topographic maps are
interpolated from the potentials calculated at the electrode
positions. The positive lobe (solid lines) and negative lobe
(dashed lines) of the potential distribution associated with this
tangential dipole are readily apparent, and reverse over the
midline. The radial dipole (negative at the surface) generates a
more restricted potential distribution close to the right mas-
toid electrode.

Figure 6.7B shows the potential distribution if the refer-
ence electrode is placed at the vertex, indicated by an X.
Directly above the center of the tangential dipole, the potential
generated by the tangential dipole is zero and a small positive
potential is contributed by the radial dipole. This small positive
contribution by the radial dipole results in an apparent asym-
metry in the potential distribution due to the tangential dipole,
with a reduced magnitude of the positive peak on the right side
of the array and an increase in the magnitude of the negative
peak. Figure 6.7(C and D) shows the potential distribution
when the reference is placed at the left and right mastoid,
respectively. The left mastoid reference produces little change
from the potential distribution seen in 6.7A, since the poten-
tial at the left mastoid is close to zero. By contrast, placing
the reference electrode at the right mastoid (fig. 6.7D) signifi-
cantly distorts the potentials by adding a positive potential
to all locations. This effect is also present, but with smaller

Figure 6.7 Simulated potential maps on the surface of a four-sphere head model (see chapter 3). It shows two dipole sources: one tangential (located 3.2 cm

below the scalp) (indicated by the blue minus sign and red plus sign close to the vertex) and one radial (located 1.4 cm below the scalp and indicated by the blue

minus sign near the right lateral edge of the head). The tangential source has twice the strength of the radial source. Potentials were calculated at 111 surface sites
derived from a 128-channel array centered at the vertex and covering the area subtended by an angle of 109° from the vertex. The simulated electrode positions

are indicated in the figure by the small gray circles. Topographic maps of the potential distribution were obtained from a spline interpolation (Srinivasan et al.,
1996). (A) Potential map with respect to infinity with the dipoles indicated. (B) Potential map with reference (indicated by X) located at the vertex. (C) Potential map
with reference (X) located at the left mastoid electrode. (D) Potential map with reference (X) located at the right mastoid electrode. (E) Potential map with respect

to the mathematically linked (averaged) mastoids (X and X). (F) Average (AVE) reference potential map obtained by first calculating the potentials at 110 electrode
sites with respect to the vertex, then calculating the average reference, and finally rereferencing every site to this average reference. See text for discussion.
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magnitude, when a mathematically linked-mastoids reference
is used, as shown in figure 6.7E (with the linked-mastoids
reference computed from 110 electrodes using the vertex-
referenced potentials). In contrast, the AVE reference shown in
figure 6.7F provides potentials that closely approximate those
provided by the ideal reference shown in figure 6.7A. Thus, as
the close similarity of figures 6.7A and F indicates, the AVE
reference works well, at least in this example.

One concern often expressed about the AVE reference is
that the presence of strong sources deep in the brain may result
in major misinterpretations of recorded data. In most EEG
recordings there are few if any electrodes on the lower surface
of the head. Thus, a dipole near the center of the head and ori-
ented toward the vertex contributes more positive potential to
the array of electrodes than negative potential. By using the
AVE reference, we force the potential distribution to have a
mean of zero over the portion of the head covered by the elec-
trodes (typically 50-70% of the head surface). However,
although the average reference can distort potentials generated
by deep sources (Junghofer et al., 1999), the impact of this dis-
tortion is usually small since EEG potentials generated by deep
sources are usually much smaller than those generated by
superficial sources. In one study spherical splines were fit to
the voltage at superior electrodes to approximate the potential
at inferior sites due to deep sources, thereby improving the
estimate of the average reference (Ferree, 2006).

It is important to emphasize that the effectiveness of the
AVE reference depends on the number and distribution of the
electrodes that compose it, as well as on the nature and number
of the sources. Although the AVE reference offers theoretical
as well as practical advantages, it is effective only if it uses a
sufficient number of electrodes (e.g., 64 to 128 or more) dis-
tributed over the entire scalp, including (if practical) locations
on the lower surface of the head. Practical considerations that
limit electrode placements on the lower surface of the head
include artifacts such as muscle activity.

THE MODEL-BASED REFERENCE

A more recent approach to the reference problem is to base the
reference on a head model. This method is called the reference
electrode standardization technique (REST) (Yao, 2001; Yao
et al,, 2005). The basic idea is to first define equivalent sources,
sources that can account for the recorded scalp potential distri-
bution. Next, these fictitious sources are used to find the cor-
responding reference potential with respect to infinity. The
philosophical approach of this method differs from the inverse
problem (discussed in chapter 3, in this volume) in that no
close relationship between the equivalent sources and genuine
brain sources is ever claimed (Nunez, 2010).

COMPARISON OF AVE AND REST

Aside from artifact and external noise, AVE errors are due to
limited electrode density and incomplete electrode coverage
(i.e., sampling only the upper part of head). If these errors were
tully eliminated (which is only possible in detached heads), AVE
would provide the desired gold standard, that is, a reference

method essentially equivalent to a reference at infinity. REST
can also suffer errors due to electrode density and electrode
coverage and can suffer additional errors due to head-model
uncertainty. This latter additional source of error may discour-
age implementation of REST and is perhaps the reason it was
not used earlier.

However, this aversion to REST is generally not warranted
because the three error sources are correlated; in particular, the
coverage error is expected to become progressively smaller as
the head model improves. Thus, if the head model is sufficiently
accurate, it is possible for REST (even with its three sources of
error) to be more accurate than AVE (with only its two error
sources). From this argument we see that the choice between
AVE and REST largely depends on the accuracy of a genuine
(as opposed to an idealized) head model. Because the accuracy
of REST in genuine heads is currently unknown, one plausible
strategy is to apply both AVE and REST to the same data sets
(Nunez, 2010). Any result that changes substantially when
AVE is replaced by REST (or vice versa) may be suspect.

SUMMARY OF REFERENCE ELECTRODE
STRATEGIES

In summary, no matter which reference strategy is used, we
record the potential at one head location with respect to some
other head location. By definition this potential difference is
the result of integration of the electric field over any path con-
necting the reference point and the point in question. The
potential is not a unique characteristic of a single point but
rather a characteristic of the path between two points.

The changes in the recorded potentials that result from
changing the reference location make intuitive sense since any
change involves subtracting the potential at one location on
the head from all the other potentials. This has an impact
not only on the estimated spatial properties of the EEG but
also on its temporal properties, since the potential at the refer-
ence location can be expected to vary over time. This impact is
evident in figure 6.5, where the time course of the VEP depends
on the position of the reference electrode. The main point is
that any specific reference, including the mathematically
linked-ears or linked-mastoids reference, contributes poten-
tials from distant sites to the potential obtained from each
so-called recording electrode. The specific effects of any choice
of reference will depend on the configuration of the EEG
sources. An average reference based on many electrodes spread
widely over the head provides a good estimate of reference-
independent potentials because it integrates many possible
paths to the point.

SPATIAL SAMPLING OF EEG

In addition to reference selection, the other important practical
issue for any EEG recording is the number of electrodes needed
to obtain an accurate spatial representation of the relevant EEG
and the locations for their placement. We consider this prob-
lem in terms of the Nyquist theorem: to represent a continuous
signal by discrete sampling, the sampling rate must exceed twice
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the highest frequency in the signal (see chapter 7, in this volume).
In other words, to avoid aliasing, at least two samples per cycle
are required. This requirement is quite familiar to researchers
who digitally sample time series. Moreover, the Nyquist crite-
rion for discrete sampling of any analog signal applies not only
to temporal sampling but also to spatial sampling.

In EEG recording, the scalp-surface potential at any point
in time is a continuous field that varies over the surface of the
head. The electrode array provides a discrete sampling of this
field and is therefore subject to the Nyquist criterion. However,
unlike the time series of a single amplifier channel, which is
continuous, the spatial signal is discrete (i.e., it is acquired
only at a limited number of points on the head). Whereas the
temporal signal can be easily low-pass filtered by analog filters
to meet the Nyquist criterion as dictated by the sampling rate,
the raw spatial signal cannot be treated in the same manner
because no continuous representation of the spatial signal is
ever available. As a consequence of this limitation, any aliasing
caused by under-sampling (i.e., by too widely spaced elec-
trodes) cannot be undone. Thus, it is essential that adequate
spatial sampling of the potentials be accomplished from the
outset.

The highest spatial frequency that can be observed without
aliasing is determined by the electrode density (assuming a
relatively uniformly distributed electrode placement) and elec-
trode size. If the EEG contains signals with spatial frequencies
that are too high for the electrode density, the signals will be
spatially aliased. They will appear in topographical maps or
spatial spectra as signals of lower spatial frequency and will
thereby distort spatial maps of potential, coherence, and other
measures. In this context, it is important to note that when the
EEG is spatially under-sampled (e.g., with only one recording
electrode and one reference electrode), the measured time
seriesis avalid measurement of the potential difference between
the two sites, but the spatial distribution of the potential is
unknown.

To illustrate spatial-sampling issues further, let us consider
the problem of discrete sampling of the potential distribution
on a spherical surface containing dipole current sources. Any
distribution on a spherical surface can be expressed as a sum of
spherical harmonics Y, .Y  are the natural basis set for func-
tions defined on a sphere, analogous to the Fourier series for
functions defined on a time interval that is used in spectral
analysis of EEG time series (see chapters 3 and 7, in this
volume). The n and m indices of the Y functions denote spa-
tial frequencies in the two surface directions (e.g., north/south
and east/west). Index # defines the angle 6 which is essentially
latitude (but measured from the north pole [(e.g., the vertex
{electrode Cz}], rather than from the equator). Index m defines
the angle ¢, which is essentially longitude. Any potential distri-
bution due to dipole sources in a spherical-head model may be
represented by a double sum of spherical harmonic functions
over the two indices (Arfken, 1985). Thus, a potential distribu-
tion for which n is 4 and m is 3 rises and falls exactly four times
as one moves around the sphere from the north pole to the
south pole and back to the north pole, and it rises and falls
exactly three times as one moves once around the equator.
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Examples of spherical harmonics with n =4, 5,7, or 9, and
with m fixed at 3 are shown in figure 6.8. The left column
(fig. 6.8A) shows each spherical harmonic under assumptions
of perfect sampling, while the middle and right columns show
the same spherical harmonic discretely sampled with 111 sim-
ulated electrodes (fig. 6.8B) or with only 36 simulated elec-
trodes (fig. 6.8C). The samples are assumed to cover the upper
part of the sphere (with the north pole at the vertex) to a max-
imum latitude somewhat below the equator (0 < 6< 109 deg).
With the 111 electrode positions, the average (center-to-cen-
ter) nearest-neighbor separation between electrodes is 2.7 cm
(somewhat less than that of the 10-10 system); with the 36
electrode positions, the average separation is 5.8 cm (similar to
the spacing of the 10-20 system). The topographic maps shown
in Figure 6.8 were produced by interpolation (Srinivasan et al.,
1996). The figure shows that discrete sampling distorts the
spherical harmonics as n increases. In the figure, both the 36-
and 111-electrode arrays accurately represent the n = 4 spheri-
cal harmonic (i.e., compare the maps at the tops of the three
columns). However, for the n = 5 spherical harmonic, the 111-
electrode array (column B of the n = 5 row of topographies)
gives an accurate representation, but the 36-electrode array
produces serious aliasing (see column C of the n = 5 row of
topographies). For the n = 7 spherical harmonic, the 111-elec-
trode array again gives an accurate representation, but it loses
spatial detail (i.e., begins to produce aliasing) with the n =9
spherical harmonic. Thus, as n increases, aliasing can create
the erroneous appearance of spatial frequencies lower than the
actual spatial frequencies. That is, aliasing distorts EEG com-
ponents that have relatively focused spatial distributions so
that they appear to have broader less focused distributions.

From these examples it is evident that the highest spatial
frequency present in the EEG determines the sampling density
needed to accurately reflect its spatial distribution. Although
time series can be filtered by anti-aliasing filters applied accord-
ing to the Nyquist criterion (e.g., low-pass analog filtering of
signals below 40 Hz to permit sampling at 100 Hz), an equiva-
lent process of spatial filtering is not possible for the sampling
by individual scalp electrodes because such sampling is inher-
ently discrete. If the number of electrodes is insufficient, spatial
maps of the potentials are unavoidably aliased (e.g., the lower
three maps for 36 electrodes in fig. 6.8C).

For scalp-recorded EEG, power at higher spatial frequen-
cies is severely limited by the blurring of brain potentials due
to the intervening tissues of the head. This limitation actually
makes the problem of discrete sampling of scalp potentials
more manageable. The effect of volume conduction through
the cerebrospinal fluid (CSF), skull, and scalp is that it spatially
low-pass filters the cortical potentials (Srinivasan et al., 1996;
Nunez and Srinivasan, 2006). That is, nature has conveniently
provided us with an analog low-pass spatial filter in the form of
the poorly conducting skull! However, note that whereas this
low-pass filter is present in EEG recordings, it is absent in elec-
trocorticographic (ECoG) recordings (see chapter 15, in this
volume). This can add substantially to the problem of spatial
aliasing of ECoG mapping in animals and humans. (On the
other hand the absence of this natural low-pass spatial filter in



Figure 6.8 lllustration of the impact of electrode density on the spatial distributions calculated for potentials of different spatial frequencies. The vertex (i.e., the
north pole) is the center. The circle extends to 19° below the equator. The spherical harmonic index m (i.e., longitude) of the potentials is fixed at 3. Each row

corresponds to a potential with a different value (i.e., 4, 5, 7, or 9) of the spherical harmonic index n (i.e., latitude). Column A is the gold standard, that is, the

potential distributions plotted with infinite (i.e., perfect) sampling. Columns B and C are the maps obtained by sampling the potential distributions with 111
electrodes (B; 2.7-cm spacing) or 36 electrodes (C; 5.8-cm spacing), respectively, and spline interpolation. Gray circles indicate the electrode positions.

See text for discussion.

ECoG recording allows it to measure accurately signals with
higher spatial frequencies, which is one of its major advantages
over EEG recording [see chapter 15, in this volume].)

In conclusion, we note that appropriate application of
the Nyquist criterion in choosing the density and location of
EEG electrode arrays requires a priori knowledge of the
spatial spectrum of the EEG and of the source distributions.
Such information is not generally available, in part because
knowledge of the adequate number of electrodes for a specific
EEG signal would first require over-sampling of the potential
distribution to determine the highest spatial frequencies pres-
ent in the data. One study using very closely spaced needle
electrodes suggested that a spacing of 1.9-2.7 cm (Spitzer et al.,
1989) is adequate to avoid aliasing somatosensory evoked

potentials. This corresponds to 128-256 electrodes covering
the upper surface of the head. Srinivasan et al. (1998b) and
Nunez and Srinivasan (2006) have used volume-conduction
models to obtain estimates of the highest spatial frequencies
that can be expected to contribute significantly to EEG signals.
Using these values, they have calculated that 128-256 elec-
trodes are needed to produce adequate spatial sampling of
scalp potentials.

HIGH-RESOLUTION EEG METHODS

The poor spatial resolution of EEG could limit EEG-based BCI
development, particularly when the BCI protocol seeks to use
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signals from particular localized cortical areas (e.g., the hand
region of primary motor cortex). In addressing this limitation,
high-resolution EEG methods may have greater value than
source-localization methods. In fact, high-resolution methods
have already been applied successfully in BCI research
(McFarland et al., 2006). High-resolution EEG methods are
based on a conceptual framework that differs substantially
from that of EEG source-localization methods (Nunez and
Srinivasan, 2006). Because scalp-recorded EEG is not by itself
sufficient information to estimate the distribution of sources
within the head, source-localization methods must rely on
assumptions about the numbers and nature of sources. In con-
trast, high-resolution EEG methods do not need to make
assumptions about the sources. Instead, they focus on increas-
ing the sensitivity of each electrode.

The EEG signal recorded at each electrode is a spatial aver-
age of active current sources distributed over a volume of
brain space. The size and shape of this volume depend on a
number of factors including the volume conduction properties
of the head and the choice of reference electrode. The contribu-
tion of each source to this spatial average depends on the elec-
trical distance between source and electrode, the source
orientation, and the source strength. When two electrodes are
very closely spaced, they record similar signals because they
reflect the average activity in largely overlapping tissue vol-
umes. High-resolution EEG methods improve spatial resolu-
tion by reducing the effective volume that each electrode
averages.

SURFACE LAPLACIAN

The surface Laplacian (see also chapter 7, in this volume)
improves spatial resolution by making the electrode more sen-
sitive to activity from sources that are superficial, radial, and
localized underneath the electrode and less sensitive to activity
from sources that are deep or broadly distributed (i.e., of low
spatial frequency). The surface Laplacian is the second spatial
derivative of the scalp potential in both surface directions (lat-
itude and longitude on a sphere). It is an estimate of current
density entering (or exiting) the scalp through the skull
(Srinivasan et al., 2006; Nunez and Srinivasan, 2006). The
Laplacian method requires only that the outer surface shape of
the volume conductor (i.e., the head) be specified; typically a
best-fit spherical surface is adopted. One of the complicating
factors in interpreting scalp EEG involves reference-electrode
effects: at each instant, the potential recorded at the reference
electrode is subtracted from potentials recorded at all the other
electrodes. Since the surface Laplacian is a (second) spatial
derivative, the potential common to all electrodes is automati-
cally removed in the Laplacian estimate. Thus, the reference
electrode can be moved to any position on the head without
influencing the surface Laplacian. At the same time, because
the surface Laplacian estimates derivatives of the potential
along the scalp surface, high-density electrode arrays are gen-
erally recommended to obtain good spatial resolution with
modern Laplacian algorithms (i.e., 64-131 electrodes or more)
(Srinivasan et al., 1996). Nevertheless, the Laplacian at a given
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electrode can be estimated with as few as five electrodes using
anearest-neighbor Laplacian, that is, a finite difference approx-
imation of the second derivative (Hjorth, 1975). While this is a
crude estimate of the Laplacian as compared to more accurate
but computationally intensive methods, the nearest-neighbor
Laplacian is potentially a very useful solution for BCI applica-
tions because it requires only five electrodes localized to a lim-
ited scalp area and can be computed easily and efficiently in
real time (e.g., as a part of actual BCI operation).

In effect, the surface Laplacian algorithm acts as a band-
pass spatial filter that tends to emphasize sources focused in
the underlying superficial cortex. Extensive simulation studies
of the surface Laplacian have been conducted using dipole
sources in spherical and realistically shaped head models
(Srinivasan et al., 1996; Srinivasan et al., 1998; Nunez and
Srinivasan, 2006; Srinivasan et al., 2007). The surface Laplacian
appears to effectively limit the sensitivity of the electrode to
compact sources located within a distance of 2-3 cm. Figure
6.4B demonstrates the enhanced spatial resolution afforded by
the surface Laplacian in a simulation with a realistic head
model. Here the Laplacian focuses the sensitivity of the elec-
trode to the gyral surface directly beneath the electrode. The
part of the EEG signal removed by the Laplacian filter is not as
well localized; it may be generated by very deep sources (less
likely) or by coherent sources distributed over large cortical
areas (e.g., entire cortical lobes) (more likely). In the latter case,
the question of EEG source localization is essentially irrelevant,
since the sources themselves are not well localized but are,
instead, regional or even global (Nunez, 2000). In sum, the sur-
face Laplacian filter is a useful tool that achieves high-resolu-
tion EEG by reducing the volume of the tissue that produces
the activity detected at each electrode location.

SUMMARY

Electroencephalography is the principal noninvasive BCI
method. Magnetoencephalography may also be used. Both
EEG and MEG have comparable spatial resolution. They differ
principally in that they are preferentially sensitive to different
brain sources. EEG emphasizes synchronized dipole sources in
superficial gyral surfaces and larger dipole layers that generate
larger scalp potentials. In contrast, MEG emphasizes sources
in the sulcal walls, which are tangential to the scalp and thus
tangential also to the coils.

It is not clear what role MEG can have in practical BCI
applications because of the expense and inconvenience of the
need to cool the superconducting coils and to isolate the sub-
ject in a magnetically shielded room in order to detect the
brain’s magnetic fields, which are very small relative to envi-
ronmental magnetic fields. Nevertheless, MEG may be valu-
able in laboratory-based studies aimed at developing new BCI
protocols and/or in locating brain areas relevant for other BCI
methodologies, particularly those that require implantation of
recording arrays.

EEG recording requires careful attention to electrode appli-
cation, number, and location, to sampling rate, to reference



choice, and to contamination by nonbrain artifacts. Mild skin
abrasion and conductive gel are generally needed to obtain
adequately low electrode impedance. Dry electrode technol-
ogy is under development.

To avoid temporal aliasing of the EEG, the sampling rate
should exceed the Engineer’s Nyquist Criterion, that is, it
should be at least 2.5 times the highest frequency to which the
recording amplifier is sensitive. Similarly, electrode density on
the scalp should be high enough to prevent spatial aliasing of
the relevant EEG features. The recognition of nonbrain arti-
facts (e.g., EMG) requires adequately comprehensive spatial
and frequency analyses.

Reference selection is critical. An ideal, completely inactive
reference site is not obtainable. Nevertheless, with many elec-
trodes (128 or more) distributed widely over the scalp and the
average reference (AVE) method (also called the common-
average reference [CAR]), it is possible to closely approximate
reference-independent EEG recording. However, although this
approach may be ideal for research or clinical purposes, it is
impractical for BCIs intended for long-term use in daily life.
In such situations a very small number of electrodes (e.g., five),
portability, ease of use, and capacity for rapid online processing
are highly desirable or even essential. Thus, because the EEG
recording in practical BCI systems is necessarily bipolar, it is
probably best to incorporate a variety of promising bipolar strat-
egies into BCI research. In this regard, high-resolution EEG
methods such as the surface Laplacian have potential advantages,
especially when a specific cortical area (e.g., motor cortex) pro-
duces the signals used by the BCI (e.g., McFarland et al., 2008).
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7 | BCI SIGNAL PROCESSING: FEATURE EXTRACTION

DEAN J. KRUSIENSKI, DENNIS J. McFARLAND, AND JOSE C. PRINCIPE

he purpose of a BCI is to detect and quantify character-

istics of brain signals that indicate what the user wants

the BCI to do, to translate these measurements in real
time into the desired device commands, and to provide con-
current feedback to the user. The brain-signal characteristics
used for this purpose are called signal features, or simply
features. Feature extraction is the process of distinguishing the
pertinent signal characteristics from extraneous content and
representing them in a compact and/or meaningful form,
amenable to interpretation by a human or computer. Feature
extraction is the focus of this chapter. Figure 7.1 shows the
overall structure of a BCI and the place that feature extraction
(shaded in red in the figure) occupies in this structure. It occurs
after signals have been acquired, and it prepares the signals for
translation into BCI output commands. The process of feature
extraction does this by isolating the important features of the
signals from superfluous corrupting information or interfer-
ence, typically referred to as noise.

The signal-to-noise ratio (SNR) of a measurement is simply
the ratio of the signal power to the noise power. Power, which is
proportional to the squared amplitude, is a measure of energy
per unit time. Power is universally used to quantify and relate
arbitrary electrical signals such as audio, communications, and
electroencephalogram (EEG). A high SNR indicates minimal
corruption of the signal of interest by background noise.

In discussing feature extraction, it is important to under-
stand the difference between noise and artifacts. Both noise
and artifacts can contaminate the signal. Noise is due to back-
ground neurological activity. In contrast, artifacts are due to
sources unrelated to the neurological activity and are not
intrinsic to the expected measurement of this activity. Artifacts
can be due to biological or external sources, such as eye blinks
or artificial respirator activity. Artifacts typically combine
additively in the measurement of the desired signal, often com-
pletely masking the signal. Thus, it is important to note that the
SNR may not directly apply to artifacts.

A fundamental signal feature is simply a direct measure-
ment of the signal (e.g., the voltage difference between a pair of
electrodes at a particular time after a sensory stimulus). By
themselves, fundamental signal features usually provide lim-
ited relevant information about typically complex brain sig-
nals. Thus, it is more common for BCIs to use features that are
linear or nonlinear combinations, ratios, statistical measures,

or other transformations of multiple fundamental features
detected at multiple electrodes and/or multiple time points.
Such complex features, if selected appropriately, can reflect the
user’s desires more accurately than the fundamental features
themselves. Most features used in BCI applications are based
on spatial, temporal, and/or spectral analyses of brain signals
or the relationships among them. Furthermore, in order to
determine the user’s wishes as accurately as possible, most
BClIs extract a number of features simultaneously. This set of
features is referred to as a feature vector.

To be effective for BCI applications, a feature should have
the following attributes:

. its spatial, temporal, spectral characteristics,
and dynamics can be precisely characterized for
an individual user or population of users

. it can be modulated by the user and used in
combination with other features to reliably
convey the user’s intent

. its correlation with the user’s intent is stable
over time and/or can be tracked in a consistent
and reliable manner

Figure 7.1 shows a block diagram of a BCI system with empha-
sis on its signal-processing aspects. First, the analog brain
signals measured from the sensors are amplified to levels
suitable for electronic processing (and they may also be sub-
jected to an analog filter); these signals are then digitized and
transmitted to a computer. The digitized signals then pass to an
optional signal-conditioning stage, which acts to enhance the
signals and/or remove extraneous information. Otherwise, the
digitized signals are grouped into sample blocks comprised of
the current (and possibly previous) consecutive digitized values.
The feature extraction and conditioning algorithm analyzes
each incoming sample block from one or more signal channels
to produce the features that constitute the feature vector. This
analysis can involve any of a wide variety of possible spatial,
temporal, and/or spectral transformations. This feature vector
is then passed to the feature translation stage, in which it is
converted into device commands and feedback to the user.
This chapter reviews signal amplification/digitization
and then focuses in some detail on feature extraction. Feature
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Figure 7.1 A block diagram of a BCl system, with the portion representing feature extraction shaded in red. Brain signals are recorded by one of a variety of

methods. They are amplified and digitized, then conditioned (e.g., spatial filtering) and, in blocks of consecutive samples (with the sample block currently being
processed numbered as T in the diagram, the subsequent sample block numbered T+1, etc.), sent to the feature extraction (e.g., frequency analysis) and
conditioning (e.g., normalization) algorithm. This results in a single feature vector for each consecutive sample block processed (i.e., a function T) that is translated

into a device command (e.g., amount of vertical displacement from the previous cursor position, also a function of T). An application device executes the

command and sends feedback to the user, completing the closed loop.

translation will be covered in chapter 8. Nevertheless, it is
important to recognize that feature extraction constitutes the
transformation of fundamental signal characteristics to pro-
duce a feature vector, whereas feature translation is merely the
transformation of this feature vector into a form that is appro-
priate for device control. Thus, in certain designs (e.g., artificial
neural networks; see chapter 8, this volume), a single transfor-
mation is used to convert the digital signals directly into device
commands, and there is no clear distinction between the
extraction and translation stages.

As the first stage in the signal processing that converts
brain signals into actions that accomplish the user’s intent,
feature extraction is critically important. Accurate and robust
feature extraction simplifies the subsequent translation stage
and produces more accurate and reliable actions and more
natural feedback to the user. On the other hand, it is possible to
compensate for somewhat poor or nonspecific feature extrac-
tion by using a more complex translation algorithm to produce
equally effective results. It is important to recognize that
feature extraction and translation go hand-in-hand and that
practical BCI systems balance the emphasis between these two
stages and ensure that they work together effectively.

The presentation in this chapter focuses on well-established
feature-extraction methods that are applied to EEG, electro-
corticogram (ECoG), or single-neuron recordings. It is meant
to serve as an introduction to and reference for common BCI
feature-extraction methods. Most methods of feature extrac-
tion that appear in the BCI literature are based on, or are closely
related to, the methods presented in this chapter.

The chapter is written and organized assuming that readers
have an understanding of college-level linear algebra and
calculus, basic probability and statistics, negligible signal
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processing or machine-learning background, and basic
knowledge gained from previous chapters. It begins with an
overview of some basic principles of digital signal processing
and a discussion of common techniques used to enhance sig-
nals prior to feature extraction. It then covers method selec-
tion, typical processing protocols, and major established
methods for BCI feature extraction.

PRINCIPLES OF SIGNAL PROCESSING

ANALOG-TO-DIGITAL CONVERSION

Electrical signals recorded from the brain are on the order of
microvolts (uV) to millivolts (mV) and are typically amplified,
using a standard biosignal amplifier, to higher voltages suitable
for processing and storage. Most modern biosignal amplifiers
also digitize the signal using an analog-to-digital converter
(ADCQ); if the amplifier itself does not perform this digitiza-
tion, a separate ADC is necessary to process and store the
signal using a computer. Analog-to-digital conversion consists
of two consecutive steps: sampling and then quantization.

SAMPLING
Sampling is the process of capturing the value (typically volt-
age, but possibly a value originating from other signal mea-
sures such as blood flow) of a continuous analog signal at
specific instants in time. The signal values at these instances
in time are known as samples. In conventional ADCs, samples
are uniformly spaced in time. This spacing or sampling rate
is measured in Hertz (Hz) (samples/second). For example,
an analog signal sampled at 100 Hz will produce a digital
signal comprised of 100 consecutive samples uniformly



spaced over a 1-sec interval, with values corresponding to the
analog signals at the consecutive sampled time points. The
higher the sampling rate, the better the time resolution and
the more accurately the sampled signal represents the
original analog signal. However, in many cases perfect recon-
struction of the analog signal can be achieved with a certain
minimum sampling rate. The Nyquist-Shannon sampling theo-
rem is used to find that minimum acceptable sampling rate. It
states that perfect reconstruction can be achieved only by sam-
pling the analog signal at a rate that is at least double the high-
est frequency of the analog signal. This threshold is known as
the Nyquist sampling rate (or Nyquist criterion or Nyquist limit).
If the sampling rate for a particular signal is less than the
Nyquist sampling rate, the information contained in the
sequence of samples is distorted and not representative of the
true spectral characteristics of the original signal.

The distortion that can occur due to a sampling rate that is
less than the Nyquist criterion is known as aliasing. The con-
cept of aliasing can be visualized using the classic example of a
rotating fan and a strobe light in a dark room. The fan rotates
at a constant rate (analogous to an analog signal that oscillates
at a constant frequency). The strobe flashes (potentially inde-
pendent of the fan rate) at a constant rate (analogous to the
digital sampling rate). If the strobe light is set to flash at the
same rate as the fan, the fan will appear motionless. This is
obviously not representative of the true motion of the fan, and
it is thus a form of aliasing.

To prevent aliasing, analog signals are often low-pass fil-
tered (see section Digital Filtering in this chapter) prior to
sampling to ensure that there are no frequency components
above the imposed Nyquist limit. This filter is known as an
anti-aliasing filter. To understand this, let us consider an
example using EEG. In scalp-recorded EEG, little observable
activity occurs above 80 Hz. Therefore, an anti-aliasing filter
at 80 Hz could be applied (but is not necessary if there is no
signal power above 80 Hz in the raw EEG), and a sampling
rate of 160 Hz would be sufficient to digitize and perfectly
reconstruct this signal. A sampling rate above this 160 Hz is
also acceptable but is unnecessary and will require more data-
storage space.

QUANTIZATION
Quantization is the conversion of each sample (e.g., its analog
voltage) into a binary number for processing and storage in a
computer. The number, k, of binary bits used for quantization
determines the number of possible discrete amplitude values
used to represent the digital signal. These discrete amplitude
values are called quantization levels. The number of quantiza-
tion levels equals 2*. For example, an 8-bit ADC produces 2°
(i.e., 256) quantization levels, and a 16-bit converter produces
2'¢ (i.e., 65,536) levels. These quantization levels are usually
uniformly spaced over the analog voltage range of the ADC.
Each sample of the analog voltage is normally rounded to the
nearest quantization level. The more quantization levels used,
the more accurate is the digital-amplitude representation of
the original analog signal. For example, if the voltage range of
the ADC is £5 V (giving a range of 10 V), the quantization
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levels of an 8-bit ADC (which has 256 quantization levels) are
39 mV apart (because 10 V divided by 256 equals 39 mV); the
levels of a 16-bit ADC (which has 65,536 quantization levels)
are only 0.153 mV (or 153 V) apart. It should be noted that
the analog signal amplification and the voltage range of the
ADC should be coordinated in order to distribute the quanti-
zation levels over the full expected amplitude range (called the
dynamic range) of the analog signal. Otherwise, if the dynamic
range of the amplified analog signal is smaller than the voltage
range of the ADC, only the lowest quantization levels will be
used, resulting in suboptimal amplitude resolution. This can
be mitigated somewhat by overcompensating when one is
selecting the bits of resolution for the ADC, that is, by selecting
an ADC resolution that will be sufficient in cases where
the dynamic range of the signal may drop below the expected
voltage range of the ADC. On the other hand, if the dynamic
range of the amplified analog signal is larger than the voltage
range of the ADC, all voltages above the largest positive and
negative quantization levels will be mapped to those levels,
respectively. This results in a digitized signal with clipping
distortion, leaving square-like clipping artifacts in which the
peaks of the signal exceed the largest quantization levels.
The number of bits in the ADC also affects the SNR, which
is commonly measured in decibels (dB):
&]
A,
noise 7.1)

where P is the power and A is the amplitude of the signal or
noise. The noise in this case represents the quantization error
caused by rounding. For instance, an 8-bit ADC uses one bit
for the sign (polarity) and 7 bits for the amplitude. The well-
accepted rule of thumb is that 6 dB of SNR are obtained
for each bit in an ADC. Thus, for the 7 bits for amplitude, the
SNR is approximately 6 dB/bit x 7 bits ~ 40 dB. Using this value
SNR =40 dB to equal the right-hand term in equation 7.1, and
solving equation 7.1 for the ratio A, /A . , we get 100. This
means that, for an 8-bit ADC, the captured digital-signal
amplitude will be approximately 100 times the quantization
noise amplitude.

At the same time, it should also be noted that higher sam-
pling rates and finer quantization require more digital storage
space. Thus, an effective BCI system requires a sampling rate
and quantization level that adequately capture the analog signal
but that are also practical in terms of the necessary hardware
and software. The binary value assigned to each digital sample
can be mapped back to the corresponding voltage value for
signal visualization and processing. Figure 7.2 illustrates the
sampling and quantization process. Additional details regard-
ing sampling and quantization theory can be found in (Proakis
2007).

noise

(Psignul \
SNR(dB) =10 logm kP—J =20 lng

FOURIER ANALYSIS

Much of signal-processing theory is rooted in Fourier analysis,
which transforms a time-domain (i.e., time on the x-axis) signal
into its equivalent frequency-domain (i.e., frequency on the
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Figure 7.2 A basic 3-bit binary encoding of an analog signal. Note that the digital samples exist only at the sample instants corresponding to the sample number;

the dashed line is provided for illustration purposes.

x-axis) representation. The primary utility of Fourier analysis
is to decompose a signal into individual sinusoidal compo-
nents that can be isolated and evaluated independently. Using
Fourier analysis, practically any signal can be accurately repre-
sented as the sum of a number (possibly an infinite number)
of amplitude-scaled and time-shifted sinusoids at specific
frequencies. This is illustrated in figure 7.3, which shows the
successive approximations of a neuronal action potential (left
column) and a bipolar pulse (right column) by sums of sinu-
soids. Note that the continuous signals (top row) are better
approximated as more sinusoids (e.g., the third and particu-
larly the fourth row) are used for modeling.

In order to model these continuous signals, it is necessary
to properly adjust the phase and the magnitude of each sinu-
soid. For an arbitrary signal x(¢), the magnitude (scale) and
phase (shift) of the sinusoid at each frequency [w (radians) =
2nf (Hz)] required to represent an arbitrary signal can be deter-
mined from the Fourier transform:

X(w)= J. x(t)e ™ dt = .[ x(t)[coswt + jsin wt]dt

—co

= j x(t)coswtdt + j '[ x(t)sin wtdt

a{w)

=a(w)+ jb(w)

b(w)

(7.2)
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The magnitude and phase for each sinusoidal component
are given as:

Magnitude : |X(w)| =a (w)+b ()

Phase: 6=arg(X(w))=tan™ [M]
a(w)

(7.3a)

(7.3b)

The Fourier transform represents a conversion from the
time domain to the frequency domain. Note that the magni-
tude and phase representations produce real numbers. These
values can be plotted with respect to frequency in order
to visualize the frequency content of a signal. The inverse
Fourier transform can be computed from the magnitude and
phase to perfectly reconstruct the signal in the time domain.
The original time-domain signal is reconstructed from the
scaled and shifted sinusoids at each frequency as follows:

x(t)= [ |X(@)|cos(et +6(w))dw
- (7.4)

The Fourier transform for digital signals (with finite fre-
quency resolution given by the inverse of the number of sam-
ples times the sampling period) can be efficiently implemented
using a computer via the fast Fourier transform algorithm
(FFT). More detail regarding Fourier methods is provided in
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Figure 7.3 Modeling of continuous signals using Fourier analysis. A spike and a
bipolar pulse are shown in the top row of the figure. The second row shows an
approximation with a single sinusoid, with a single cycle in the interval shown.
The next row shows the sum of sinusoids with 1, 2, 3, and 4 complete cycles
(i.e., four sinusoids having uniformly spaced frequencies) in the interval. Note
that these four sinusoids are orthogonal (i.e., uncorrelated) in the interval
shown. The last row shows the sum of 32 orthogonal sinusoids. Note that the
continuous signals are better approximated as more sinusoids are used for
modeling.

the section on Fast Fourier Transform in this chapter and in
Proakis and Manolakis (2007).

DIGITAL FILTERING

Digital filters are central to digital signal processing. They
modify the frequency content of a digital signal by attenuating
some frequencies (or frequency ranges) and amplifying
others. Each successive sample of a digitized signal is
passed through a digital filter to produce a new value as the
output.

Given a digital signal x[n], each input sample of x[#] enters
the filter sequentially (note that n is now used to denote the
sample number of the digital signal, which is analogous to ¢ for
continuous time signals). The digital filter’s output y[n] at any
given time point is simply a weighted sum of the current and
past input (and possibly past output) samples:

M N
ylnl= bxln—11-Y ayln—I]
1=0 =1 (7.5)

where x[n - I] is the I" past input sample, y[n - [] is the I?
past output sample, b, and a, are scalar weights for each input
and output sample, respectively, and M and N are the number
of input and output sample weights employed by the filter,
respectively. The resulting filter output y[n] is a digital signal
having the same number of samples as x[n], where the first
sample of y[n] corresponds to the first sample of x[n]. Past
input and output values of the filter are commonly initialized
to zero. Filters that depend only on current and past input
and past output samples are referred to as causal filters. For
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most practical (i.e., real-time) applications, causal filters are
necessary because future input and output samples are not yet
available.

The simplest example of a digital filter is the computation
of a uniform moving average. In computing a uniform moving
average, the digital signal passes through the filter, and the
filter output at a particular instant is equal to the sum of
the past N consecutive samples each weighted by 1/N (this is
the equivalent of calculating the current output sample as the
average of the N past samples). In this case the amplitudes of
signal frequencies that have a period less than N (i.e., “high”
frequencies) tend to average to zero or to be attenuated at the
filter output. This occurs because, for these high frequencies, N
samples include samples from both the positive and negative
halves of each cycle, which tend to cancel each other and
thereby reduce the average value yielded by the filter. The
amplitudes of signal frequencies having periods greater than N
(i.e., “low” frequencies) tend to be preserved because N is not
long enough to contain samples from both halves of the cycle,
and thus the majority of the samples are of the same polarity,
and the magnitude of the filter output tends to be larger rela-
tive to the output for higher frequencies. Since higher frequen-
cies are attenuated and lower frequencies are preserved, the
computation of a uniform moving average is known as a low-
pass filter. In a similar fashion, a simple high-pass filter can be
constructed by alternating the polarity of the sample weights
for successive input samples. In this case constant and slowly
varying signals will average toward zero at the filter output,
and more rapid signal fluctuations will be preserved. In sum,
by properly adjusting the length of the filter (i.e., N, the number
of successive samples included) and the weights assigned to
successive samples, very specific ranges of signal frequencies
can be amplified, attenuated, preserved, and/or eliminated.
Thus, digital filters can enhance, isolate, or eliminate signal
phenomena that have power at particular frequencies. In addi-
tion to low-pass and high-pass, the other two most common
types of filters are bandpass and notch (band reject). A band-
pass filter preserves signal power within a specified continuous
frequency range, while attenuating signal power outside of this
range. A notch filter is the converse of a bandpass filter; it
attenuates signal power within a specified continuous fre-
quency range, while preserving signal power outside of this
range.

Figure 7.4 illustrates the magnitude response for each of the
four common filter types. The magnitude response indicates the
amplitude scale factor, or gain, that the filter applies to
an input signal of a particular frequency. Actual filters produce
a rapidly changing response rather than an abrupt cutoff in
the frequency domain. Although it is not possible to create
an ideal filter having magnitude response with a perfect thresh-
old at a particular frequency (i.e., a step discontinuity), it is
possible to achieve sufficient approximations for most practical
purposes.

Any of the four common filter types, as well as others, can
be realized using equation 7.5. However, there are some trade-
offs, depending on whether or not the filter employs feedback
of past outputs. If the filter does not employ feedback of past
outputs (i.e., a, = 0), the filter is known as a finite impulse
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Figure 7.4 The signal on the left has a frequency that decreases linearly with time (known as a chirp signal) (x-axis is time). The middle column (x-axis is frequency)

shows the magnitude response (i.e., the amplitude scale factor, or gain, applied) for each of the four filters: (A) low-pass; (B) high-pass; (C) bandstop/notch; and
(D) bandpass. The signals in the right column (x-axis is time) are the outputs when the filters of the middle column are applied to the signal in the left column.

response filter. If the filter does employ feedback of past outputs
(e, a #0), the filter is known as an infinite impulse response
filter. These two fundamental linear digital filter structures are
described here, and additional details regarding digital-filter
design can be found in Proakis and Manolakis (2007).

Impulse 16 Hz sine wave

B 111111

Time domain

4 Hz FIR

16 Hz FIR

=l WA
—

Constant > 0
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Figure 7.5 Comparisons of FIR filters and Fourier spectra. The top row shows
two time-domain waveforms (impulse and sine wave). The next three rows
illustrate the outputs after passing these time-domain signals through a 4-,
16-, and 40-Hz FIR bandpass filter, respectively. The bottom row shows the
corresponding Fourier-based spectra. Note that the impulse (left column)
produces output at all frequencies, whereas the sine wave (right column)
produces output at frequency corresponding to the frequency of the input.
Thus, considering the output of only a single FIR filter or spectral bin can be
misleading. It is always advisable to examine the entire spectrum.
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FINITE IMPULSE RESPONSE FILTERS
A finite impulse response (FIR) filter is a weighted moving-
average filter without feedback of past outputs. The term finite
is used to describe this filter because a single sample entering
the filter is guaranteed to affect the resulting output signal for
a time no longer than the order of the filter (i.e., the duration
of the time period from which the filter obtains the samples
used to determine each output sample). Since there is no
output feedback in an FIR filter (i.e., the output is not used in
the calculation of subsequent outputs), it is stable; that is, the
output signal amplitude cannot grow without bound if
the input is amplitude-limited. Moreover, FIR filters can be
designed with a linear phase response. This means that any
time delay introduced by the filter will be the same for all
frequencies; thus, the filter does not distort the morphology of
the output signal with frequency-dependent delay. This prop-
erty is particularly advantageous when the signal of interest is
characterized or distinguished by its shape (i.e., by the relative
amplitudes of consecutive samples). The primary disadvantage
of FIR filters is that filter length increases with increasing
sharpness of the desired magnitude response transition. Very
long filter lengths are needed to achieve very sharp transitions
in the magnitude response that approach those provided by
ideal filters. This is a key consideration for real-time BCI imple-
mentations because longer causal FIR filters will result in
longer time delays of the output. For a causal FIR filter with
symmetric weights, the time delay of the output in samples will
correspond to roughly half the filter length.

Figure 7.5 shows the outputs of three different FIR filters
(bandpass of 4-, 16-, and 40-Hz) and a Fourier spectrum, given
two different time-domain input signals (impulse and 16-Hz
sine wave). The impulse produces an output in each of the
FIR filters, as well as a uniform value across the Fourier spectra.



In contrast, the sine wave produces an output only in the FIR
filter with the same frequency characteristics and a narrow
peak in the Fourier spectra. Thus, considering the output of
only a single FIR filter or spectral bin can be misleading. It is
always advisable to examine the entire spectrum.

INFINITE IMPULSE RESPONSE FILTERS

An infinite impulse response (IIR) filter can be thought of as
combination of two FIR filters, one that combines the current
and past inputs and one that combines the past outputs. The
IIR filter output is the sum of the two FIR filter outputs. The
term infinite is applied to this filter because a single input
sample will affect an infinite sequence of output samples
through its role in determining the outputs that constitute the
feedback. The primary advantage of IIR filters is that they are
capable of producing sharp transitions in the magnitude
response using relatively few properly weighted input and
output samples. However, in contrast to FIR filters, IIR filters
can be unstable because of their use of feedback. Thus, they
must be designed so as to promote stability. In addition, IIR
filters tend to have a nonlinear phase response; that is, different
frequencies will experience different time delays unless specifi-
cally designed otherwise. Depending on the application, this
phase distortion may not be of particular concern for feature
extraction since compensations for the nonlinear phase char-
acteristics can be achieved during feature translation.

THE THREE STEPS OF FEATURE
EXTRACTION

The process of feature extraction is discussed here as a three-
step procedure:

. signal conditioning to reduce noise and to
enhance relevant aspects of the signals

. extraction of the features from the conditioned
signals

. feature conditioning to properly prepare the
feature vector for the feature-translation stage

FIRST STEP: SIGNAL CONDITIONING

The first step of feature extraction is called signal conditioning
or preprocessing. This step enhances the signal by preemptively
eliminating known interference (i.e., artifacts) or irrelevant
information, and/or by enhancing spatial, spectral, or tempo-
ral characteristics of the signal that are particularly relevant to
the application. It is common to have some prior knowledge
about the general signal characteristics relevant for a particular
application, and this knowledge is used in conditioning. Signal
conditioning can include a number of different procedures that
can primarily be categorized as:

. frequency-range prefiltering

. data decimation and normalization
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. spatial filtering

. removal of environmental interference and
biological artifacts

FREQUENCY-RANGE PREFILTERING

Signals are often prefiltered to eliminate frequencies that lie
outside the frequency range of the brain activity most relevant
to the application. Depending on the application and the avail-
able hardware, this prefiltering can be performed before or
after the signal is digitized. For example, because the observed
signal power in EEG decreases as 1/frequency and the skull
and scalp tissue provide additional signal attenuation,
scalp-recorded EEG frequencies above 40 Hz have a very low
signal-to-noise ratio and thus may not be very useful for BCI
applications. Additionally, EEG low-frequency drift produced
by the amplifier is sometimes present in EEG and can distort
signal visualization. When combined with an ADC of limited
amplitude range, a reduction in amplification may be neces-
sary, thus reducing the amplitude resolution of the digitized
signal. As a result, it is common at the beginning of EEG fea-
ture extraction to apply a 0.5-40 Hz (or narrower if possible)
bandpass filter to isolate the relevant brain activity. For instance,
8-12 Hz bandpass can be applied to isolate mu-band activity,
or 8-30 Hz can be applied to include both mu- and beta-band
activity. In contrast, for evoked potentials such as the P300 (see
chapter 12, in this volume), it is prudent to use a high-pass
cutoff of 0.1-0.5 Hz to preserve the characteristic low-
frequency information of the response (typically with a low-
pass cutoff between 5-40 Hz, depending on the nature of the
evoked response). In general, the width of the filter should be
set conservatively to prevent unnecessary loss of information,
which can also be beneficial for offline analysis of the signals.

DATA DECIMATION AND NORMALIZATION
If the signal is digitized at a rate that is higher than the Nyquist
rate required to capture the relevant activity, it may be advanta-
geous to decimate the sampled signal to the minimum effective
sampling rate for more efficient processing and storage.
Decimation is the elimination of samples in a periodic fashion.
For example, the decimation of a signal by a factor of two will
eliminate every other sample, effectively halving the sampling
rate and the length of (i.e., the number of samples in) the signal.
However, just as with sampling in analog-to-digital conver-
sion, it is important to avoid aliasing (see section on Sampling
earlier in this chapter). To avoid aliasing, the signal should be
low-pass filtered before decimation, with a cutoft frequency
equal to one-half of the decimated sampling frequency.

The most common way to normalize a set of signals is to
subtract from each signal its mean value and then scale the
resulting signals by dividing by its variance. Signal normaliza-
tion can be useful when one is comparing different signals that
have differences in mean values or dynamic (i.e., amplitude)
ranges that are not relevant to the particular application. For
example, EEG signals recorded over two brain areas often
differ markedly in amplitude range, but the signal dynamics
within these ranges may be of primary interest for a given BCI
application, not the actual difference in the respective signal
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amplitude values. Normalization can also be used to adjust sig-
nals that are affected by unintended electrode impedance dif-
ferences (which are obviously not relevant to the application).
By converting the signals to the same scale, normalization can
potentially simplify the analysis and interpretation of the sig-
nals and the subsequent processing steps. At the same time,
however, normalization must be used with caution since it
does eliminate the potentially useful amplitude differences
within a set of signals.

SPATIAL FILTERING
In methods that measure electrical signals from the scalp or
within the head, the quantity measured is the electrical poten-
tial difference (in volts) between two electrodes, and the volt-
age signal obtained is commonly called a channel. Each channel
reflects the voltage fields produced by multiple proximal brain
sources and sometimes by nonbrain sources as well (e.g.,
muscle activity, 60-Hz artifacts, etc.). The sensitivity of a chan-
nel to different brain sources depends on the sizes and orienta-
tions of the sources in relation to the locations of the channel’s
two electrodes. Thus, by properly selecting the pairs of elec-
trodes that comprise each channel, it is possible to make the
channel more sensitive to some sources and less sensitive to
others. If all the channels recorded have one electrode in
common, it is possible to reconstruct any desired alternative
set of channels by weighting and combining the channels after
digitization. This procedure is known as spatial filtering. The
common electrode, called the reference electrode, or reference,
is usually placed at a location that is relatively inactive, or
insensitive, with regard to brain activity, and in this case the
recording is termed monopolar (even though, as explained in
detail in chapters 3 and 6, all voltage recordings, strictly speak-
ing, are bipolar.) When both electrodes in a channel are affected
by brain activity, the recording is typically termed bipolar.

Spatial filters are generally designed to enhance sensitivity
to particular brain sources, to improve source localization,
and/or to suppress certain artifacts. Most commonly, spatial
filters are selected as linear combinations (i.e., weighted sums)
of channels and can be represented in matrix form:

I o Yip Wi Wy o Wiy || Xy X Xy

Ya  Yn _ Wy Wy Xy Xy

Y Yup Wan Wun || Xni Xnp
(7.6)

or equivalently in matrix notation:

Y=WX 7.7)

where each row of X consists of P consecutive digital signal
samples from one of N channels, each row of W is a set of N
channel weights that constitute a particular spatial filter, and
each row of Y is a resulting spatially filtered channel (M spa-
tially filtered channels x P samples). Essentially, each spatially
filtered channel of Y'is a weighted sum of the all of the channels
in X, where the channel weights are defined by the correspond-
ing row in W. There are several common approaches for
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determining the set of spatial-filter weights W. These approaches
fall into two major classes: data-independent and data-
dependent spatial filters.

Data-Independent Spatial Filters

Data-independent spatial filters typically use fixed geomet-
rical relationships to determine the spatial-filter weights and
thus are not dependent on the data being filtered. These filters
have certain local or global characteristics that, although some-
what generic, can be extremely effective in many applications.
McFarland et al. (1997) describe the value of appropriate data-
independent spatial filtering for BCIs. Figure 7.6 illustrates
the characteristics of several of these filters: the common-
average reference and two surface Laplacian spatial filters (small
and large).

A common-average reference (CAR or AVE) spatial filter is
realized by recording all channels with a common reference,
computing at each time point the global mean of all the digitized
channels, and then subtracting that mean from each individual
channel. This tends to reduce the impact of artifacts that are
similar across all channels (e.g., 60-Hz power-line interference).

A surface Laplacian spatial filter is based on a computation
of the second spatial derivative. If the channels have been
recorded with a common reference, this computation is effec-
tively equivalent to taking a central channel of interest and
subtracting the mean of all the channels at some fixed radial
distance from this central channel. Although this simplified
Laplacian filter is effective and commonly used, more elaborate
Laplacian filters can be constructed based on the precise spa-
tial-derivative derivation. Spatially adjacent channels tend to
be highly correlated since they have similar positions relative
to many brain sources. By eliminating this correlated activity, a
Laplacian filter emphasizes highly localized activity (i.e., activ-
ity that is not the same at both locations). Thus, the fixed radial
distance of the filter should be set based on the spatial charac-
teristics of the activity of interest.

Data-Dependent Spatial Filters

In contrast to the generalized data-independent filters,
data-dependent spatial filters are derived directly from each
BCI user’s data. Although these filters tend to be more complex
in terms of derivation and spatial geometries, they can produce
more precise results for a particular user or application. This is
particularly useful in cases where little is known about the
exact characteristics of the relevant brain activity. Data-
dependent filters are derived by placing an objective constraint
on the weight matrix W from equation 7.7. Because Y consists
of linear combinations of the original channels, the constraints
on W are typically designed to linearly combine the original
channels X to produce fewer, more meaningful and/or local-
ized channels in Y, effectively reducing the dimensionality
of the problem. Three common methods for deriving data-
dependent spatial filters are discussed here:

. principal components analysis (PCA)
. independent component analysis (ICA)

. common spatial patterns (CSP)
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Figure 7.6 Comparison of four spatial filters. Sixty-four channel EEG data, collected while well-trained subjects were moving a cursor to targets on the top or

bottom edge of a video monitor using sensorimotor rhythms, were analyzed offline using four spatial filters. (A) Electrode locations used by four different spatial
filters for EEG recorded from C3 (red). For the common average reference (CAR) and Laplacian methods, EEG at the green electrodes is averaged and subtracted

from EEG at C3. (B) Spatial bandpass. For each method, the trace shows the square root of the root-mean-square values (amplitude, mV) of a signal that varies

sinusoidally in amplitude across the scalp as its spatial frequency varies from 6 cm, twice the interelectrode distance (i.e., the highest spatial frequency that would

not cause spatial aliasing), to 60 cm (i.e., approximate head circumference). (C) Average r? topography, and amplitude and r? spectra for each spatial filter method

for trained BCl users at the frequency and electrode location, respectively, used online (? is the proportion of the variance of the signal feature that is accounted
for by the user’s intended cursor direction toward the target). Each method is applied to the same body of data. With each method, EEG control (measured as r?)

is focused over sensorimotor cortices and in the mu- and beta-rhythm frequency bands. In this example using sensorimotor rhythms, the value of r? is highest for
the CAR and large Laplacian spatial filters and lowest for the ear reference. (Adapted from McFarland et al. 1997. Reprinted with permission from Clinical

Neurophysiology.)

Principal Component Analysis. Given a set of spatial sig-
nals, a specific linear combination of these signals (i.e., a spatial
filter) can be determined such that the resulting signals account
for the highest proportion of the amplitude variance of the set
of original signals. Because EEG channels tend to be highly
correlated, PCA can be useful for localizing and enhancing
certain brain activity, particularly when amplitude variance is
correlated with the BCI task conditions.

CHAPTER 7.

PCA determines a set of weights W that transform the set
of channels X into a set of new channels Y having the same
dimensionality (i.e., W is a square matrix), such that the filtered
signal in Y associated with the first principal component
(row of weights in W) is the linear combination of the signals
in X that produces maximum amplitude variance. When
applying PCA, the resulting principal components are orthog-
onal to each other; that is, the resulting output channels are
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uncorrelated with each other. Each successive principal com-
ponent accounts for a smaller portion of the amplitude vari-
ance of the original channels. Because the first few principal
components usually capture most of the variance of the chan-
nels in X, the remaining components are typically discarded.
By keeping only the signals in Y that represent the dimensions
accounting for the most variance in X, the dimensionality
of the problem can be greatly reduced. That is, a typically
large number of original (input) channels is reduced to
a smaller number of output channels (e.g., a large portion
of the variance of 64 input channels may be captured in
five or fewer output channels after PCA). Ideally, this
process discards very little relevant information, but this is not
guaranteed.

One disadvantage of PCA for discriminating different
types of brain activity in a BCI application is that, since no
information about BCI task conditions is used to derive the
weight matrix W, the resulting PCA signals accounting for the
largest amplitude variance may not be correlated with the task
conditions. For instance, if all of the original channels are cor-
rupted with significant 60-Hz line noise compared to the EEG
signal power, it is likely that this 60-Hz signal will appear as a
top PCA component although it would be independent of any
BCI task conditions. Thus, the drawback in PCA is that a com-
paratively low-power channel that is highly correlated with the
task conditions may not be included in the top set of PCA
components. Dien et al. (2003) discuss the application of both
spatial and temporal PCA for detecting event-related poten-
tials in EEG.

Independent Component Analysis. Although the chan-
nels resulting from PCA are uncorrelated, they are not neces-
sarily statistically independent. To be statistically independent,
the joint probability distribution function F, (x, y) = Pr{X <x,
Y <y} of channels x and y must satisfy the following:

Fiy (x,y) = F(x)F, (y) (7.8)

In contrast, to be uncorrelated, the expected value of the chan-
nels must satisfy the following:

E{XY}= E{X}E{Y} (7.9)

Thus, independence is a stricter constraint on the statistical
relationship between channels than uncorrelatedness.
Assuming that particular sources of brain activity are localized
and function independently, identifying a spatial filter that
produces independent channels is important because it is the-
oretically more likely to identify the channels sensitive to dif-
ferent signal-generating sources within the brain. ICA seeks to
determine the weight matrix W that produces independent
channels in Y. Because the resulting spatial weights tend to
correspond to localized activity, this process can also be under-
stood as a form of source separation or source localization. As
with PCA, an application might use only the most relevant
ICA components (i.e., the channels that correlate well with the
BCI task conditions) in order to reduce the dimensionality.

In general, ICA presents a significant challenge in BCI
applications. Not only are the algorithms relatively complex,
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but the number of independent sources must be accurately
approximated to effectively isolate the intended source infor-
mation. In addition, the maximum number of independent
sources that can be identified is limited to the number of chan-
nels in X. When the number of original channels is much
greater than the number of expected independent sources and/
or the channels are highly correlated, it is common to use PCA
prior to ICA to remove the irrelevant channels and streamline
the ICA processing. Hyvirinen (1999) provides a useful survey
of ICA algorithms, and Makeig et. al. (2000) discuss the appli-
cation of ICA for a BCI.

Common Spatial Patterns. CSP is an approach closely
related to PCA, except that the task-condition labels (e.g.,
movement vs. rest, move cursor right vs. move cursor left, etc.)
are incorporated when determining W such that the corre-
sponding components produce minimum variance for one
condition and maximum variance for the other, and vice versa.
In this way the CSP spatial filters are optimal for discriminat-
ing between two task conditions. For CSP, the channels in
X are first bandpass-filtered, which makes the variance equiva-
lent to band power (see the discussion of band power in
this chapter’s section on Frequency [Spectral] Features). As with
PCA and ICA, only the relevant CSP components are retained.
Since the reduced CSP signal matrix is already optimized for
discriminating the task conditions, the resulting CSP projec-
tions can be fed directly to the translation algorithm without
further feature extraction. Also, by inverting the filtering
matrix W and spatially plotting its components, it is possible
to visualize the actual spatial patterns corresponding to the
different task conditions. Miiller-Gerking et al. (1999) discuss
basic use of CSP for BCI applications, whereas Lemm et al.
(2005) and Dornhenge et al. (2006) discuss extensions of basic
CSP methodology.

DETECTION AND REMOVAL OF

ENVIRONMENTAL INTERFERENCE

AND BIOLOGICAL ARTIFACTS
Environmental interference is an artifact in brain-signal record-
ings not attributable to biological sources. It includes interfer-
ence from environmental factors such as power-lines or other
electrical sources in the environment. Biological artifacts arise
from biological sources such as muscle (electromyographic)
(EMG) activity, eye movement (electrooculographic) (EOG)
activity, heart-beat (electrocardiographic) (ECG) activity,
respiratory activity, etc. We will discuss the most commonly
encountered interference and biological artifacts. Other kinds
of nonbrain noise can usually be addressed with methods
similar to those described here.

50/60-Hz Power-Line Interference
Power-line interference is generated by the electrical systems
in buildings. The electrical and/or magnetic fields created by
these systems may create electrical fields in the body that are
detected by electrodes used to record brain signals, particu-
larly EEG electrodes. This interference manifests itself as a
continuous sinusoidal signal at 50 Hz (in Europe and Asia) or
60 Hz (in North and South America). Significant power-line



interference often results from high electrode impedance or
impedance mismatch involving the electrodes of individual
channels or the ground electrode. Some degree of power-line
interference is often unavoidable, particularly in home or other
nonlaboratory environments in which BCIs are often used.
However, even when this interference is obvious in the recorded
channels, it may not impair feature extraction if it is stable over
time and consistent across channels, or if it is not within the
frequency range most relevant for the BCI application. If pow-
er-line interference is a significant problem, a bandstop (or
notch) filter can be applied to eliminate a narrow frequency
band (e.g., 55-65 Hz) that encompasses the power-line inter-
ference. With multichannel recordings, Laplacian and CAR
spatial filters can remove power-line interference that is
common to all the channels without the need for frequency
filtering.

Interference from EMG and EOG Activity

and Eye Blinks
EMG activity is electrical activity generated by muscle contrac-
tions. It is typically manifested as spectrally broadband activity
that often varies substantially from moment to moment. EOG
activity is the electrical activity generated by eye movements.
For obvious reasons, this interference tends to be prominent in
frontal EEG activity. Similarly, eye blinks create a large tran-
sient frontal pulse that can also affect more posterior channels.
EMG, EOG, and eye-blink artifacts are problems mainly for
EEG. They are absent or minimal in ECoG or intracortical sig-
nals, which are typically of much higher amplitude than EEG
and are largely shielded from contamination by the skull.

In EEG recording, EMG is typically the most significant
artifact because it is often difficult to remove or even to fully
recognize. In scalp EEG recording, cranial EMG activity is
most prominent around the periphery (i.e., frontal, temporal,
occipital) and can easily exceed brain activity in amplitude.
EMG can also contaminate EEG recorded from more central
head regions (Goncharova et. al. 2003). Since EMG is broad-
band (from the mu/beta range up to several hundred Hz), it is
often difficult to detect and difficult to remove using a fre-
quency filter and can easily masquerade as EEG. It therefore
presents a considerable challenge in BCI recording. Often, it
can be recognized only with sufficiently comprehensive topo-
graphical analysis (Goncharova et. al. 2003).

Spatial filtering may be useful for reducing EMG, EOG, or
eyeblink artifacts. For example, the spatial filter weights might
be derived from a regression with respect to frontal temporal
electrodes (if temporal EMG is present), or based on electrodes
placed next to the eyes (if EOG is present). Since most of the
power for EOG and eye-blink artifacts is usually in low fre-
quencies (~1 Hz), a high-pass or bandpass filter can be used to
remove these artifacts, as long as the BCI-relevant EEG signals
are not also of low frequency.

SECOND STEP: EXTRACTING THE FEATURES

After the initial signal conditioning step has optimized the
signal by enhancing its most relevant features and/or reducing
artifacts, the next step of feature extraction measures or extracts
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the chosen features. This section introduces the process of fea-
ture extraction with emphasis on methods widely used and/or
particularly appropriate for BCI applications. The methods are
described in terms of processing a single channel, but they can
be generalized to multiple channels.

METHOD SELECTION

Most BCI applications to date have used components of brain
signals that are clearly characterized spatially, spectrally, and
temporally (e.g., sensory evoked potentials or sensorimotor
rhythms). In these situations, the known characteristics of the
components and the specific BCI application usually dictate a
logical starting point for feature extraction. For example,
because sensorimotor rhythms are amplitude modulations at
specific frequencies over sensorimotor cortex, it is logical to
extract frequency-domain features using processing parame-
ters appropriate to the characteristic dynamics of these
rhythms. In contrast, in more exploratory situations, when less
is known about the optimal feature choice, it is preferable to
first assess potential features in both time and frequency
domains, and it may be worthwhile initially to construct a fea-
ture vector that includes features extracted in both time and
frequency domains. In the long run, however, it is best to elim-
inate features that are redundant or less relevant to the applica-
tion. Since feature extraction and translation need to work
together, the choice of translation algorithm may affect the
choice of feature-extraction method, and vice versa. McFarland
et al. (2006) and Bashashati et al. (2007) provide comprehen-
sive surveys of BCI feature-extraction methods and translation
algorithms.

BLOCK PROCESSING
For most BCI applications, it is highly desirable for the pro-
cessing to occur in real time (i.e., rapidly enough to sustain an
ongoing interaction between the user and the system that
accomplishes the user’s intent). Prior to feature extraction, the
incoming signal samples are commonly segmented into
consecutive, possibly overlapping, sample blocks (see fig. 7.1).
A feature vector (i.e., the values of one or more features) is
created from the signal samples within each individual sample
block. The feature vectors from the successive sample blocks
are then fed to the translation algorithm, which produces a
device command or user feedback corresponding to each
sample block or corresponding to sets of consecutive sample
blocks. For efficient online implementation, the length and
overlap of these sample blocks should fit the relevant temporal
dynamics of the signal, the feature-extraction method, the
nature of the application, and the concurrent user feedback, as
well as the available processing power. For example, for BCI
cursor control, it is not normally necessary to compute a new
feature vector (and thus a cursor movement) for each new
input sample, since the sampling rate is usually much higher
(e.g., 128 Hz) than an acceptable cursor movement rate
(e.g., 20 movements/sec). Computing feature vectors more fre-
quently than needed for the application is generally a needless
expenditure of computational time and power.

For some applications, it is not necessary to compute fea-
ture vectors for every sample block. For instance, in the case
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of transient stimulus-locked responses such as stimulus-
evoked potentials like the P300 response (see chapter 12, this
volume), it is important to compute the feature vectors only
for a defined period after (and perhaps also before) each stimu-
lus. Additionally, for some applications, feature vectors for a
number of successive sample blocks are averaged to improve
the signal-to-noise ratio before being processed by the transla-
tion algorithm to produce output.

TIME (TEMPORAL) FEATURES

Peak-Picking and Integration

Peak-picking and integration are two of the most straight-
forward and basic feature-extraction methods. Peak-picking
simply determines the minimum or maximum value of the
signal samples in a specific time block (usually defined relative
to a specific preceding stimulus) and uses that value (and pos-
sibly its time of occurrence) as the feature(s) for that time
block. Alternatively, the signal can be averaged or integrated
over all or part of the time block to yield the feature(s) for the
block. Some form of averaging or integration is typically pref-
erable to simple peak-picking, especially when the responses
to the stimulus are known to vary in latency and/or when
unrelated higher-frequency activity is superimposed on the
relevant feature. Moreover, these same methods can be applied
for tracking transient amplitude peaks in the frequency
domain. Farwell and Donchin (1988) used these straightfor-
ward methods with considerable success in the first P300-
based BCI.

Correlation and Template-Matching

The similarity of a response to a predefined template might
also be used as a feature. Computing the similarity, or correla-
tion, of a response to a template is essentially equivalent to FIR
filtering using the template as the filter weights. For a given
response, the output of the template filter will be high for the
segments that closely resemble the template and low for
segments that differ from the template. Wavelet analysis (see
section on Time-Frequency Features in this chapter) can be
considered a variation of this method; it uses templates with
specific analytical properties to produce a frequency decompo-
sition related to Fourier analysis. Krusienski et al. (2007) and
Serby et al. (2005) apply a template scheme to a sensorimotor
rhythm-based BCI and a P300-based BCI, respectively.

FREQUENCY (SPECTRAL) FEATURES

Much brain activity manifests itself as continuous amplitude-
and frequency-modulated oscillations. Therefore, it is often
advantageous to accurately track these changes in the fre-
quency domain. Although the Fourier transform is the most
common method for converting from the time domain to the
frequency domain, there are several alternatives that have
characteristics that are particularly desirable given specific
constraints or specific objectives. These include:

. band power
. fast Fourier transform (FFT)

. autoregressive (AR) modeling
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Figure 7.7 The procedure for extracting bandpower from a signal. (A) The
original signal. (B) The result after applying a bandpass filter to the data in A.
(C) The result after squaring the amplitude of B. (D) The final bandpower result
after smoothing C with a low-pass filter. The x-axis is time.

Band Power

One of the most straightforward and intuitive methods for
tracking amplitude modulations at a particular frequency is to
first isolate the frequency of interest by filtering the signal with
a bandpass filter. This produces a signal that is largely sinusoi-
dal. Next, to produce purely positive values, the signal is recti-
fied by squaring the signal or by computing its absolute value.
Finally, the adjacent peaks are smoothed together via integra-
tion or low-pass filtering. The effects of each of these steps
are illustrated in figure 7.7. Although the smoothed signal
(fig. 7.7D) tracks the magnitude envelope of the frequency
of interest, the resulting instantaneous magnitude estimate will
be slightly delayed due to the smoothing step. When multiple-
frequency band tracking is required, it is typically preferable to
use an FFT- or AR-based method rather than using multiple
bandpass filters and computing the band power of each
output.

Fast Fourier Transform

The FFT is an eflicient implementation of the discrete
Fourier transform, which is the discrete-time equivalent of the
continuous Fourier transform already discussed in this chap-
ter. The FFT represents the frequency spectrum of a digital
signal with a frequency resolution of sample-rate/FFT-points,
where the FFT-point is a selectable scalar that must be greater
or equal to the length of the digital signal and is typically
chosen as a base 2 value for computational efficiency. Because
of its simplicity and effectiveness, the FFT often serves as the
baseline method to which other spectral analysis methods are
compared.

The FFT takes an N-sample digital signal and produces
N frequency samples uniformly spaced over a frequency range



VW

]
Time (ms) FFT frequency bins

Figure 7.8 Fast Fourier transform. Four time-domain digital signals are shown
on the left (shown as continuous signals for illustration purposes). The four
corresponding FFT magnitude spectra are shown on the right. The time and
frequency plots have the same respective amplitude scale. The leftmost FFT
bin is centered on 0 Hz, and the rightmost is centered on sampling rate/2.
Signals A, B, and C are harmonically related sinusoids (i.e., integer multiple
frequencies of signal A) that sum to produce the nonsinusoidal periodic signal
D. Because the FFT is a linear transform, the same holds for the magnitude
spectra. Although the FFT phase is not shown, notice that the phase of the
sinusoids has an important role in the shape of signal D in the time domain
(i.e., shifting the phase of A, B, or C will alter the shape of D).

of +sampling rate/2, thus making it a one-to-one transforma-
tion that incurs no loss of information. These frequency-
domain samples are often referred to as frequency bins and are
the digital equivalent of the results of a continuous Fourier
transform, with the frequency resolution specified. The FFT
will produce complex values that can be converted to magni-
tude and phase as shown in equations 7.3a and 7.3b. The FFT
spectrum of a real signal has symmetry such that only half of
the bins are unique, from zero to +sampling rate/2. These
positive bins are shown in figure 7.8 for several sinusoids that
comprise the periodic waveform in the bottom row. The bins
from zero to —sampling rate/2 are the mirror image of the
positive bins. Therefore, for an N-sample real signal, there are
N/2 unique frequency bins from zero to sampling rate/2.
Knowing this fact allows one to apply and interpret the FFT
even without a firm grasp of the complex mathematics associ-
ated with the notion of “negative frequencies”

Finer frequency sampling can be achieved by appending M
zeros to the N-sample signal, producing (M + N)/2 bins from
zero to the sampling rate/2. This is known as zero padding.
Zero padding does not actually increase the spectral resolution
since no additional signal information is being included in the
computation, but it does provide an interpolated spectrum
with different bin frequencies.
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Because N-sample signal blocks may section the signal
abruptly to create false discontinuities at the edges of the block,
artificial ripples tend to be produced around the peaks of the
spectrum. This can be mitigated by multiplying the block of
samples by a tapering windowing function that tapers the sam-
ples at the edges of the sample block, thus reducing the ripples
in the spectrum. Although this acts to smooth the spectral
ripples, it also expands the width of the frequency peaks, and
thus lowers overall spectral resolution. In many cases, this is a
tolerable tradeoft for obtaining a smoother spectrum.

Note that it is also common to refer to the power spectrum
rather than the amplitude spectrum. Recall that signal power is
proportional to the squared signal amplitude. Each bin of the
FFT magnitude spectrum tracks the sinusoidal amplitude of
the signal at the corresponding frequency. A simple estimate of
the power spectrum can be obtained by simply squaring the
FFT magnitude. However, more robust FFT-based estimates
can be obtained by using variants of the periodogram (Hayes
1996). Wolpaw and McFarland (1994), Pregenzer and
Pfurtscheller (1999), and Kelly et al. (2005) provide examples
of FFT-based methods applied to BClIs.

Autoregressive Modeling

Autoregressive (AR) modeling is an alternative to Fourier-
based methods for computing the frequency spectrum of a
signal. AR modeling assumes that the signal being modeled
was generated by passing white noise through an infinite
impulse response (IIR) filter. The specific weights of the IIR
filter shape the white noise input to match the characteristics of
the signal being modeled. White noise is essentially random
noise that has the unique property of being completely uncor-
related when compared to any delayed version of itself. The
specific IIR filter structure for AR modeling uses no delayed
input terms and p delayed output terms. This structure allows
efficient computation of the IIR filter weights. Because white
noise has a completely flat power spectrum (i.e., the same
power at all frequencies), the IIR filter weights are set so as to
shape the spectrum to match the actual spectrum of the signal
being analyzed. It has been posited that filtering a white-noise
process with an AR filter is a suitable model for the generation
of EEG, since EEG is essentially a mixture of spontaneously
firing spatial sources (synapses and neurons), measured at dif-
ferent locations (i.e., electrode positions). This process can be
approximated to a first order by filtering a white-noise process
(effectively it assumes a linear generation model for the EEG
with constant excitation which, however, is unlikely to occur in
the brain). In sum, the filter weights used for AR spectral anal-
ysis of EEG are based on the assumption that EEG is equivalent
to filtering white noise with an IIR filter.

Because the IIR filter weights define the signal’s spectrum,
AR modeling can potentially achieve higher spectral resolu-
tion for shorter signal blocks than can the FFT. Short signal
blocks are often necessary for BCI outputs such as cursor con-
trolin which frequent feature updates are essential. Additionally,
the IIR filter structure accurately models spectra with sharp,
distinct peaks, which are common for biosignals such as
EEG. Hayes (1996) discusses the theory and various approaches
for computing the IIR weights (i.e., AR model) from an
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observed signal. The estimated power spectrum can be com-
puted from the IIR filter weights as follows:

|b(0)

)4
1+ Y a, (ke
k=1

Par(@)=

2

(7.10)

where a (k) and b(0) are the estimated IIR filter weights and p
is the AR model order. In this case, frequency bins similar to
the FFT can be defined by evaluating equation 7.10 at the
frequencies of interest. Alternatively, since the relevant infor-
mation is contained in the filter weights, it is also common to
use the weights themselves as features.

The primary issue with AR modeling is that the accuracy of
the spectral estimate is highly dependent on the selected model
order (p). An insufficient model order tends to blur the spec-
trum, whereas an overly large order may create artificial peaks
in the spectrum. One approach is to view the EEG as being
comprised of 3-6 spectral peaks representing some combina-
tion of delta, theta, alpha, beta, and gamma waves (see chapter
13, in this volume). In this case each peak can be represented
as a pair of the p poles (i.e., roots of the denominator in equa-
tion 7.10) of an AR model, which requires only a relatively low
model order of 6-12. However, this reasoning fails to account
for distinct spectrally adjacent or overlapping signals (such as
mu-rhythm and visual alpha-rhythm activity) or for other nar-
row-band and/or wide-band activity (such as EOG and EMG)
that may contaminate the signal. The complex nature of the
EEG signal should be taken into account for accurate spectral
estimation, and this often cannot be reliably accomplished
with such small model orders. It should be noted that the
model order is dependent on the spectral content of the signal
and the sampling rate. For a given signal, the model order
should be increased in proportion to an increased sampling
rate. For scalp EEG sampled at 160 Hz, model orders of 10-20
are frequently prudent. On the other hand, a small model order
may be adequate when only a few frequencies are of interest
and when other aspects of the signal are eliminated by band-
pass-filtering prior to AR spectral analysis. McFarland et al.
(2008) discuss AR model-order selection for BCI applications.

The Burg Algorithm (Hayes 1996) is commonly used for
estimating the weights in equation 7.10 because, unlike most
other methods, it is guaranteed to produce a stable IIR model.
It is also possible to generate a single AR model using multiple
signals. This is known as multivariate AR modeling. Anderson
etal. (1998), Pfurtscheller et al. (1998), Wolpaw and McFarland
(2004), and Burke et al. (2005) apply various methods of AR
modeling to BCI applications.

TIME-FREQUENCY FEATURES (WAVELETS)
Wavelet analysis solves one major drawback of conventional
spectral-analysis techniques based on the power spectrum,
that is, that the temporal and spectral resolution of the result-
ing estimates are highly dependent on the selected segment
length, model order, and other parameters. This is particularly
a problem when the signal contains a wide range of relevant
frequency components, each possessing temporally distinct
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amplitude modulation characteristics. For instance, for a given
sample block length, the amplitude of a particular high-
frequency component (with respect to the block length) has
the potential to fluctuate significantly over each cycle within
the sample block. In contrast, the amplitude of a lower-
frequency component will not do so because a smaller number
of cycles occur within the sample block. For a given sample
block, the FFT and AR methods produce only one frequency
bin that represents these fluctuations at the respective fre-
quency. By observing this bin in isolation, it is not possible to
determine when a pulse at that particular frequency occurs
within the sampling block. Wavelet analysis solves this problem
by producing a time-frequency representation of the signal.
However, as predicted by Heisenberg’s uncertainty principle,
there is always a time/frequency resolution trade-oft in signal
processing: it is impossible to precisely determine the instanta-
neous frequency and time of occurrence of an event. This means
thatlonger time windows will produce spectral estimates having
higher frequency resolution, while shorter time windows will
produce estimates having lower frequency resolution.

The output of the FFT can be realized from a set of parallel
bandpass filters (a so-called filter bank), with each filter cen-
tered at uniform frequency intervals. In contrast, wavelet anal-
ysis designs a filter bank to achieve an improved time-frequency
resolution. In wavelet analysis a characteristic time-limited
pulse shape, called the mother wavelet, is used to construct a
template for each temporal FIR bandpass filter in the filter
bank. Typically, mother wavelets tend to be oscillatory in
nature, and thus have a bandpass magnitude response. Each
template filter in the filter bank is correlated with the signal of
interest. The output of a given template filter will have a com-
paratively large magnitude when it overlaps with a portion of
the signal that is similar to the template filter. This filtering pro-
cess is repeated multiple times in parallel via the filter bank,
using the same template shape for each filter but stretching or
compressing it by different factors or scales for the different fil-
ters in the bank. Since each scaled mother wavelet filter has a
unique temporal length and represents a unique oscillation-
frequency characteristic, each filter output represents a unique
time-frequency content of the signal. This scheme results in a
more effective, nonuniform time-frequency tiling (i.e., resolu-
tion of adjacent time-frequency bins) compared to the FFT
because changes in high-frequency characteristics can be iden-
tified over shorter time intervals than with the segment length
used by the FFT. This time-frequency tiling and corresponding
mother-wavelet scaling are illustrated in figure 7.9.

There is a wide variety of mother wavelets, and each has
specific time-frequency characteristics and mathematical
properties. In addition, application-specific mother wavelets
can be developed if general pulse characteristics are known or
desired. Moreover, different sets of scaling and shifting factors
can be applied, and relationships existing among these factors
can be used for computation of a wavelet transform. Just as the
FFT provides an efficient computation of the Fourier Transform
for digital signals, the discrete wavelet transform (DWT) pro-
vides an efficient computation of the wavelet transform using
specific scale and shift factors that minimize redundancy in the
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Figure 7.9 The diagram on the left indicates the time-frequency tiling

(i.e., resolution of adjacent time-frequency bins) achieved by a wavelet analysis.
Note that the higher-frequency content of a signal is computed over shorter
time intervals (A), and the lower-frequency content is computed over longer
time intervals (C). The time-domain waveforms on the right represent different
scales of an example mother wavelet that could be used to compute the
wavelet coefficient for the corresponding time-frequency tile.

time-frequency representation. Graimann et al. (2004),
Bostanov (2004), and Qin and He (2005) apply wavelet analy-
sis to various BCI paradigms. Mallot (2008) provides the theo-
retical details of wavelets.

SIMILARITY FEATURES

Phase Locking Value

Brain activity that occurs synchronously (i.e., in the same
phase) across multiple channels can be relevant to BCI applica-
tions. The phase locking value (PLV) is a measurement of the
level of phase coupling that occurs between two signals occu-
pying the same narrow frequency range. This is a useful
approach for quantifying the phase relationship between sig-
nals from two different EEG electrodes. First, both of the sig-
nals are filtered using a narrow bandpass filter. Then, the
instantaneous phase difference between the filtered signals is
computed either by using the Hilbert Transform (Proakis and
Manolakis 2007) or the phase information provided by the
FFT. Because the instantaneous phase difference tends to vary
over time, the values must be averaged to determine the con-
sistency of phase coupling between the signals. However,
because phase is circular (i.e., 0 radians is equivalent to 2
radians), phase cannot be averaged directly. Instead, each
phase-difference observation is converted into a vector having
a magnitude equal to one (represented here as a complex expo-
nential). The vectors are summed and divided by the number
of observations as follows:

e(t) = Gsignall (t) - esignaIZ (t)

Li 200
N

t=1

(7.11)

PLV =

(7.12)

Equation 7.11 represents the instantaneous phase difference
between the two bandpass-filtered signals. In equation 7.12,
the magnitude of the resultant vector represents the PLV. When
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all of the individual vectors in the sum have the same instanta-
neous phase, the vectors all point in the same direction and the
resultant sum will equal one. The closer the PLV is to 1, the
more consistent the phase difference between the signals (i.e.,
they are phase locked with each other.) When the instanta-
neous phase difference is random with a uniform distribution,
the PLV will be near zero, indicating that the signals are not
phase coupled in the frequency band examined. Gysels and
Celka (2004), Brunner et al. (2006), and Wei et al. (2007) apply
the PLV in BCI applications.

Coherence

Whereas the PLV measures the phase relationship between
two narrow-band signals, coherence measures the correlation
between the amplitudes of two narrow-band signals. In this
case, the “narrow bands” are selected from among the spectral
bins of an FFT or other spectral-estimation method. The
power spectrum of the signals, S_(f), is used rather than the
amplitude spectrum. S_(f) is equivalent to the squared Fourier
transform of the signals. S (f) is an average of several individ-
ual estimates of the cross spectrum between signals x and y.
The coherence between these signals is determined as follows:

S, (@)
S.(0)S, (W)

7., (@)=
(7.13)

The amplitude of )* (w) will have a value ranging between 0
(if there is no coherence) and 1 (if there is perfect coherence).
It should be noted that a sufficiently large number of observa-
tions is necessary to accurately estimate coherence. Thus,
coherence is not likely to be useful as a feature for online BCI
operation.

Mahalanobis Distance

Features can be defined by measuring the similarity
between certain signal features and predetermined baseline or
archetypal distribution(s) of these features. The Euclidian dis-
tance (the familiar “straight line” distance between two points
in space) is one possible similarity feature that can be used to
compare a feature vector to a baseline feature vector. When the
potential exists for the features comprising the feature vector to
be correlated, the Mahalanobis distance (D,)) is preferred
because it accounts for the covariance among features and is
scale invariant:

DM(x)z\/(x—u)T T x— ) (7.14)

where x is the multivariate feature observation and ¥ and y
are the covariance matrix and the mean of the archetypal dis-
tribution, respectively. Example Euclidean and Mahalanobis
distance contours from the mean of a two-dimensional feature
space are illustrated in figure 7.10. In this figure, features 1 and
2 are correlated, and observations along the equal-Euclidean-
distance contour (in blue) clearly do not have a consistent rela-
tionship with the joint distribution of the features, in contrast
to the Mahalanobis contour (in red). Essentially, feature-vector
observations that exist on equal probability contours of the
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Figure 7.10 Example of equidistant Mahalanobis (red) and Euclidean (blue) contours from the mean of a two-dimensional feature distribution having correlated
features. The Mahalanobis contour captures the covariance of the features, but the Euclidian contour does not.

joint probability-density function defined by the archetypal
features have an equal Mahalanobis distance from the mean of
the distribution and thus have an equal probability of belong-
ing to the archetypal distribution.

THIRD STEP: FEATURE CONDITIONING

The distributions and the relationships among the features can
have a significant effect on the performance of the translation
algorithm that follows feature extraction. These effects depend
on the characteristics of the particular translation algorithm.
This section reviews common methods of feature-conditioning
(post-processing) that can improve the performance of particu-
lar translation algorithms.

NORMALIZATION
In signal conditioning, signal normalization is commonly
accomplished by subtracting the signal mean and scaling the
signal amplitude to have unit variance (i.e., variance equal to
1). Features can also be normalized. Feature normalization is
advantageous when the features comprising a feature vector
display differences in their means or dynamic ranges that are
not relevant to their BCI usage. For example, the derivation of
feature weights for a multiple-regression algorithm can be very
sensitive to differing feature magnitudes. Features of greater
magnitude will tend to dominate the results, even if their
greater magnitude has no bearing on their usefulness.
Furthermore, translation algorithms tend to perform better
when the features comprising the feature vector have similar
dynamic ranges. If feature dynamic ranges differ substantially,
the algorithm may be biased by being more sensitive to some
features than to others. Nevertheless, normalization should be
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used with caution and only in clearly appropriate situations,
because it does discard interchannel information that could
conceivably be relevant to the particular BCI application.

LOG-NORMAL TRANSFORMS
Some feature-translation algorithms, such as Fisher’s Linear
Discriminant (see chapter 8, in this volume), achieve optimum
results when the input features have Gaussian distributions.
Input features often are not natively Gaussian-distributed. For
example, a feature defined as the magnitude of an FFT ampli-
tude bin will likely not have a Gaussian or symmetric distribu-
tion since the lower range of the feature is bounded by zero and
the upper range is unbounded. Moreover, the power of the
EEG frequency spectrum is inversely proportional to fre-
quency. In many cases unimodal non-Gaussian distributed
features can be effectively shaped to be more Gaussian by
applying a monotonically increasing nonlinear transforma-
tion. A monotonically increasing transformation guarantees
that the transformed feature values will have the same ordering
as the original values with different spacing between the
values.

Although specialized transforms can be derived for shap-
ing known feature distributions into more Gaussian distribu-
tions, the simple log-normal transform shown below has
proved effective for transforming a variety of general unimodal
distributions to be more Gaussian:

y=logx (7.15)
This transform is especially effective for EEG because it com-
pensates for the decrease in power with increasing frequency
and thus creates a more symmetric distribution.



FEATURE SMOOTHING

For some feature-extraction methods and applications, the
resulting features may exhibit undesirable fluctuations over
short periods. Although these may or may not be an artifact of
the processing, they can potentially disrupt the feedback to the
user that is a key aspect of BCI operation. Whatever their ori-
gins, these fluctuations can be suppressed by applying a simple
median filter or low-pass filter that is based on the frequency of
the fluctuations. Note that a causal low-pass filter will intro-
duce some delay to the signal. This may result in some brain
responses being followed by a transient rebound effect in the
features that reflect the response. This rebound can be used
to reinforce detection of the response, but it can also be sup-
pressed with a properly designed digital filter.

PCA AND ICA

When the extracted features are highly correlated, principal
component analysis (PCA) and independent component
analysis (ICA) can be applied to decorrelate the features, and/
or reduce the dimensionality of the feature vector. Effectively
reducing the dimensionality of the feature vector can greatly
simplify the training and effectiveness of the translation
algorithm, particularly when few observations are available
for training the translation algorithm (see chapter 8, in this
volume). Use of PCA and ICA in the feature domain is identi-
cal to their use for the raw signal samples, except that for the
feature domain, matrix X is comprised of feature observations
rather than signal samples.

EXTRACTING FEATURES FROM
SPIKE TRAINS

Up to this point we have focused on extracting features from
continuously varying signals, such as those recorded by EEG,
ECoG, and local field potentials (LFPs). Each of these signals
(as well as, indirectly, those recorded by MEG, fMRI, {NIRS,
and PET) is a complex reflection of the activity of many difter-
ent synaptic and neuronal sources. At the same time, neurons
communicate by producing discrete impulses (i.e., the action
potentials or spikes described in chapter 2) at specific time
instances. This neuronal activity produces a very different type
of signal, the spike train, which reflects the activity of a single
neuron. The final section of this chapter summarizes the fea-
ture-extraction methods commonly applied to spike trains.
By present understanding, the action potential (or neu-
ronal spike) is the fundamental electrical event responsible for
the transfer of information among neurons in the brain. In
contrast to EEG, ECoG, or other continuously varying signals
that reflect the activity of many neurons and synapses, each
spike train reflects the activity of one particular neuron.
Whenever the neuron’s internal state and its concurrent synap-
tic inputs combine to achieve a specific voltage threshold, the
neuron produces a spike. Thus, a spike train reveals very spe-
cific information: it tells when a specific neuron fires. At the
same time, it reveals relatively little about what is going on in
the network(s) to which that one neuron belongs. In contrast,
EEG signals tell us about what large populations of neurons are
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doing and yet little about specific neurons. Spike trains are
microscale brain activity (see chapter 2, in this volume) and are
recorded by microelectrodes within the brain (as are LFPs). In
contrast, EEG recorded from the scalp and ECoG recorded on
the brain surface are, respectively, macroscale and mesoscale
(see chapter 3, in this volume) brain activity. The timing of the
spike (i.e., when it occurs in time) is important and is usually
measured with a resolution of 1 msec.

THE STRUCTURE OF SPIKE TRAINS

The key information in EEG, ECoG, or LEP activity is the con-
tinuous fluctuation of voltage over time. In contrast, the key
information in spike trains is the time at which each spike
occurs (see chapter 2, in this volume). In most spike-recording
situations relevant to BCI applications, we assume that all the
spikes produced by a given neuron are the same. Signals like
this, that is, signals that carry information only in the time at
which a discrete event occurs, are called point processes (Snyder
1975). Due to the great difference between continuous signals
like EEG and those comprised of point processes like spike
trains, the methods used to extract information from them
differ. To discuss spike-train analysis, we start by introducing
some terminology and the mathematical models of spike trains
from which features are defined.

Because we assume that all spikes produced by a given
neuron are identical, and that key information in a spike train
resides in the timing of spikes, it is reasonable to model a spike
train as a sequence of identical, instantaneous mathematical
functions, each of which represents an individual spike. These
functions are intended to represent the spike’s timing informa-
tion without regard to the spurious amplitude fluctuations that
are common in actual spike recordings. Thus, a spike train can
be mathematically modeled as a train of theoretical spikes
termed delta functions, s(t)= 2;50 —t,), where §(t) is a
delta function and intuitively has unit area only when ¢ =t,, and
is zero otherwise. More precisely, the delta function extracts
the value of any function at the time the argument of §(¢) is
zero, or x(ti):_[x(t)5(t—ti)dt for arbitrary x(t), where the
limits of the integral are over the domain of x(f) (McClellan
et al. 2003). This is equivalent to the signal sampling process
discussed in the Sampling section of this chapter, where x(t)
represents the signal. However, in this case, the delta functions
are not used to sample a continuous analog signal; instead, they
are used as a mathematical representation of a spike train.

Perhaps the most widely used feature of a spike train is the
firing rate, which measures the number of events per unit time
(Dayan and Abbott 2001). This property can be captured in
different features. The spike-count rate is the number (n) of
spikes in a given time interval T, or V=n/T =1/ Tjs(t)dt. If
one substitutes the definition of the delta function in s(t), one
sees indeed that the value of the integral is just the number of
spikes in [0, T]. The problem is that neurons tend to change
their firing rate over time, so it is also necessary to calculate the
time-dependent firing rate. However, we need a value of T
large enough to give a reliable assessment of the rate; if the
neuronal firing rate changes very fast compared with this value,
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it is difficult to obtain an accurate description of the change in
rate. Thus, it is often necessary to compromise in choosing the
parameters (e.g., the value of T) used to extract features related
to firing rate.

The severity of the necessary compromise can be eased by
acquiring more data. Let us assume that a researcher repeat-
edly stimulates the same neuron, collects the data for each
stimulus, and then aligns the data with respect to the stimulus.
In each trial, the spike-count average can be computed,
perhaps with a T\<T, and then averaged over the trials. This
is called the trial average, denoted here by < r >. With a suffi-
cient number of trials, T, can be decreased to a rather small
value (ie., AT). Now we can define the firing rate as

pt+aT . . .
r(t)zl/ATJlt < s(t)>dr. This method of estimating the
firing rate is called the Peristimulus Time Histogram (PSTH)
(Dayan and Abbott 2001), and it provides better temporal res-
olution than the spike count rate over a given time window.

Looking closely at the definition of r, it is clear that it actually
counts the number of spikes during a prespecified time interval.
The advantage of focusing on the number of spikes per time
window is that we now have integer numbers that resemble the
continuous-amplitude time series of the EEG. The experimenter
must select the time interval that makes sense for the experi-
ment (e.g., it might vary from 10 to 100 msec), and this will
constrain the time resolution of the analysis. In sum, extracting
features from spike trains is not, after all, very different from
extracting features from continuous signals. The same methods
discussed in this chapter for continuous signals (e.g., autocor-
relation functions, filters, FFTs, etc.) can also be applied to spike
trains that have been binned into intervals. However, this
approach does sacrifice the information contained in the exact
times of individual spikes; if we believe that this information is
important (e.g., for a BCI application), then we need to employ
a different set of methods for extracting features from spike
trains. We now look at some of these methods.

THE POISSON PROCESS

The simplest model for the timing of the individual spikes in a
spike train is a Poisson process (Papoulis 1965). In a Poisson
process, we define a time interval [0, T] and assume we have n
points to place within the time interval. The question then is:
what is the probability of getting k of these #n points within a
given sub-interval ¢ of [0, T]? This is clearly a random experi-
ment governed by probability laws. Assuming that the place-
ment of each point is independent of the placement of all the
others, and that each point has a probability p of being placed
in the interval (p=t/T), and probability (g=1-p) of being
placed outside this interval, the probability of k points falling
in ¢ is the binomial distribution:

P{k}:(:jpkqn—k.
(7.15)

Using very large limits for n and a very small interval, we
obtain:

“ay (AL)*

Plk}=e
k! (7.16)

140 | BRAIN-COMPUTER INTERFACES

where A = n/T. If the interval ¢ becomes infinitesimal and
we are interested only in the probability that a single point
lands in the infinitesimal interval £, (which becomes just a
point t in the line), we can ignore the exponential and obtain
P{k=1}=A. \ is called the rate (or intensity), and it measures the
density of points in a macroscopic interval.

To go from points in the line to spike trains, we define a
random process as an index set of random variables over time.
Specifically, let z(t) = 216 (t—t,). If the values of ¢, are random
variables specified by the binomial distribution law given
above in equation 7.15, this random process is called a Poisson
process. What is interesting in the Poisson process is that both
the mean and the autocorrelation function are completely
specified by A:

Efz(t)}= A (7.17)

R(t,,t,)= A"+ A8(t, —t,) (7.18)

If we idealize a spike as a delta function, and assume that
spikes occur randomly according to the statistics described
above, then the spike train becomes a realization of a Poisson
process.

Another consequence of the descriptive power of A is
that we can ignore where the actual spikes are and just describe
spike trains more roughly, but also more compactly, by their
intensity value \. This gives rise to the two major types of
processing methods for spike trains (Sanchez and Principe
2007): the timing methods in which the actual spike times
matter; and the rate methods in which just the A matters. In
general, A may also be a function of time [i.e., A(#)], which
makes the process an inhomogeneous Poisson process (Dayan
and Abbott 2001).

EXTRACTING FEATURES FROM SPIKE TIMES

SINGLE-CHANNEL SPIKE TRAINS
The first step in analyzing spike trains is to describe them by
the firing rate (also called the intensity or rate function). In
order to apply Poisson-process models, two important deci-
sions must be made: the size of the time window (or interval),
and how to smooth the integer values over time. There are four
basic methods to estimate the intensity function: windows
(binning); kernels; nonparametric regression; and a newly
introduced reproducing-kernel Hilbert space method (Paiva
et al. 2009). The first two of these are discussed here; the last
two are more complex and will not be addressed here (see
Paiva et al. 2009 for their description).

For simple binning, the firing rate over each time interval is
estimated to be constant with a value proportional to the
number of spikes within the interval. A more elaborate esti-
mate can be achieved by using a kernel or kernel function,
which is simply a mathematical function that is centered on
each spike. The amplitudes of the overlapping kernel functions
in a spike train are then summed to estimate the intensity func-
tion. Figure 7.11 shows an example of a spike train (A) and its
reconstruction using rectangular windows (B), a Gaussian
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Figure 7.11 Reconstruction of a spike train by three methods: (A) a spike train; (B) resolution of the spike train shown in A by a rectangular window; (C) resolution by

Gaussian kernels; (D) resolution by Laplacian kernels; (E) resolution by an exponential function.

kernel (C), a Laplacian kernel (D), and an exponential func-
tion (E). These are expressed, respectively, as:

Rectangular — x,(x)=(1 |x|<a
0 |x|za

(7.19)
Gaussian —x?
K (x) =exp Py
(7.20)
Laplacian -
P K,‘(x):exp(—lﬂj
T (7.21)
Exponential -
P Kp(x)= exp(—xju(x)
g (7.22)

The firing rate at each point in time can be estimated from
the graphs in figure 7.11, but it is important to remember
that there is an intrinsic limitation to the resolution in all
reconstructions due to the binning (i.e., the window length or,
in exponential functions, the denominator, called the kernel
bandwidth).

In analyzing spike trains from sensory cortex, characteriz-
ing the cause of the spike is often important; in this case the
spike-triggered average (STA) is used. In contrast, in analyzing
spike trains from motor cortex, describing the consequences of
a spike is frequently the objective; in this case, the tuning curve
(see chapter 2) is used (this is sometimes useful for sensori-
cortex neurons as well).

CHAPTER 7.

Spike-Triggered Average
The STA estimates the mean value of a stimulus over the
time before a spike occurs. Several stimuli are presented, and
they are aligned with the occurrence of the spike. This is
expressed as:
S,(7)= <%z‘n1x(ti —7)>
(7.23)
where the spike is assumed to occur at ¢, and x(f) is the input
stimulus (Dayan and Abbott 2001). The STA can reveal the
stimulus waveform that tends to precede the generation of
the action potential and can indicate the length of the stimulus
history that is relevant.

Tuning Curves

It is sometimes important to characterize neural response
when some property of the stimulus changes (e.g., in visual
cortex, during the observation of the rotation of a bright line).
If the neuron is processing information from the stimulus, its
firing rate will change when the stimulus changes. One can
therefore count the number of spikes during the presentation
of the stimulus at each angle and then create a curve as a func-
tion of the parameter (angle in this case) (Georgopoulos et al.
1986). The Gaussian tuning curve can be constructed as:

2
T®)=r,, exp(—l/Z(—G_em“ ) ]
(o)
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where r  is the largest firing rate observed 6, is the
maximal angle used (normally negative and positive), and o is
the width of the Gaussian (T is measured in Hz).

A very similar strategy can be used for motor control, but
in this case, the external consequences of spike firing are of
interest. For example, the experimental subject might be
engaged in reaching a target in a center-out task (normally
with the hand) to different points arranged in a circle. The neu-
ronal firing rate is estimated for each one of the directions in
the circle using the relationship:
—1,)cos(6 -6

max max )

T(0)= ‘xo +(r

(7.25)

where 7, is the mean firing rate. The absolute value is used here
to preserve the interpretation of firing rate even when T(0),
measured in Hz, is negative.

The metric for evaluating the tuning property of a neuron
is called the tuning depth, defined as the difference between
the maximum and minimum values in the neural tuning
curve T(6), normalized by the standard deviation of the firing
rate, std(r) (Paiva et al. 2009).
rmin

tuning depth = v

std(r) (7.26)

The tuning depth is normalized between 0 and 1 for unifor-
mity. However, the normalization loses the relative scale
between the tuning depth of different neurons when it is neces-
sary to compare different neurons with different rates. Figure
7.12 shows the tuning depth of two motor cortex neurons.
The tuning curve is the basis of the population vector algo-
rithm proposed by Georgopoulos et al. (1986) (see chapter 2,
this volume) to show that motor-cortex neurons are sensitive
to all the possible directions in space. The population vector
algorithm can therefore be used as a generative model for BCIs
since the movement direction can be predicted from the
preferred direction vectors of all neurons active at each time
step, with the active neurons appropriately weighted according

to each neurons tuning curve. The BCIs reported by Taylor
et al. (2002) and Velliste et al. (2008) were based on this idea.
The basic algorithm was further improved using a state model
within a Bayesian formulation (Schwartz et al. 2001; Wu et al.
2006; Brockwell et al. 2004).

PAIRWISE SPIKE-TRAIN ANALYSIS

Features Reflecting Similarity between

Spike Trains

It is sometimes relevant to quantify the similarity between
two spike trains. This is analogous to the comparison between
two continuous signals using cross-correlation (Eliasmith and
Anderson 2003). The problem is that spikes are delta functions,
so the cross multiplication most probably yields zero unless
spikes occur at precisely the same time in each train (i.e., they
overlap). This difficulty can be avoided if a kernel is applied to
the spikes; use of a kernel essentially applies a linear filter
to the spike train. The most commonly used kernel is the
exponential kernel, h(t)=exp(—t/t)u(t), where u(t) is the
Heaviside function (zero for negative time, 1 for positive time)
and T controls the decay rate of the exponential. Other func-
tions can be used, but this decaying exponential is a good
example that allows for on-line operation because it is causal.

The spike train s,(t) = 2:’:‘5(1‘ —t!) is filtered by h(t) to
yield y ()= z:;lh( t—t! ). We select a second spike train sj(t)
and filter it by the same filter to obtain y;(t)= z:;lh(t —t))
where the spike times ¢ (and possibly the number of spikes N))

are different. The cross-correlation between the two spike
trains y (¢) and yj(t) is defined (Dayan and Abbott 2001) as:

—{v(n _
C ()= J vy, (¢ T)dt (7.27)

This cross-correlation function is obtained by shifting one of
the filtered spike trains in time. It measures the similarity
between the two spike trains at different time shifts (i.e., differ-
ent lags). The time of the C,-,j(T) peak shows the lag at which the
two spike trains are most similar.

Figure 7.12 The tuning curves for two motor-cortex neurons (at left and right). The tuning curve for each neuron is shown in blue. Each point in each tuning curve is
estimated in 45° sectors centered at the point. The tuning curves display the sensitivity of the neuron to movement in each direction of the space. In this example,

measured with respect to the subject position, the left neuron is tuned to movement segments at 300°, and the right neuron to movement segments at 230°.
The red line in each plot represents that neuron’s preferred direction (see chapter 2). (Data from Principe laboratory.)
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Figure 7.13 Comparison of kernel cross-correlation and the normal windowed cross-correlation functions. (Top) Kernel cross-correlation intraclass correlation
coefficient (ICC) and the spike trains (i.e., raster plots) of 34 motor-cortex neurons. (Bottom) Standard windowed cross-correlation functions for two different

strategies. (Bottom left) A 200-msec sliding window with T-msec increment for one pair of neurons. (Bottom right) Same as the cross-correlation with kernels but

spatially averaged across channel pairs. The data were collected from rat motor cortex (blue is right cortex, green is left cortex). The red segment represents the
time period during which the animal is pressing the lever. The kernel cross-correlation (Top) shows both high- and low-frequency variations, but the high-frequency

variation is much less evident in the conventional cross-correlations (Bottom). (Data from Principe laboratory.)

Figure 7.13 compares the results of applying a kernel cross-
correlation (top panel) and normal windowed cross-correla-
tion functions (bottom panels) to microelectrode-array data
collected from the motor cortex of a rodent during a lever-
press task. Thirty-four neurons were used for this analysis. In
the top panel, pairwise correlations were computed using equa-
tion 7.27 where h(t) is a first-order low-pass filter with a t = 1
msec time constant; these were averaged over all pairs of neu-
rons for the same lever press. The figure shows that the similar-
ity among the neural firings is lost during lever pressing
(indicated by the red bar), and increases back to its baseline
after the lever press. Figure 7.13 (bottom) presents the results
for the cross-correlation at zero lag using the rate method dis-
cussed in this chapter’s section The Structure of Spike Trains.
The data are based on a sliding window of 200 msec, over
spikes binned with a 1-msec rectangular window, on a selected
pair of channels (visually judged to have high correlation with
the lever-pressing task) (fig. 7.13, bottom left), as well as aver-

aged over all neurons (fig. 7.13, bottom right). As expected,

CHAPTER 7.

much of the temporal resolution in the fine structure of the
spike firing is lost (e.g., the high-frequency changes in spike
activity) with this analysis, but it is nevertheless clear that
spike-train correlations decrease markedly during lever press.
As a special case, we can perform the same operation on a
single filtered spike train to calculate its autocorrelation:

(PN
C D)=y, t)y,t—7)dt
D=7y, (t-1) .28)
This autocorrelation function measures the similarity in the
structure of the spike train over different time lags. It is very
useful in detecting periodicities in spike trains.

Features Reflecting Differences between

Spike Trains

It is sometimes important to measure dissimilarity among
spike trains. Dissimilarity is important in using firing patterns
to distinguish among different classes of neurons. The actual
number of different classes of neurons is often not known,
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which makes it impractical to try to classify spike trains into
different classes. Nevertheless, clustering can still explore the
structure of the responses.

Clustering is the division of the data into subgroups such
that the elements of a subgroup are more similar among them-
selves than they are to the other members of the dataset.
The definition of a proper dissimilarity metric (called here a
distance for simplicity) is critical for accurate clustering. The
most widely used spike-train distances are:

. the van Rossum distance (van Rossum 2001)
. the Cauchy-Schwarz distance (Paiva et al. 2009)

. the Victor-Purpura distance (Victor and
Purpura 1997)

The wvan Rossum distance extends to spike trains the
concept of Euclidean distance. Thus, it maps a full spike train
to a point. The distance between two spike trains S, and S, is
defined as:

1 )

dvR(s,.,sj)=?j(yi(t)—yj(t)~)dt

(7.29)

Thus, small distances are obtained when the spike-train time
structures are similar.

The Cauchy-Schwarz (CS) distance metric is the inner

product distance between pairs of vectors (the cosine of the

angle between the vectors). This metric can be generalized

using the Cauchy-Schwarz inequality, yielding
s (gi’gj) = —log%
g1z

(7.30)

where g and g are vectors representing two spike trains. To
apply this equation to spikes, one normally applies to spike-
time differences a filter with an impulse response that is a
Gaussian function, to obtain:

de5(S,,5;) = —log et

(B8 4]

m=1 m=1

(7.31)

The Victor-Purpura distance evaluates the minimum cost of
transforming one spike train into the other by using three basic
operations: spike insertion, spike deletion, and spike move-
ment. This approach operates on the spike trains without the
filter. To implement this, let us define the cost of moving a
spikeatt tot asq|t —t |, where qisa parameter that sets the
time scale of the analysis, and is chosen such that at the end we
will get a distance measure (i.e., a metric that obeys the prop-
erty of distances). The cost of deleting or inserting a spike is set
to one. Let us define

alt,—ti| |t —tl<2/q

K (t ,t))=min{q |t —t/|,2}=
m qlt, =t 2 otherwise

(7.32)
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The Victor Purpura distance between spike trains S, and S, is
defined as

_ : i j
dyp(S:5;) = c(r?gigzl:K (e o) -

where the minimization is between the set of all unitary opera-
tions c[/] that transform S, into Sj.

SUMMARY

Signals recorded from the brain typically contain substantial
noise and extraneous information that often interfere with
detecting and measuring those features of the signals that are
useful for BCI applications, that is, that reflect the intent of the
user. Thus, before the signals can be translated into outputs, the
useful features of the signals must be extracted and presented
to the translation algorithm in an appropriate format. This
chapter reviews the full range of the standard methods used to
extract features from brain signals. These include methods
appropriate for continuous signals such as EEG (e.g., spatial
and temporal filtering, template matching, spectral analysis) as
well as methods appropriate for signals reflecting point pro-
cesses such as single-neuron activity (e.g., firing rate, spike-
triggered averaging, tuning curves, measures of spike-train
similarity or dissimilarity). In general, the most desirable
methods are those that are theoretically motivated and bio-
logically realistic and that have been found to perform well in
actual real-time BCI applications. For successful BCI opera-
tion, feature extraction must be followed by a translation
algorithm that is appropriate to the features extracted, to the
application, and to the user. Translation algorithms will be the
subject of the next chapter.
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DENNIS J. McFARLAND AND DEAN J. KRUSIENSKI

he preceding chapter of this volume describes common

methods for extracting features from brain signals for

BClIs. Ideally, these features would be in a form that
could directly communicate the user’s intent. However, because
the features represent indirect measurements of the user’s
intent, they must be translated into appropriate device com-
mands that convey that intent. This is accomplished using a
translation algorithm. The core of a translation algorithm is a
model, which is a mathematical procedure typically comprised
of a mathematical equation, set of equations, and/or mapping
mechanism such as a lookup table. The model accepts the fea-
ture vector (i.e., the set of features) at a given time instant as its
input and processes the feature vector to output a set of com-
mands that the application device can recognize. For instance,
an amplitude in a specific electroencephalographic (EEG) fre-
quency band might be translated into a binary 0 or 1 that pro-
duces an “off” or “on” command, respectively, for a light switch.
A more complex application might require that a set of features
be translated into three-dimensional spatial coordinates that
are used to update the position of a robotic arm.

The data used to develop a model may be just a few obser-
vations of a few features or many observations of many fea-
tures. In either case the goal of the model is to describe the
relationship between these features and the user’s intent in a
form that is simpler than the data that are actually measured.
The value of such a description is that it can be used to convert
future observations to appropriate output (i.e., it can be
generalized to new data). For example, the relationship between
two variables, X and Y, can be described by a simple linear
function:

Y=bX+a (8.1)

where b is the slope of the linear function and a is the
intercept on the y-axis. If this equation is used as a model for a
BCI, X is the feature vector (e.g., EEG features extracted by
methods such as those described in chapter 7) and Y is the
vector of commands sent to an output device (e.g., movements
of a cursor). As discussed later in this chapter, the values of b
and a are parameters of the model that can be defined by a
variety of different methods.

The relationship between X and Y defined by the model is
usually not a perfect description of the relationship between
the actual values of the features and the output commands

intended by the BCI user. Nevertheless, a model such as
a simple linear equation may often provide a very good
description of the relationship. If there are many observations,
then the model provides a much more compact representation
of the data than a simple enumeration of the original data. This
may come at the expense of a certain degree of accuracy in the
values of Y. Most important for BCI systems, the model allows
generalization from past observations to future observations.
Given a new observation of X (e.g., an EEG feature vector), the
model provides a prediction of Y (e.g., the three-dimensional
robotic arm movement intended by the user).

Because a model essentially comprises one or more equa-
tions, the individual features of the feature vector can be con-
sidered to be the independent variables of the equations. The
dependent variable(s) of the equation(s) are the command(s)
that are transmitted to the output device. Models often include
initially undefined constants that act on the features such as
scaling factors, exponential terms, summation bounds, and
data window lengths (e.g., b and a in eq. 8.1). These constants
are referred to as the model parameters. For simple linear
models, which are often simply the sum of scaled features and
a constant, the scale factors (i.e., the parameters that the fea-
tures are multiplied by) are often referred to as feature weights
or coefficients. Certain models, such as artificial neural
networks, do not model feature extraction and translation as
distinct, cascaded stages. Instead, these types of models may
accept the raw EEG data as input, and then output the corre-
sponding device commands without producing an intermedi-
ate, explicit feature-extraction stage.

The model parameters are commonly selected, or trained
(also referred to as learned or parameterized) by using a set of
training data. Each unit of training data (i.e., each observation)
consists of a feature vector (or training sample) and its correct
(i.e., intended) output (or training label). Through an iterative
procedure, called supervised learning, the parameters are
repeatedly adjusted until the model translates the feature vec-
tors into output commands that are as accurate as possible (i.e.,
as close as possible to the correct output commands).

The accuracy of the model is evaluated with an objective
function (also called a cost function or a fitness function). For
instance, a common objective function is the mean-squared
error (i.e., difference) between the model output and the
correct output: the smaller this error, the more accurate the
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model. During the supervised learning process, the feature
vectors (i.e., the training samples) are processed by the model
with some initial parameters (selected randomly or using a
priori information), the objective function then compares the
model outputs to the correct outputs (i.e., the training labels),
and the model parameters are then updated based on the
objective function; finally, the process is repeated until stop-
ping criteria are satisfied (e.g., the mean-squared error is
minimized).

The fact that BCIs operate in real time places demands on
the modeling of BCI data that are not typical of many other
areas of neuroscience research. It is not sufficient to develop
through post-hoc analysis a model that applies well to a given
body of previously acquired data. Instead, the crucial require-
ment is that the model must apply to new data as well, that is,
it must generalize. Its ability to generalize is tested (or vali-
dated) using an independent set of observations called testing
data. Each unit of testing data (i.e., each observation) consists
of a feature vector (ie, festing sample) and its correct (i.e.,
intended) output (or testing label). Testing data are used to
validate the model after its parameters have been fixed via
training. In this validation, the testing data are processed by
the model, and the model outputs are compared to the corre-
sponding testing labels by using the same objective function
employed for model training or some other measure of model
accuracy. This model validation process is essential for evaluat-
ing how well a given model generalizes to new observations.
However, some models and training procedures are prone to
overfitting, in which the parameterized model is tuned so pre-
cisely to the training data that subtle differences between the
training data and the test data prevent it from modeling the
testing data accurately.

This chapter discusses the kinds of translation algorithms
most frequently used in BCIs. It is meant to serve as a balanced
introduction to the range of algorithms applicable to BClIs.
Most algorithms in the BCI literature are based on, or closely
related to, the algorithms presented in this chapter. Like the
previous chapter, this chapter assumes that the reader has col-
lege-level linear algebra and calculus, minimal signal process-
ing or machine-learning background, and basic knowledge
gained from previous chapters.

The chapter is divided into four sections. The first section
considers the factors important in selecting a model and pro-
vides an overview of the models used in BCI translation algo-
rithms. As noted above, the model is the core component of any
translation algorithm. The second and third sections discuss
the two other components of a translation algorithm: selection
of the features included in the model, and parameterization of
the model. The final section describes methods for evaluating
translation algorithms.

SELECTING A MODEL

Selecting an appropriate model is the key to developing a suc-
cessful translation algorithm. Assuming that the input features
contain the relevant information regarding the user’s intent,
the chosen model will determine how quickly and accurately
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that intent is conveyed to the BCI output device (i.e., the appli-
cation device). The processes of model selection and parame-
terization involve decisions based on the requirements of
the BCI application as well as the nature and amount of data
available for model development and optimization. For exam-
ple, some applications only require a binary choice, whereas
others require continuous highly accurate control in several
dimensions. Simple models suitable for binary choice may not
be able to provide accurate complex output commands. On the
other hand, complex models that can provide such commands
may encounter difficulty in generalizing well to new data.

A wide variety of models are available for use in BCI trans-
lation algorithms (McFarland, Anderson et al.,, 2006; Lotte
etal., 2007; Principe and McFarland, 2008), and the list contin-
ues to increase. Indeed, the universe of possible models is infi-
nite (Kieseppa, 2001). We focus in this chapter on simple
representative examples of commonly used models, we illus-
trate how they work, and we consider the factors important in
selecting and using them.

GENERAL PRINCIPLES

DISCRIMINANT MODELS

AND REGRESSION MODELS
Models fall into two classes according to whether their outputs
are discrete categories or continuous dimensions. Specifically,
models are either discriminant functions (also called classifica-
tion functions) or regression functions (McFarland and Wolpaw,
2005). Examples of simple discriminant and regression func-
tions are illustrated in figure 8.1. A discriminant function
translates the observations (i.e., the feature vectors) into dis-
crete categories of output (e.g., specific letters). A regression
function translates the observations into a continuous variable
(e.g., cursor movement). For the two-target (i.e., two possible
outputs) case illustrated in figure 8.1, both kinds of models
require that a single function be parameterized. However, for
the five-target case (i.e., with five possible outputs), the dis-
criminant model requires that four functions be parameter-
ized, while the regression model still requires that only a single
function be parameterized. Discriminant functions are partic-
ularly useful in BCIs that produce simple “yes/no” or “target/
nontarget” outputs (e.g., P300-based BCIs [Donchin et al.,
2000; see chapter 12, in this volume]), whereas regression
functions are well suited for BCIs that must provide continu-
ously graded outputs in one or more dimensions (e.g., BCIs
that produce cursor movements in two dimensions [Wolpaw
and McFarland, 2004; see chapter 13, in this volume]).

For simplicity, the examples used in this section are dis-
criminant functions (i.e., they have discrete, categorical out-
puts). Nevertheless, it is important to note that all the model
types discussed here can also serve as regression functions that
provide continuous outputs.

VARIATIONS IN THE DATA
As described above, model parameters are normally based on
a body of previous observations (i.e., training data). This
method assumes that future data will be similar to the training
data and thus that the parameterized model will continue to



Classification Regression

2 target e ‘e

5 target

Figure 8.1 Comparison of classification (i.e., discriminant) and regression
models. The diagonal lines are specific functions. For the two-target (i.e., two
possible outputs) case, both models require only one function to separate the
different outputs. However, for the five-target case (i.e., five possible outputs),
the classification model requires four functions, whereas the regression
approach still requires only a single function.

work well (i.e., that it will generalize to new observations).
However, biological data in general, and brain signals espe-
cially, normally display considerable apparently spontaneous
(or chance) variation over time. Such chance variation is a
problem for all models, particularly those used in BCIs, which
must operate effectively using new data.

Figure 8.2 illustrates the problem with an example of a
simple discriminant model (known as Fisher’s linear discrimi-
nant [Fisher, 1936]) that uses two features and produces two
possible outputs, represented by upward-pointing solid trian-
gles and downward-pointing open triangles, respectively. The
data (i.e., the observations) and the discriminant model are
plotted in feature space. Figure 8.2A shows a small training
data set of ten observations and a discriminant model that has
been parameterized from the training data using a least-squares
objective function (see below). The model works perfectly on
the training data; it translates every observation into its correct
output. Figure 8.2B shows this same model applied to a new
test data set. In this case it performs well but not perfectly: one
of the ten new observations is not correctly translated. The
model might be reparameterized with these new observations
(i.e., the dashed line), but it would be likely to again encounter
a decrease in performance when applied to a newer set of test
data. This example illustrates the fact that there is usually some
drop in performance when a parameterized model is applied,
or generalized, to new data. Nevertheless, successful model
generalization is a crucial requirement for BClIs, since their
online operation must always use new data.

The problem of chance variation may be reduced by using
large sets of training data (in contrast to the very small set
used in figure 8.2). The generalizability of models tends to
increase as the number of observations in the training data set
increases. At the same time, although models with more
parameters (i.e., degrees of freedom) often provide a closer fit

Training data Test data

Feature 1
Feature 1

Feature 2 Feature 2

Figure 8.2 A simple linear discriminant (i.e., classifier) applied to training (A) and
test (B) data sets. The feature vector has two features, and the discriminant
function has two possible outputs (e.g., yes and no), represented by
upward-pointing solid triangles and downward-pointing open triangles,
respectively. (The features were produced by combining the output of a
random-number generator with a constant that differed for the two outputs.)
(A) The discriminant function based on the training data (solid line) perfectly
classifies the training data. (B) The discriminant function based on the training
data (solid line) does a good but not perfect job of classifying the test data.

A discriminant function based on the test data (dashed line) does a perfect job,
but because it is derived by post-hoc analysis, it could not have been used in
actual online BCl operation.

to the training data, generalizability tends to decrease as the
number of parameters in the model increases. Hence the choice
of the number of parameters to include in the model often
involves a trade-off between minimizing the model’s error and
maximizing its generalizability. Thus, the amount of training
data available is an important factor in determining a model’s
complexity.

Another problem arises when the statistics of the data
change over time. The data can be described by simple statis-
tics, such as the average values (i.e., means) and variabilities of
each feature. Feature variability is usually measured as vari-
ance, which is the average value of the square of the difference
between each sample (i.e., observation) of the feature and the
mean value of the feature. The data can also be described in
terms of the relationships among the different features (e.g.,
the linear relationship or covariance between two features).
One or more of these measures may change during BCI opera-
tion. Changes may occur as the user tires over the course of a
day, as he or she acquires BCI experience and adopts new strat-
egies, as a disease such as ALS progresses, or for a variety of
other reasons. When such changes in the data statistics occur,
the data are said to be nonstationary.

Figure 8.3 illustrates the impact of nonstationarity. As
figure 8.3A shows, a parameterized model works very well
with its training data. However, as figure 8.3B shows, it does
not work well with a set of test data because the means and
covariances of the data have changed. No amount of data in the
original training set could have resulted in good generalizabil-
ity since the statistics of the data have changed. Rather, it is
necessary to have a translation algorithm that evolves, or
adapts, as the data change. Given changing statistics, it is desir-
able to use adaptive algorithms. Although adaptation to
changes in the mean of the data is relatively easy to accomplish,
adaptation to changes in data covariances is more difficult.
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Figure 8.3 A simple linear discriminant applied to training (A) and test (B) data
sets that have different statistics (i.e., mean and standard deviation). In this
example the observations corresponding to the two possible outputs (e.g., yes
and no) are represented by ellipses rather than shown as individual
observations. The center and shape of each ellipse represent the mean and
covariance, respectively, of the observations corresponding to each output.
The discriminant function (solid line) in A separates the two outputs very well.
In B, however, the data statistics have changed, and the original discriminant
function is no longer effective. (Based on Vidaurre et al., 2006.)

In addition to the adaptive capability built into the transla-
tion algorithm, the BCI user can also be conceptualized as an
adaptive entity: the user learns to use the BCI system (and usu-
ally improves performance). Consequently, BCI operation can
be viewed as the interaction of two adaptive controllers, the
BCI user and the BCI system (Wolpaw et al., 2002). Figure 8.4
shows three alternative concepts of the adaptation associated
with BCI operation. In Figure 8.4A the user is assumed to pro-
vide signal features that do not change over time. The BCI is
expected to adapt to these features through machine learning, a
process in which the translation algorithm gradually improves
the accuracy of its model by minimizing (or maximizing) an
objective function (Blankertz et al., 2003). In contrast, in Figure
8.4B the translation algorithm does not change, and the user is
expected to adapt the signal features to the algorithm through
an operant-conditioning process (Birbaumer et al., 2003). This
process is driven by reinforcement: when the user adapts the
features appropriately, the BCI produces the output that the
user intends. Figure 8.4C combines the adaptations of both 4A
and 4B: both the user and the BCI system adapt so that BCI
operation depends on the appropriate interaction of two
dynamic processes (Wolpaw et al., 2002; Taylor et al., 2002). The
user and system co-adapt as the user learns and the system
adapts to the changing statistics of the user’s signals. These ongo-
ing changes further complicate the task of selecting a model and
parameterizing it so that it generalizes well to new data.

SUPERVISED AND UNSUPERVISED LEARNING
Another issue in the design of BCI translation algorithms
concerns whether or not the parameterization of the model
algorithm is supervised. The discriminant model illustrated
in figures 8.2 and 8.3 is parameterized through supervised
learning, that is, by using a training data set in which the
correct outputs are known (i.e., the outputs are labeled).
However, sometimes labeled training data are not available.
In this case, models can be parameterized using unsupervised
learning techniques (Schalk et al., 2008).
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Figure 8.4 Three concepts of BCl operation. The arrows through the user
and/or the BClI system indicate that they adapt to improve and maintain the
correlation between the user’s intent and the BCl's output.

Up to the present, most BCI translation algorithms have
relied mainly on supervised learning to parameterize their
models. In real-life operation, however, BCIs do not usually
have labeled training data; that is, they do not have perfect
knowledge of the correct outputs (i.e., of what the user intends).
The most common solution is to have periodic calibration
sessions in which the BCI tells the user ahead of time what the
correct outputs are. For example, copy-spelling is typically used
to calibrate P300-based BCIs (e.g., Krusienski et al., 2008; see
chapter 12, in this volume). Alternative solutions are possible.
For example, if a BCI application includes an error correction
option (e.g., a backspace command), the BCI might assume
that whatever was selected and not corrected was, in fact, the
user’s intent.

COMMON FAMILIES OF MODELS

LINEAR LEAST-SQUARES DISCRIMINANT
FUNCTIONS (CLASSIFICATION)
The linear least-squares discriminant (or classification) function
is rooted in classical statistics and is one of the simplest and
most commonly used models (Fisher, 1936). The general form
of a linear model is given by:

Y:b1X1+b2X2..4bnxn+a (8.2)
where Y is the predicted value (i.e., the BCI output), b,. .. b,
are weights (i.e., parameters) to be determined, a is a
constant (i.e., another parameter) to be determined, and X..X_
are the features used to predict Y.

Figure 8.5 illustrates a simple linear discriminant based on
least-squares criteria. It uses two features, X, and X,, to distin-
guish between two possible outputs (or classes), Y. Figure 8.5A
illustrates the process. Using the available data, a linear func-
tion with the form of equation 8.2 is derived; it predicts the
value of Y from the corresponding values of X, and X, In figure
8.5B, the values of X, and X, for which the predicted value of Y
is 0 are indicated by the solid line (i.e., the discriminant func-
tion). This line separates the two classes, which will produce
two different outputs.



Figure 8.5 A simple least-squares linear discriminant function is used to
separate a set of observations into two possible BCI outputs (or classes). The
axes are the two predictor variables (X, and X,), and Y is a binary variable (the
BCl output) that can have values of +1 or -1 (represented by open and filled
triangles, respectively). The left panel illustrates the function that predicts class
membership (i.e., the function Y'= b X, + b,X, + a). The predicted value Y’ is a
continuous variable that goes from positive to negative. The dashed line in
Panel A indicates the direction along which the predicted value of Y’ changes
from more positive (upper left) to more negative (lower right). The right panel
shows the discriminant function (solid line), which is perpendicular to the
function that predicts class membership and indicates the values of X, and X,
for which the prediction is that Y’=0. Thus, this discriminant line separates the
data into the two possible BCI outputs or classes (the Y = +1 and the Y = -1
class).

In practice, the linear discriminant function can be

obtained by solving the normal equation, which is given by:

b=(X'X)"'X'Y (8.3)
where b is the vector of coeflicients for the discriminant func-
tion, Y is the vector of class memberships, and X is an #n by k
matrix of features that predicts class membership. The n rows
of X represent the individual observations and the k columns
represent the individual features. The product, XX, represents
the covariance between features. The () operation indicates
matrix inversion, and the X'Y product represents the cross-
product between X and Y (i.e., the covariance between class
membership and features). This formula, written in matrix
notation, provides a solution to several kinds of least-squares
problems including both discriminant analysis and multiple
regression. It is similar in form to the univariate formula
for the slope of a straight line and can be solved by a direct
computation.

We now consider how the discriminant function would be
applied by a simple BCI, the P300-based matrix speller (e.g.,
Donchin et al., 2000; see chapter 12). The BCI user watches a
matrix of letters as its rows or columns flash rapidly in succes-
sion and EEG is recorded. The user is asked to perform a copy-
spelling task in order to provide a labeled set of training data.
The problem is to make a classifier that can discriminate
between the user’s EEG response to the target (i.e., the letter to
be spelled) and his/her responses to nontargets (i.e., all the
other letters). Our prior knowledge of the target identity allows
us to assign correct values to Y, the vector of class member-
ships (e.g., +1 and -1 for targets and nontargets, respectively).
The specific features in the EEG (i.e., the voltages at specific elec-
trodes and times) are the elements of the X matrix. By solving for
the b, b values in equation 8.2, we produce a discriminant

function that allows us to use the feature values associated with
each letter to determine whether the letter is the target or a
nontarget: the letter is the target if equation 8.2 yields a value of
Y that is greater than 0. Assuming that this parameterized
function generalizes well to new data, the user can now employ
the BCI to spell whatever he or she wishes.

BAYESIAN CLASSIFIERS

The Bayesian approach to statistics uses the concept of maxi-
mum likelihood to combine prior knowledge with newly
acquired knowledge to produce a posterior probability (Bickel
and Levina, 2004). It produces the model parameters that are
most likely to be correct based on the available data. For exam-
ple, for a BCI that uses one feature, the first step is to assign
each value of the feature to one of a limited number of catego-
ries (e.g., discrete ranges of EEG voltages). Then these category
assignments are used to compute the probability of each pos-
sible class membership (i.e., the probability that each possible
BCI output is the user’s intended output). This is accomplished
by means of Bayes’s theorem:

P(Y)P(X|Y)

P(Y|X)= P00

(8.4)

where Y is the event (i.e., a specific BCI output) and X is the
category of the feature. The notation P(Y|X) indicates the prob-
ability of Y given X. Bayes’s theorem states that predicting Y
from X is computed by multiplying the prior probability of Y
by the probability of X given Y, and then dividing by the prob-
ability of X. This simple relationship forms the basis for
Bayesian statistics.

There are many ways in which this approach can be applied.
Perhaps the simplest is the naive Bayesian classifier which
makes the simplifying assumption that the features are inde-
pendent. Thus,

P(Y)P(X, | Y)P(X, | Y)..P(X, | Y)
P(X,)P(X,)..P(X,)

P(Y|X,,X,,..X,) =
(8.5)

where X, X, and X are the first, second, and nth features.
Simply stated, the naive Bayesian classifier states that the pre-
diction of Y given X, X, and X is computed by multiplying
the prior probability of Y and each probability of X, given Y,
and then dividing by the product of the probabilities of X, X,
... X . The classifier then computes the posterior probability of
all possible Ys and picks the one with the greatest likelihood.
The naive Bayesian classifier is a very straightforward and
intuitive method for designing a classifier from training fea-
tures. Whereas the Bayesian approach allows many degrees of
complexity (e.g., Bayesian networks [Shenoy and Rao, 2005]),
the naive Bayesian classifier serves as a useful contrast to the
classical least-squares discriminant function (Fisher, 1936). As
noted above, the naive Bayesian classifier considers the features
in isolation from each other, whereas the least-squares dis-
criminant considers the variances and covariances of the
features. Thus, the naive Bayesian classifier is much simpler,
and it performs very well in some situations, even when the
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features are not truly independent as assumed for the model.
It has proved successful even when there are many features and
very little training data (Bickel and Levina, 2004). This is typi-
cally the case at the start of BCI usage when there are as yet not
enough observations to provide a good estimate of the covari-
ance matrix. To summarize, the naive Bayesian approach pro-
vides a means of incorporating prior information into the
discriminant. However, this approach does not deal with issues
that arise due to correlations between the features (i.e., the
problem of colinearity).

When the features are correlated, it is often the case that
prediction is improved by giving more weight to features that
have unique covariance with class membership. EEG features
are frequently correlated with each other due to effects such as
volume conduction. A case of correlated features is illustrated
in figure 8.6, where the relationships between and among vari-
ables are indicated with Venn diagrams. The circles represent
the variance of each variable and the overlap between circles
represents their covariance. X,, X, and X, are three features
and Y is the BCI output. The intersection between X, and Y is
about 30% of their areas, whereas the intersection between Y
and X, is about 40% of their areas (i.e., the #* values for X , and
X, are 0.30 and 0.40, respectively, where 7* is the proportion of
the total variance in the output Y that is accounted for by X, or
X)). Thus, X, is a better predictor of Y than X, is. X also has
about 40% overlap with Y, but it shares most of this with X .
The unique correlation of X, or X, with Y is only about 10%,
whereas the unique correlation of X, with Y is 30%. A model
such as the naive Bayesian classifier, which assumes that the
features are independent, would give greater weight to X, and
X, than to X . In contrast, a model that takes covariance into
account would give X, more weight than either X, or X..

Figure 8.7 illustrates a case where two features correlate but
only one of them, X > predicts the BCI output, Y. Nevertheless,
the overlap between X, and X, can remove some of the predic-
tion error in X. In this case, X, is a suppressor variable
(Friedman and Wall, 2005). The naive Bayesian model would
not give a large weight to X, since it does not independently
predict Y. In contrast, the least-squares discriminant function

0D

Figure 8.6 Correlations among features (X,, X,, X,), and between these features

and the BCl output (Y). The variance of each variable is represented by a circle,
and the covariance between any two variables is represented by the overlap of
their circles. Note that the unique correlation X, with Y is greater than that of X,
or X, with Y. This is because X, and X, share much of their overlap with Y.
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Figure 8.7 lllustration of a suppressor variable. Feature X, overlaps with the BCI
output Y, and feature X, overlaps with X, but X, does not overlap with Y. If X, is
included in the model it serves as a suppressor variable that improves the
usefulness of X, by eliminating some of the noise that it introduces.

would give X, a weight of opposite sign to X, allowing it to
subtract part of the X, prediction error.

McFarland, Anderson, et al. (2006) describe a case of a
suppressor variable with a P300-based BCI. Given two features
from electrode Cz, one at 0 msec and one at 240 msec after the
stimulus, the 0-msec feature did not predict the correct output,
but the 240-msec did. However, combining the 0-msec and
240-msec features in the model greatly improved prediction
over that produced by the 240-msec feature alone. It is likely
that inclusion of the 0-msec feature provided noise cancella-
tion (i.e., it provided a baseline correction that removed slow
drifts in the EEG signal).

A comparison of the linear least-squares discriminant with
the naive Bayesian classifier illustrates the types of trade-offs
that need to be considered in selecting among general families
of models. The naive Bayesian classifier is simple and works
well with a few training observations and a large number of
features. However, when enough observations are available to
accurately estimate the covariance matrix, the linear least-
squares discriminant, which considers the relationships among
the features, may perform better.

SUPPORT VECTOR MACHINES
Our first two families of models solve the problem of discrimi-
nating among different classes (i.e., different BCI outputs) by
direct computations from the data (i.e., the features). In
modern machine-learning approaches, computer algorithms
gradually improve their performance by minimizing (or maxi-
mizing) some parameter of a model by iteration. One example
of this approach is the support vector machine, illustrated
in figure 8.8. The support vector machine selects specific obser-
vations at the border between two classes and uses these to
define the upper and lower margins (i.e., the dotted lines) of a
region that separates the classes. This acts to maximize the
separation between the classes in order to produce greater gen-
eralizability. In figure 8.8, the circles and triangles are observa-
tions corresponding to the two classes, respectively. The solid
circles are two of the support vectors. As such, they define the
hyperplane that is the upper margin. Similarly, the solid trian-
gle is the support vector that defines the lower margin. Thus,
the support vector machine selects actual observations from
the data set to define margins in feature space that separate the



Figure 8.8 A support vector machine generates a hyperplane (solid line) that
defines the border between the observations belonging to two different
classes (i.e., BCl outputs) shown as circles and triangles. The support vectors
are the solid symbols. They define the upper and lower margins (dashed lines)
of the region between the classes. The hyperplane (solid line) that separates
the two classes is placed midway between the margins.

data into different classes. New observations are classified
according to whether they fall above or below the solid line
midway between the two margins.

The support vector machine minimizes an objective func-
tion through a series of iterations. This function includes two
components. The first component consists of the Euclidian dis-
tances between the observations in each class and the separat-
ing hyperplane. Observations that are on the correct side of the
margin do not contribute to this component. The second com-
ponent of the objective function is the Euclidian distance
between the margins. Thus, the support vector machine must
select observations from the data set that simultaneously mini-
mize these two components of the objective function. A param-
eter in the model allows the relative influence of these two
components to be tuned to the data type. Proponents of the
support vector machine suggest that this algorithm can be
trained with relatively few observations, that it generalizes well
due to the presence of the margins, and that it is relatively
insensitive to outliers (Parra et al., 2005).

NONLINEAR MODELS
The discussion so far has focused on linear methods for sepa-
rating observations (i.e., feature vectors) into their correct
classes (i.e., BCI outputs). However, linear methods may not
always be effective (Miiller et al., 2003). A variety of methods
exist for addressing the problem of nonlinearity. One approach
is to transform the data by some means that makes them more
suitable for linear analysis. This is illustrated in figure 8.9. In
figure 8.9A, the data are fit with a straight line. The proportion
of the total variation in the data that is accounted for by the
line (i.e., a linear model) is 0.76 (i.e., r*). In figure 8.9B, the data
are fit with a second-order equation (i.e., a quadratic model).
For the quadratic model, *is 0.95 indicating that the quadratic
function fits the data better. In the linear case, the sole predic-
tor of Yis X. In the quadratic case, the predictors of Yare X and

r?=0.95

. r?=0.76 .

Figure 8.9 Linear and quadratic regressions. In A, the data are fit with a linear
function given by Y= bX + a. In B, the data are fit with a quadratic function
given by Y= b X? + b,X + a. The average distance between the line and the
points is much smaller in B, and thus the r? value is much higher.

X? by projecting the single X into a two-dimensional space
(i.e,, X and X?), the prediction has been improved. Although
this is a simple linearizing projection, many other more
complex projections are possible. Similar projections of
the data can be used with either discriminant or regression
functions.

Modern machine-learning algorithms make extensive use
of projections of data into higher-dimensional feature space as
a method of linearizing nonlinear problems. These are often
referred to as kernel methods. A wide variety of kernels have
been devised. Some of these, such as the Gaussian kernel,
permit the construction of class-separating hyperplanes with
very irregular shapes.

An alternative approach to nonlinearity is to use artificial
neural networks (Miiller et al.,, 2003). Artificial neural net-
works are simplified models of biological neural networks.
Their primary purpose is not to simulate or replicate actual
biological neural networks or brain activity. Rather, they are
developed in the expectation that they will allow the powerful
decision-making capabilities of biological neuronal networks
to be applied to a variety of classification problems. Thus, for a
BCI, the network input consists of the feature vectors, and its
output consists of the commands sent to the application.

Artificial neural networks are comprised of individual
units called neurons. In their basic form, illustrated in figure
8.10A, these neurons consist of a summing node, which sums
all the inputs to the neuron, and a subsequent activation func-
tion, which produces the output. The activation function trans-
forms the product of the summing node and can take any form.
Threshold-type activation functions (i.e., functions that pro-
duce a binary, or Yes/No output) are common for classification
applications. Each neuron can be envisioned as a simple clas-
sification unit. A neural network is formed by interconnecting
individual neurons in a parallel and cascaded fashion, which
combines the output of the individual neurons to form com-
plex decision boundaries. Each neuron uses a decision hyper-
plane to convert a weighted sum of its inputs into an output. Its
threshold activation function determines which side of the
hyperplane the sum falls on; this defines the neuron’s output.
Neural networks typically have hidden layers of neurons
(fig. 8.10B) that form unions between these decision boundar-
ies and thereby demarcate unique regions corresponding to
the different possible outputs of the network. Thus, through
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Figure 8.10 (A) An individual unit (or neuron) of a neural network. The three
inputs on the left are weighted and summed. If the result reaches the threshold
of the activation function, the unit produces an output. (B) A neural network
classifier. The three layers of units (from left to right) are an input layer, a
hidden layer, and an output layer. These are connected in sequence by
connections that have variable weights. During training, these weights are
adjusted using back propagation to minimize the difference between the
network’s actual output and its correct output.

training (i.e., iterative adjustments in the summing node and
threshold function of each neuron), the hyperplanes produced by
each neuron in the network partition the feature space to define
the decision boundaries that represent each possible output.

Neural networks can vary widely in numbers of units,
numbers of layers, and neuron interconnections. Figure 8.10B
illustrates a simple feed-forward network that has four inputs
and two outputs. These represent, for example, four brain
signal features and two possible BCI commands. During net-
work training, the network processes a set of labeled training
data (i.e., feature vectors for which the correct output is known).
After each observation is processed, the output of the network
is compared to the correct output label to define the error (i.e.,
the difference between the actual output and the correct
output). Then, the summing nodes of each neuron are slightly
adjusted (or updated) so as to reduce the error. This updating
process proceeds backward through the network from the
output layer to the input layer, and thus it is called backpropa-
gation. As training progresses through the labeled training
data, the error in the network output diminishes.

A neural network with sufficient neurons is, in theory,
capable of approximating any function. As a result, neural
networks can be used to deal with non-linear aspects of BCI
feature-translation problems. However, because the neural-
network structures can become complex and each individual
weight must be trained, the training process may be lengthy
and require a large amount of labeled training data. Further-
more, satisfactory solutions are not always guaranteed because
of practical limits on training algorithms and data sets.

As noted above, for the sake of simplicity, the model exam-
ples discussed in this section have all been discriminant func-
tions (i.e., they have discrete, categorical outputs). However,
each of these types of model can also be designed to produce a
continuous output, and thus serve as a regression function. For
example, equation 8.3 can produce coefficients for a discrimi-
nant function or for a regression function, depending on
whether the vector of Y values is discrete or continuous.
Similarly, both Bayesian models and support vector machines
can be discriminant or regression functions, and neural net-
works can produce discrete or continuous outputs.
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SELECTING FEATURES FOR A MODEL

In any BCI, the two parts of signal processing (i.e., feature
extraction and feature translation) must work together well.
Thus, the choice of the feature type (e.g., evoked-potential
amplitude, power in a frequency band, single-neuron firing
rates) and the choice of the model type (e.g., linear discrimi-
nant, Bayesian classifier, support-vector machine, etc.) neces-
sarily affect each other. For example, if the feature type is P300
amplitude, a two-class classification algorithm may be most
appropriate. In contrast, if the feature type is mu-rhythm
power, a linear regression might be the sensible choice. Once
the choices of feature type and model type have been made, the
next steps are to determine the specific features to be used and
the parameters to be applied to these features. These two steps
can be taken in sequence (i.e., first feature selection and then
parameter selection), or in one combined operation. This and
the next sections of the chapter consider commonly used fea-
ture-selection and parameterization methods.

Since recordings from the brain often produce a large
number of signals, some means of feature selection (i.e., dis-
carding features that do not positively contribute to model
accuracy) or dimension reduction (i.e., preprocessing the exist-
ing features in a way that eliminates irrelevant feature dimen-
sions) is generally needed. As noted earlier there is a trade-off
between better output accuracy for training data when more
features are used and better generalization to new data when
fewer features are used. The calculation of parameter values is
always subject to error; these errors accumulate as the number
of features, and therefore the number of parameters, increases.
In contrast, parameter errors decrease as the amount of train-
ing data increases. Thus, the amount of data available for train-
ing the function is an important factor in deciding how many
features to use. Simpler models (i.e., models using fewer fea-
tures) will typically generalize better to new data and may be
easier to implement within the constraints of real-time online
operation. Furthermore, fewer features may make the resulting
model easier to understand and thereby facilitate efforts to
develop further improvements.

There are two basic approaches to selecting a subset of fea-
tures from a larger collection of features. The first is to apply a
heuristic, a simple rule based on common sense or experience.
A very simple example of a heuristic would be to select only
the upper 10% of the features based on their individual abilities
to predict the correct output. The second approach is to include
in the parameter-calculation process a regularization step, in
which a constraint is placed on the parameters. An example of
regularization would be to place a limit on the sum of the abso-
lute values of the feature weights. These approaches restrict the
number and/or weights of the features used in the model.

A simple heuristic that selects those features best able to
predict the correct output when considered individually may
not identify the optimal feature set since, as discussed above,
correlations between the features may complicate matters.
Generally, features that make unique contributions to output
prediction are more useful. In addition, some features that do
not predict the output themselves may be valuable because
they suppress error in other features.



Ideally, a search for the optimal subset of features will con-
sider all possible combinations. However, this ideal approach is
often impractical due to the large number of features available.
One alternative is to use a stepwise heuristic. A forward stepwise
selection starts with the best individual feature (i.e., the feature
that gives the best prediction when used by itself) and consid-
ers each of the remaining features in a pair-wise combination
with this best feature. The optimal pair is selected on the basis
of some criterion, and then this process is repeated with that
pair being combined with each of the remaining features.
Alternatively, a backward selection procedure starts with all of
the features in the model and eliminates the one that contrib-
utes least to the prediction accuracy of the model. This process
is then repeated with the remaining set of features. It is also
possible to combine forward and backward procedures.
Whichever method is used, there must be some stopping rule
to determine at what point in the process the best model has
been selected. The stopping rule is generally based on some
criterion variable (such as 7 or the percent of outputs correctly
predicted). For example, the feature selection process might
continue until the change in * with each new iteration is no
longer significant.

A regularization approach to feature selection might apply
a penalty term to the feature weights during the step in which
parameter values are determined (see below). An example of
this approach is Lasso regression (Tibshirani, 1996). Applied
to a least-squares regression model, this method limits the sum
of the absolute values of the feature weights to a specific value.
As described by Tibshirani (1996), this method may be applied
so that many features receive weights of 0, which effectively
eliminates them from the model. Because this method of regu-
larization incorporates feature selection into the parameteriza-
tion process, it is referred to as an embedded technique.

PARAMETERIZING A MODEL

After selection of a model and the specific features to be
included in it, the next step is to assign specific values to the
parameters of the model. This step is generally referred to as
parameter estimation in recognition of the probable difference
between the parameters calculated from the training data and
the ideal parameters for new data. It recognizes that there is
almost always some error in parameterization.

Parameters can be estimated in a number of ways. For a
linear least-squares regression model, the parameters (i.e., fea-
ture weights and constants) can be computed directly by solv-
ing equation 8.2. Alternatively, they can be estimated by any of
several iterative optimization algorithms (e.g., Press et al., 2007).
These algorithms generate an approximate solution and then
refine it in repeated cycles until acceptable accuracy is obtained.
This approach has the advantage that it can also be applied to
nonlinear functions (e.g., support-vector regression). However,
iterative optimization algorithms are more computationally
intense than direct solutions and do not guarantee a solution
(i.e., they may never reach the desired degree of accuracy).

The parameterization process should also consider the
time frame of the training data (i.e., how much training data
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Figure 8.11 Three possible data-windowing methods. The training data
available at any given time are represented by the rectangles. The training data
actually used for parameterization are represented by the filled areas. (A) The
parameters are determined at Time 1 from the Time 0-1 data and are never
changed. (B) The parameters are determined at Time 1 using the Time 0-1
data and are redetermined at Time 2 using the Time 1-2 data. (C) The
parameters are determined as in B except that recent data are given more
weight. In contrast to the static window method in A, the sliding window
methods in B and C can track the changing statistics of the data.

should be used). This time frame is referred to as the data
window. Long data windows can provide more accurate param-
eter estimates. However, short time windows are more respon-
sive to changes (i.e., nonstationarity) in the data. According to
the static concept of BCI operation presented in figure 8.4A,
the best approach would be to use as much data as possible
since this should produce more accurate parameter estimates.
However, according to the often more realistic coadaptive con-
cept presented in figure 8.4C, the data window should be
shorter so as allow the parameters to track the changes in the
statistics of the data.

Figure 8.11 illustrates several possible data-windowing
schemes. In figure 8.11A, the parameters are estimated from
the data obtained between Times 0 and 1, and then are never
changed. In figure 8.11B, the parameters are estimated at Time
1 using the Time 0-1 data and re-estimated at Time 2 using the
Time 1-2 data. In figure 8.11AC, the parameters are estimated
as in 8.11B, except that recent data are given more weight. In
contrast to the scheme of figure 8.11A, those of figures 8.11B
and C can track the changing statistics of the data.

If the statistics of the data do not change over time (i.e., the
data are stationary) then the static data window illustrated in
figure 8.11A makes sense. However, the sliding window tech-
nique of 8.11B or C is more appropriate if the data are nonsta-
tionary. This might be the case, for example, if the user’s brain
signals change as a function of time of day or if the user gradu-
ally adapts to the BCI more effectively over time. Any BCI
translation algorithm could use this sliding window technique
by periodically changing the training data used for parameter-
ization. A smaller data window allows more accuracy in track-
ing changes in the data, whereas a longer data window provides
more stable estimates of parameter values. Thus, there is a
trade-off between tracking accuracy and stability.
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The method illustrated in figure 8.11C also uses a sliding
window, but in this case more recent data are given more influ-
ence in determining the parameters. The simplest example of
this approach is the least-means squares (LMS) algorithm
(Haykin, 1996). The LMS can be used to update the parameters
ofalinear function (e.g., eq. 8.1). To do this, the current param-
eter values are used to make a prediction of the next value of
Y(t). If Y'(t) is the predicted value, the prediction error e(?) is
given by:

et)=Y({)-Y'(t) (8.6)
and each parameter in the vector of parameters is updated
according to:

b{t+1)=b(t)+1-e(t)- X(t) 8.7)
where b(t+1) is the parameter vector at time t+1, [ is a learn-
ing-rate parameter that controls the rate of adaptation, and
X(¢) is the current feature vector. By this update, each param-
eter is changed a small amount in a direction that reduces the
error on the current trial. As a consequence, this method
should slowly converge on the best values for the parameters.
An update occurs with each new observation, and the algo-
rithm needs only to remember the parameters produced by the
last update. With a properly selected learning rate, the LMS
algorithm will track the least-squares solution for the parame-
ters. This algorithm is related to the back propagation algo-
rithm discussed earlier. The primary difference between them
is the nature of the model they use to parameterize.

The use of the LMS algorithm just discussed is an example
of supervised learning. Knowledge of the correct outcome is
used to adaptively estimate model parameters. This is possible,
for example, when labeled training data have been collected
during a calibration session in which the BCI user is asked to
produce certain outputs. However, in subsequent BCI use, the
user’s actual intent is not known by the BCI. As discussed by
McFarland, Krusienski et al. (2006), estimating some model
parameters does require labeled training data, whereas estimat-
ing others does not. For example, it is possible to estimate the
mean and variance of the features without knowledge of the
user’s intent. For a BCI cursor-movement application, this
information can be used to normalize the output of the transla-
tion algorithm in order to maintain constant cursor speed and
minimize directional bias. On the other hand, determining the
optimal feature weights requires knowledge of the user’s intent.

The LMS algorithm is the simplest and one of the most
widely used adaptive parameterization methods. More com-
plex adaptive methods (e.g., the recursive least squares [RLS]
and the related Kalman filter) have also been used to parame-
terize models in BCI translation algorithms (e.g., Black and
Donoghue, 2007).

Adaptive parameterization methods such as the LMS and
Kalman filter operate well when the error surface (i.e., the rela-
tionship of the output error to the feature vector and the labeled
output) is relatively simple. In situations in which the error
surface is complex, an adaptive method may converge on a
local error minimum and miss a much lower error minimum
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located elsewhere on the surface. Alternative optimization
methods such as evolutionary algorithms (e.g., genetic algo-
rithms and particle swarm optimization) are designed to avoid
such suboptimal local minima and thus may provide superior
parameterization in complex situations (Krusienski and
Jenkins, 2005).

EVALUATING TRANSLATION ALGORITHMS

MEASURING PERFORMANCE

The performance of BCI systems in general, and BCI translation
algorithms in particular, can be evaluated by comparing their
actual outputs with the correct outputs (assuming, of course,
that the correct outputs are known). A variety of evaluation
measures are available (McFarland, Anderson, et al., 2006).

ACCURACY
The simplest evaluation method is measurement of the accu-
racy for a given application. For example, in a P300 matrix
application, accuracy is the percent of total selections that are
correct. Although accuracy is a straightforward measure, it has
limitations that, depending on the BCI design and application,
may necessitate additional or alternative measures.

In some applications, different kinds or degrees of errors
are possible and may have very different consequences. For
example, in moving a cursor to select a particular icon, an error
could be failing to reach the icon, or it could be moving to
another (incorrect) icon. The first error simply wastes time,
whereas the second requires that a mistake be corrected.

Or, in the more graphic example summarized in table 8.1,
suppose a user is in a BCI-driven wheelchair that can either
move forward or stay in place. If the BCI correctly recognizes
the user’s intent, whether it is to move forward (a true positive
[TP] output) or to stay in place (a true negative [TN] output),
everything is fine. If the BCI fails to recognize the user’s intent,
its error can be an error of omission, a false negative (FN) or an
error of commission, a false positive (FP). In a FN error, the
user wants to move forward and the wheelchair stays in place.
The result is that the user loses time and may become frus-
trated. In a FP error, the user wants to stay in place and the
wheelchair moves forward. The result may be disastrous: if the
wheelchair is facing a busy street or the edge of a cliff the user
may be injured or killed. A BCI-driven wheelchair that makes
numerous FN errors and no FP errors is clearly preferable to
one that makes no FN errors and a few FP errors. Thus, in this

TABLE 8.1 Possible outcomes for a BCl-driven wheelchair

USER INTENT ACTION
WHEELCHAIR STAYS IN WHEELCHAIR MOVES
PLACE (N) FORWARD (P)
Move Error: User stays Correct (TP)
forward (P) in place (FN)
Stay in Correct (TN) Error: User may fall
place (N) off a cliff (FP)




example, accuracy alone is clearly not an adequate measure of
BCI performance.

A set of four measures is often used to assess performance
in a P/N selection of this kind. Expressed in terms of the four
possible outcomes described above, these measures are:

. Sensitivity (TP rate or Hit rate) = TP/(TP + FN)

. Selectivity (also called positive predictive value
or precision) = TP/(TP + FP)

. Specificity (also called negative predictive
value) = TN/(TN + FN)

« Accuracy = (TP + TN)/(TP + TN + FP + FN)

Depending on the nature of the P and N outputs, one or
another of these measures may be most critical. Thus, in the
example shown in table 8.1, in which a FP might be cata-
strophic, it is most important that selectivity be as close to
1.0 as possible. Accuracy alone is not an adequate measure of
performance.

Accuracy has other limitations as well. Two different trans-
lation algorithms may have identical accuracies, but one of
these algorithms may need much less time to produce each
output; accuracy alone does not capture this important perfor-
mance difference. Furthermore, accuracy alone does not cap-
ture the consistency of performance. For example, an algorithm
for which accuracy averages 90% but varies from day to day or
hour to hour from 40% to 100% may be less useful than an
algorithm with a stable accuracy of 80%.

A particularly troublesome problem with accuracy arises
in trying to compare performances when the number of pos-
sible choices is not constant. For example, it is not immediately
clear whether an accuracy of 90% for two possible outputs is
better or worse than an accuracy of 75% for four possible out-
puts. Making this determination may be important in config-
uring an application for a particular translation algorithm.

Although most BCIs to date use synchronous operating
protocols (see chapter 10, in this volume) in which the BCI
always knows when the person wants to use it, the most natu-
ral and flexible BCIs would use asynchronous protocols, in
which the BCI itself recognizes when the person wants to use
it (see chapter 10 for full discussion of thisissue). Asynchronous
protocols introduce the possibility of errors related to the BCI’s
need to recognize when the person wants to use it: in a false
negative error, the system fails to recognize the person’s desire
to use the BCI; in a false positive error, the system begins pro-
ducing BCI outputs when the person does not want to do so.

Finally, although accuracy can assess the performance of a
BCI that produces a succession of discrete output commands,
it may not be suitable for evaluating BCIs that produce
continuous outputs, such as cursor movements.

ASSESSING CONTINUOUS OUTPUTS
The performance of a BCI that produces a continuous output
can be evaluated with a continuous metric. The squared differ-
ence between the actual output and the correct output at each
point in time (i.e., the prediction error) is frequently used for

this purpose. If all the squared prediction errors are summed,
then the resulting statistic is x* (i.e., chi-squared). The x* statis-
tic represents the variance in the output that is due to BCI error.
This value is often normalized by dividing by the total variance
in the output, giving the proportion of the total variance due to
error, or 1 — 7%, The proportion of the variance in the output
that is accounted for by the model is then 72 These statistics
can be used to summarize goodness-of-fit for both discrete
and continuous data.

Error is often quantified in the engineering field in terms of
root-mean-squared error (RMS). This metric is the square root
of the average squared error (i.e., difference between actual and
correct outputs). It is similar to measures used in statistics in
that it is based on the squared difference between predicted
and observed results.

If one simply added up all of the prediction errors made by
a BCI, the sum would tend to be zero since positive errors
would tend to cancel out negative errors. This can be avoided
by summing their absolute values (i.e., ignoring their sign) or
by summing their squared values. Historically, squared differ-
ences have been used because they are more tractable with
traditional (i.e., precomputer) methods. However, modern
computer technology has removed previous practical limita-
tions on computations. As a result, modern machine-learning
algorithms (e.g., support vector machines [see above]) often
assess error as an absolute (i.e., Euclidean) difference between
actual and correct output.

MINIMIZING ERROR VERSUS

MINIMIZING COMPLEXITY
All other things being equal, the translation algorithm that
produces the lowest prediction error should be used. However,
as noted earlier, there are other important considerations, such
as level of simplicity. Simpler models may generalize better to
new data or may be easier to implement in real-time operation.
Model complexity is usually evaluated in terms of the number
of parameters that must be estimated. Often models with more
parameters can achieve lower prediction error, at least on train-
ing data. Hence, there is often some trade-off between error
and complexity. One objective method for selecting the opti-
mal model is to minimize Akaike’s information criterion (AIC)
(Akaike, 1974), which is a weighted combination of prediction
error and model complexity. Akaike’s criteria can be expressed
in terms of 7% as:

AIC=2k+nIn(1—-r*)/n (8.8)
where k is the number of parameters in the model and # is the
sample size (e.g., the size of the training set). Thus, AIC
decreases as the prediction error and/or the number of param-
eters decreases. The optimal trade-off between error and com-
plexity is not clear. The uncertainty concerns how to determine
the relative importance of error versus simplicity. A variety of
alternatives have been proposed (see Stoica and Selen, 2004,
for review).

In evaluating performance, it is usually more informative
to compare different translation algorithms rather than to eval-
uate single algorithms in isolation. When one asks whether a
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translation algorithm does a good job of producing the correct
output, the answer depends in large part on what other alterna-
tives exist. As an example, a common use of AIC is to compare
models of different complexity and select the one with the
lowest value. In this way, an optimum combination of accuracy
and complexity might be obtained.

BIT RATE AS A MEASURE OF BClI PERFORMANCE
Wolpaw et al. (2002) suggested evaluating BCI performance
using bit rate. Bit rate, or information transfer rate, is the stan-
dard method for measuring communication and control sys-
tems. It is the amount of information communicated per unit
time. Based on Shannon and Weaver (1964) and summarized
very well in Pierce (1980), this measure incorporates both
speed and accuracy in a single value. Bit rate has been most
commonly applied to assess the performance of an entire BCI
system, rather than its translation algorithm in isolation.
Appropriately applied, it can be a very valuable measure.
Inappropriately applied, it can provide results that are mislead-
ing or irrelevant.

Figure 8.12 shows the relationship between accuracy and
bit rate for different numbers of possible selections. Bit rate is
shown both as bits/trial (i.e., bits/selection), and as bits/min
when 12 selections are made per minute (e.g., a reasonable rate
for a P300-based BCI). For example, the bit rate of a BCI that
has a 10% error rate with two choices is equal to that of a BCI
that selects among four choices with a 35% error rate. This
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Figure 8.12 Information transfer rate in bits/trial (i.e., bits/selection) and in bits/
min (for 12 trials/min) when the number of possible outputs (i.e., N)is 2, 4, 8,
16, or 32. As derived from Pierce (1980) (and based on Shannon and Weaver,
1964), if a trial has N possible outputs, if each output has the same probability
of being the one that the user desires, if the probability (P) that the desired
output will actually be produced is always the same, and if each of the other
(i.e., undesired) outputs has the same probability of selection, that is,
(1-P)/(N - 1), then bit rate, or bits/trial (B), is: B = log,N + Plog,P + (1 - P)
log,[(1 = P)/(N = 1)]. For each N, bit rate is shown only for accuracy >100/N
(i.e., 2chance). (From Wolpaw et al., 2002)
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figure provides an objective answer to a question posed earlier
in this section: an error rate of 10% with two choices is worse
than an error rate of 25% with four choices.

The great importance of accuracy, illustrated in figure 8.12,
is often not fully appreciated in BCI research. With two choices,
90% accuracy is literally twice as good as 80%, and only half
as good as 100%. Bit rate provides an objective measure for
measuring improvement in a BCI translation algorithm and
for comparing different algorithms. It can also help select
among different applications (Wolpaw et al., 2002). Other
measures based on Shannons theory (Shannon and Weaver,
1964; Pierce, 1980), such as mutual information (Schlogl et al.,
2002), are also useful.

At the same time, in using bit rate to assess BCI perfor-
mance, it is important to realize that this measure can be
applied to a given application in different ways, and the result-
ing values for bit rate may differ greatly (even by orders of
magnitude) (Luce, 2003). For example, in a cursor-movement
application, bit rate might be calculated for the trajectory of
cursor movement or simply for the resulting output selection.
The former method may produce much higher bit rates than
the latter because the information needed to specify a trajec-
tory is usually much greater than that needed to select among
a limited number of outputs. The difference may be further
accentuated if the analysis focuses only on the early part of the
movement (e.g., the first 0.5 sec) and thus uses a very small
denominator for calculating bits/time.

In general, in applying bit rate to assess BCI performance,
two principles should be observed. First, the numerator (i.e., the
information) should be the information in the final output of the
given application, not the information in some part of the pro-
cess that leads to the output. For example, in a cursor movement
application, the information in a trial is defined by the number of
possible outputs, not by the details of the movement. Second, the
denominator (i.e., the time) should be the total time needed for
an output, not the time occupied by some limited segment of the
process that leads to the output. For example, in a P300 matrix
application, the time is the total time from the beginning of one
selection (i.e., trial) to the beginning of the next. In sum, if bit
rate is to be most useful in evaluating BCI performance, it should
be applied in a way that approximates as closely as possible the
actual performance of the BCI for its user.

There is probably no single evaluation measure (not even
bit rate) that is sufficient for all BCI applications. For example,
in terms of bit rate, a BCI transmits information if its error rate
is less that 1-(1/N), where N is the number of possible outputs.
Thus, a P300-based 6 x 6 matrix BCI application, which has 36
possible outputs, transmits information as long as it makes
errors on less that 1-(1/36) (i.e., <97.2%) of the selections.
However, in reality, this application is of practical value only if
its error rate is much lower, that is, 30% or less (Sellers et al.,
2006). If the error rate is higher, the frequent need for correc-
tion (e.g., backspacing in a spelling application) renders the
system unacceptably slow. Nevertheless, measures such as bit
rate and r* are extremely useful in comparing different BCI
translation algorithms, and they are essential for providing
benchmarks for the iterative processes of developing and
optimizing new alternatives.



THE GOLD STANDARD: ONLINE EVALUATION

BCI systems operate in real time. The user and the BCI system
must interact effectively to ensure that the users intent is
accomplished. The user must produce brain signals that the
BCI can interpret, the BCI must translate these signals into
outputs, and the user must be informed of these outputs in a
timely fashion so that he or she can continue to generate sig-
nals that embody the desired intent. As a result, the ultimate
test of any BCI translation algorithm is how it performs in
actual real-time operation. In engineering terms, this is called
closed-loop performance: the BCI user is continually aware of
the consequences of BCI operation and can therefore adjust
the brain signals to ensure that the correct intent continues to
be accomplished. Real-time performance is the ultimate test of
the ability of a translation algorithm to generalize to new data.
The real-time environment ensures that training and test data
are independent. Thus, effectiveness in real-time, closed-loop
performance is the gold standard for evaluating BCI transla-
tion algorithms. Although closed-loop performance is the
ideal method for comparing alternative algorithms, it is often
difficult to implement direct comparisons, particularly when
many different algorithms or different variations of a single
algorithm need to be compared.

The impact of closed-loop performance on the user (and
the BCI if it too adapts) may be complex and may develop
gradually over prolonged performance. Individual users typi-
cally differ widely in their initial characteristics and/or in their
subsequent adaptations during closed-loop performance. In
addition, the consequences of closed-loop experience with a
given algorithm make it very difficult to adequately compare
several different algorithms in a single person. As a result,
closed-loop evaluation is extremely time consuming and labor
intensive, and it is generally only practical after the set of pos-
sible algorithms has been winnowed down to a small number
of particularly promising alternatives.

Thus, for a given BCI application, the process of evaluating
different models and different methods for selecting their features
and determining their parameters typically begins with paradigms
simpler than closed-loop operation, paradigms that facilitate the
comparison of large numbers of alternatives. The common feature
of these paradigms is that they do not evaluate the consequences
of providing the output of the BCI to the user in real time; that
is, they do not involve closed-loop operation. Rather they
employ offline analyses of BCI data already acquired.

The most effective BCI research will usually incorporate
both offline and online evaluations. Offline evaluations can be
used to identify a small number of particularly promising
alternatives, which can then be submitted to online closed-
loop testing (e.g., Krusienski et al, 2008; McFarland and
Wolpaw, 2005). By identifying the best of these few alterna-
tives, the online results may lead to a new series of offline eval-
uations comparing different versions of this algorithm, and the
new offline results may in turn lead to new online studies. This
iterative offline/online research process may prove particularly
effective in optimizing BCI function. Up the present however,
this coordinated research design has been relatively rare in BCI
research.

Finally, it should be noted that, although the online evalu-
ations that do occur usually involve normal volunteers for rea-
sons of practicality, the BCI users most appropriate for these
studies are the people for whom the particular BCI application
is intended. The many different neuromuscular disorders that
create the need for BCI-based communication and control
may themselves affect a user’s interactions with a BCI system,
and thus the performance of the translation algorithm.

THE WORKHORSE OF BClI RESEARCH:
OFFLINE EVALUATION

Offline evaluations have clear limitations. Most important,
they cannot evaluate the impact of differences among algo-
rithms in the ongoing feedback they provide during online
closed-loop operation. Thus, they cannot address how well a
particular algorithm enables and encourages the continual
adaptations of user to system and system to user that are fre-
quently essential for stable and effective BCI performance.

Offline evaluations may also have additional limitations
specific to particular BCI applications. For example, a BCI
action in which the user moves a cursor to a desired icon on a
screen typically ends when an icon is reached. As a result, the
time necessary is a function not only of the user’s brain signals
but also of the algorithm that translates those signals into
cursor movement. Thus, if an offline evaluation applies a new
algorithm to brain signals that were gathered during online
operation with a different algorithm, the stored data may not
be sufficient, that is, the brain signals may run out before the
new algorithm brings the cursor to an icon.

Nevertheless, when applied appropriately, and when used
mainly to guide selection of particularly promising algorithms
for subsequent online testing, offline evaluations are extremely
valuable, indeed essential, in BCI research and development.

ALTERNATIVE PARADIGMS FOR OFFLINE

EVALUATIONS
Three kinds of paradigms are commonly used for offline evalu-
ations in BCI research. Two of these collect brain signals during
open-loop performance and then, in offline analyses, compare
the effectiveness of different algorithms in producing the
appropriate output.

In the first type of paradigm, BCI users simply engage in
cognitive operations such as mental arithmetic or mental rota-
tion of a geometric figure without feedback of any kind, and
brain signals are recorded while they do so. (Many common
psychophysiological experiments provide data of this kind.)
The goal is then to devise a translation algorithm that can
determine from the brain signals which operation the person
was engaged in. (Often the evaluation stops at this point and
does not proceed to online real-time experiments in which the
subject uses these cognitive operations to produce specific BCI
outputs in closed-loop BCI operation.)

In the second type, brain signals are recorded while sub-
jects are using the BCI, but the subjects are told what outputs
to produce and are not given feedback as to the outputs
actually produced. The resulting signals are analyzed offline
with the different candidate algorithms, and the results are
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compared. The algorithms giving the best results (i.e., the clos-
est match between correct output and actual output) may then
be compared in online closed-loop performance.

The third kind of offline paradigm collects data during
closed-loop operation with a particular translation algorithm
and then in offline analyses compares the performance of a set
of candidate algorithms. This paradigm is most appropriate
when ongoing user adaptation is minimal (e.g., in a P300-
based BCI) or when the candidate algorithms to be compared
do not differ greatly from each other. For example, Krusienski
et al. (2006) used data from a P300-based matrix speller to
compare the performance of five methods: Fisher’s linear dis-
criminant; stepwise discriminant analysis; a linear support
vector machine; a support vector machine with a Gaussian
kernel; and Pearson’s correlation of univariate features.
Although performance did not differ markedly among these
techniques, Fisher’s linear discriminant and stepwise discrimi-
nant analysis produced the best overall results.

CROSS-VALIDATION IN OFFLINE

EVALUATIONS
The primary goal in developing a new BCI translation algo-
rithm is an algorithm that performs well with new brain sig-
nals as well as with those used to develop the algorithm. That
is, the algorithm must generalize well to future data. Thus, its
performance should be evaluated using data different from
those used to define and parameterize it. This process is called
cross-validation.

In the simplest cross-validation scheme, the data are
divided into a training set and a test set. The training set is used
to parameterize the algorithm, and then the test set is used to
evaluate its performance. This method works well when there
is a large amount of data available. Ideally, the training set
should include enough data to avoid over-fitting (see above),
and the test set should have enough data to get an accurate
estimate of performance. Often, however, the data are limited.
Thus, it is common to use a resampling scheme such as K-fold
cross-validation. In K-fold cross-validation, the data set is
divided into K partitions. Each of the K subsamples is used
once as the test set while the remaining K - 1 samples are used
for training; that is, each subsample provides one fold of the
cross-validation. The results for the K folds are then averaged
to yield the final cross-validation performance of the algo-
rithm. Other methods are also possible. For example, in the
bagging method (Li et al., 2010), training and test sets are cre-
ated by repeated random sampling of the entire body of data
(i.e., partitions are created by sampling the data with no restric-
tion on how often a given sample is used).

EVALUATING SPECIFIC ASPECTS
OF TRANSLATION ALGORITHMS

The examples given in preceding sections illustrate the com-
plexities involved in comparing algorithms that may differ in a
variety of ways (e.g., type and number of features used, model
type, amount of training data, parameterization method, etc.).
What is most apparent is that it is not possible to arrive at
simple conclusions about which algorithms are best. Multiple
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factors (e.g., the amount of training data available) affect how
different algorithms perform relative to each other. Although it
is probably safe to say that more complex models usually
require more training data, further research is needed to deter-
mine how specific aspects of different model families interact
with the characteristics (e.g., amounts, stationarity) of the
training and test data.

EVALUATING DIFFERENT MODELS
In comparing different models for use in translation algo-
rithms, it is often important to consider which differences
between models are most relevant and to what extent these dif-
ferences can be changed. For example, an investigator may
observe a difference in performance between a Fisher’s linear
discriminant model and a support vector machine that uses
Gaussian kernels. This difference could be due to several fac-
tors, such as the fact that the support vector machine uses the
kernel function to deal with nonlinearities. However, a kernel
function can also be used with Fisher’s linear discriminant
(Miiller et al., 2001), and this might markedly change the per-
formance difference between the models. Similarly, a regular-
ization parameter, which is implicit in a support vector
machine, can also be used by a Fisher’s discriminant. Thus it
should be possible to determine what specific aspects of these
two algorithms account for differences in their performances.

Lotte et al. (2007) reviewed the literature on BCI classifica-
tion algorithms. They noted that either regression or classifica-
tion algorithms can be used but that classification algorithms
were the most popular approach. Thus, it was the one they
reviewed. They concluded that support vector machines gener-
ally performed well and attributed this to their use of regular-
ization (see Feature Selection section above). They also
discussed the need for systematic comparisons of classifiers
within the same context. It should be noted that most of the
work that they reviewed involved offline data analyses.

CONSIDERING THE AMOUNT
OF TRAINING DATA
A number of studies have found that the relative performance
of different model classes can vary with the amount of data
available for training. For example, Vidaurre et al. (2007) used
spectral features from data collected while subjects imagined
left- or right-hand movements to compare linear, quadratic,
and regularized discriminant functions in regard to their accu-
racy in determining for each trial which movement the subject
was imagining. They found that the results of the comparison
depended on the amount of data used for training the func-
tions. With a small amount of data available for training, the
linear discriminant function performed best. With more data
available for training, the three functions performed similarly.
Besserve et al. (2007) also examined the effect of the amount of
data available for training a translation algorithm. They used
spectral features from EEG data collected while subjects per-
formed a visuomotor tracking task to reproduce the track.
They compared three models: a linear discriminant; a support
vector machine; and a k-nearest-neighbor algorithm. With
large sets of training data, the three algorithms performed sim-
ilarly as more features were included in the models. However,



with smaller data sets, the performance of the linear discrimi-
nant function declined more sharply than those of the other
two models as additional features were added. The very differ-
ent conclusions these two studies reach as to the value of
linear discriminant functions illustrate the inconsistencies in
the literature and the complexities involved in selecting meth-
ods for specific purposes.

EVALUATING FEATURE SELECTION
Several offline studies have evaluated the feature-selection pro-
cess. Millan et al. (2002) used spectral EEG features from data
collected while the subject imagined motor movements. They
showed that selecting only the most relevant features improved
performance. Krusienski et al. (2008) used data from a P300-
based BCI matrix-selection application to examine the effects
of including various subsets of electrodes in a stepwise linear
discriminant analysis. They found that larger numbers of elec-
trodes could improve performance and they identified a set of
eight electrodes that was extremely effective. Krusienski et al.
(2008) went on to validate this offline result in online testing
and thus showed that, in this example at least, offline results
did generalize to online closed-loop performance.

McFarland and Wolpaw (2005) reported offline analyses
exploring the effects of feature selection in a BCI application
that used spectral features of EEG sensorimotor rhythms to
control cursor movements. They found that a small subset of
features chosen by stepwise regression produced r* values
nearly as large as those produced by the entire feature set. They
then showed that these results did generalize to online closed-
loop performance.

Overall, these studies indicate that careful attention to
selecting (from among the many features usually available)
only those features most relevant to the specific BCI applica-
tion helps to achieve translation algorithms that are simpler
and perform better in online closed-loop operation.

EVALUATING ADAPTIVE ALGORITHMS
Several groups have explored the use of adaptive BCI transla-
tion algorithms. Their studies show that adaptation is benefi-
cial and suggest which aspects of translation are most
worthwhile to adapt. The superiority of adaptive algorithms is
not surprising, since numerous factors can contribute to non-
stationarities in the data. These factors include: technical fac-
tors such as variations in electrode placement or impedance;
general user factors such as warm-up and fatigue and sponta-
neous variations; and application-specific user factors such as
learning. Shenoy et al. (2006) showed that the statistics of the
data may change between calibration and online control. To
calibrate a linear discriminant algorithm, they asked subjects
to engage in several motor-imagery tasks in response to visual
stimuli and extracted features from the EEG data by a common
spatial patterns analysis. They then used the algorithm online
to move a cursor in a two-target application and found that
the statistics of the data were different for calibration and
online operation. They showed that performance was improved
by using any of several simple adaptive procedures to update
the parameters of the algorithm. It was not necessary to
modify feature selection. They discussed factors likely to cause

differences between the calibration data and the online data,
such as the greater demand for visual processing during online
operation. The change in the data between calibration and
online performance further emphasizes the importance of
online closed-loop testing.

Linear regression algorithms are frequently employed in
BClIs that use features derived from cortical single-neuron
activity (e.g., neuronal firing rates [Serruya et al., 2002; Taylor
et al., 2002]). Wu and Hatsopoulos (2008) examined single-
neuron data offline from monkeys that had been operantly
conditioned to perform a target-pursuit application. They
showed that an adaptive Kalman filter was more accurate than
stationary algorithms in predicting arm position, and they
suggested that this reflects the fact that the motor system
changes over time.

In an online study, Vidaurre et al. (2006) evaluated the
effects of algorithm adaptation on performance of a two-target
cursor-movement application controlled by spectral features
of EEG recorded over sensorimotor cortex. They found that
adaptive algorithms performed better than static algorithms.
Furthermore, continuous adaptation was superior to periodic
(i.e., between sessions) adaptation. They suggest that adaptive
algorithms are particularly useful for training inexperienced
BCI users, who often produce less stable patterns of brain
activity.

At the same time, it is likely that adaptation is more impor-
tant for some BCIs than for others. For example, learning
effects appear to be much more prominent in BCIs that use
sensorimotor rhythms than in those that use P300 responses.
Thus, adaptive algorithms, especially those capable of continu-
ous ongoing adaptation, are likely to be more valuable for sen-
sorimotor rhythm-based BCIs.

DATA COMPETITIONS

The BCI research community has invested considerable effort
in facilitating offline evaluations and comparisons of alterna-
tive BCI translation algorithms. In this vein, several data com-
petitions have been organized (Sajda et al., 2003; Blankertz
et al., 2004; Blankertz et al., 2006), with entries submitted by
researchers from around the world. In these competitions sev-
eral data sets, each consisting of data collected with a variety of
closed-loop or open-loop paradigms (e.g., P300-based BCI
data, sensorimotor rhythm-based BCI data, self-paced tapping
data), are provided to the research community. Typically, a
portion of each set is training data, and is provided with labels
as to the correct BCI outputs, while the rest of the set com-
prises test data for which the correct outputs are not provided.
The task of the contestants is to determine the correct outputs
for the test data. Their performances in doing this determine
the results of each competition.

In assessing the results of these competitions, Blankertz
et al. (2004) noted that some entries had accuracy near chance
on the test data, suggesting that their methods, although per-
haps performing well with training data, did not generalize well
to the test data. In contrast, other entries produced excellent
results for the test data. Blankertz et al. (2006) also found that
most of the competition winners employed linear methods (e.g.,
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Fisher’s linear discriminant or linear support vector machine).
They also noted that several winning algorithms incorporated
both time-domain and frequency domain measures.

Although these data competitions provide useful sugges-
tions for algorithm improvements, it is still difficult to assess
the relative merits of the approaches employed because, while
the results depend in part on the algorithms employed, they
also depend on how well the algorithms were implemented. In
addition, since the entries differed in multiple respects (e.g.,
different preprocessing and signal extraction methods as well
as different translation algorithms), the contribution of each
difference to the superiority of one entry over another is often
not clear. Moreover, since most of the BCI competition data
sets have been rather small, the differences among the most
successful entries have often not been statistically significant.
Finally, because these competitions necessarily involve only
offline evaluations, their results still require online closed-loop
testing to establish their validity.

SUMMARY

A BCI translation algorithm uses features extracted from brain
signals to produce device commands that convey the user’s
intent. The core component of an effective translation algo-
rithm is an appropriate model. A model is a mathematical
abstraction of the relationship between independent variables
(i.e., brain signal features) and dependent variables (i.e., the
user’s intent as expressed by the BCI outputs). Depending
on the BCI application, the model may produce discrete
categorical outputs (i.e., classification) or continuous output
along one or more dimensions (i.e., regression). Models may
take many forms and may be simple or complex. The two other
components of a translation algorithm are the method for
selecting the features used by the model and the method for
determining the model’s parameters (e.g., the weights applied to
the features).

The primary goal in developing a translation algorithm is
to maximize its ability to generalize to new data, since BCIs
must operate online in real time. Success in post-hoc data anal-
ysis, although helpful in developing an algorithm, is not suffi-
cient. As an overall principle, generalizability increases as the
amount of data used for parameterization increases, and it
decreases as the number of features (and thus the number of
parameters) increases. At the same time, changes over time in
the brain signal features (e.g., due to spontaneous variations,
learning, technical factors) may prompt the development and
use of adaptive translation algorithms (e.g., algorithms that
reparameterize their models periodically).

Linear models such as Fisher’s discriminant analysis and
multiple regression have been used in BCIs for some time.
More recently, alternative approaches such as Bayesian meth-
ods and support vector machines have also become popular.
Many trade-offs must be considered in selecting from among
these general families of models, as well as in selecting features
for and parameterizing a particular model. Complex models
sometimes fit existing data better than simple models, but they
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may not generalize as well to new data. Limiting the model to
only the most relevant signal features often improves its ability
to generalize.

BCI development relies heavily on offline analyses of data
gathered during BCI operation or during a wide variety of
open-loop psychophysiological studies. These analyses can be
extremely useful in comparing different models, different fea-
ture selection methods, and different parameterization meth-
ods. In this work, it is imperative to test alternative algorithms
on data sets different from those used to parameterize them
(i.e., it is necessary to cross-validate them).

At the same time, however, offline analysis cannot establish
how well an algorithm will perform in actual online closed-
loop operation, because it cannot reproduce the unpredictable
ongoing interactions between the new algorithm and the BCI
user. Thus, once offline analyses have identified the most prom-
ising algorithms, these algorithms should be assessed in actual
online closed-loop evaluations. Whereas online studies of
normal volunteers are useful and are often most practical, the
BCI users most appropriate for these studies are the people with
severe disabilities for whom BCI applications are primarily
intended. Thus, they should be included whenever possible.
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9 | BCI HARDWARE AND SOFTWARE

J. ADAM WILSON, CHRISTOPH GUGER, AND GERWIN SCHALK

ardware and software are critically important in imple-

menting brain-computer interfaces (BCls) and in

ensuring that they function effectively in real time.
Indeed, the recent advent and wide availability of powerful,
inexpensive hardware and software are some of the principal
factors responsible for the recent explosive growth in BCI
research and development. BCI hardware provides the physi-
cal means through which brain signals are acquired, digitized,
stored, and analyzed. It typically includes the sensors that
detect brain activity, an amplifier with an analog-to-digital
converter, a computer that processes the digitized signals,
and the cables that connect these components to one another.
BCI software controls the storage and analysis of the digitized
signals and their conversion into outputs that achieve the user’s
intent.

Effective development of BCI hardware and software pres-
ents some challenges that are often not present in the develop-
ment of other technologies. For example, since it is as yet
unclear which sensor modalities, which brain signals, and
which processing methods are optimal for any given BCI appli-
cation, it is necessary to evaluate and compare the efficacy of
many different sensors, brain signals, and processing methods.
At the same time, there is little commercial interest in explor-
ing these issues since the target BCI-user population is rela-
tively small. In many ways this situation mirrors that of the
early days of computer technology, a time that was character-
ized by small market opportunities and little technical stan-
dardization. Success in such early stages of development hinges
on the capacity to quickly evaluate and compare many differ-
ent promising options. As a result, a crucial function of BCI
technology is to ensure not only that a given BCI system can be
implemented but also that this implementation can be accom-
plished rapidly and efficiently. In other words, it is essential to
optimize the processes that transform new BCI designs into
functioning implementations.

Such process optimizations may be achieved with widely
available and widely applicable sets of clearly defined technical
specifications and the tools based on those specifications. For
example, in early computer development, the introduction of
the RS-232 standard for serial connectivity, and connectors
based on that standard, removed the need to develop a new
communication protocol for every new printer or other device,
thereby greatly facilitating the subsequent development and use
of all kinds of input/output devices. Similarly, use of appropriate
sets of specifications and tools for hardware and software should

also be useful in BCI development, particularly as development
of new BCI systems becomes progressively more complex.

To work successfully, such sets of specifications and tools
must satisfy two criteria. First, they need to be applicable to a
well-defined and large set of needs. For example, specifications
of a unique electrode configuration that are applicable to only
a very small range of needs would likely find only limited use.
In contrast, specifications for connectors (e.g., for implanted
devices or EEG caps) could be used for a wide range of BCI
applications, and thus wide adoption is more likely. Second,
such technical specifications need to be accompanied by a
number of implementations that can be readily used. For the
example of the connector specifications, these implementa-
tions may be physical connectors in different shapes and sizes,
adapters for other common connectors, and so forth. For BCI
software, technical specifications should be accompanied by
a set of software implementations that realize the technical
specifications. In addition to these two criteria, the technical
specifications and their implementations must be properly
communicated to the engineers who build the BCI systems.

This chapter discusses the key components of the hardware
and software currently used in BCI research and design, and it
describes evaluation procedures that can help ensure that
research BCI systems perform as desired. (Other BCI systems,
such as those used for commercial purposes, will likely incor-
porate a closed system consisting of a digital signal processing
[DSP] chip, a field-programmable gate array [FPGA], or other
fixed solutions tightly integrated with the amplifier and device
output or display [Brunner et al., 2011].) The chapter is divided
into three major sections. The first section covers BCI hard-
ware and describes the sensors that detect brain signals, the
components that amplify and digitize these signals, the inter-
face hardware that connects different components, and the
client hardware that runs BCI software. The second section
covers BCI software and describes: the data acquisition com-
ponents that record, digitize, and store brain signals; the sig-
nal-analysis components that extract signal features that
represent the user’s intent and that translate these features into
commands that embody the user’s intent; the output compo-
nents that realize that intent; and the operating protocol that
determines the configuration, parameterization, and timing of
operation. This section also presents important principles for
designing BCI software and lists software tools currently used
for BCI research. Finally, a section on evaluation procedures
describes the components of the timing characteristics of a
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BCI system and the procedures to evaluate them, with repre-
sentative results.

HARDWARE

SENSORS

Sensors detect physiological signals and transform them into
voltages that can be amplified and digitized for processing by a
computer so that they can ultimately provide useful output
signals. Most BCI systems use electrophysiological sensors (e.g.,
electroencephalographic [EEG] electrodes, electrocorticographic
[ECoG] electrode grids, or micro-, needle, or wire electrodes).
BCls can also use sensors that detect magnetic or metabolic sig-
nals, (e.g., magnetoencephalography [MEG] (Mellinger et al.,
2007), functional near-infrared spectroscopy [fNIRS], or func-
tional magnetic resonance imaging [fMRI]). Because most cur-
rent BCIs use electrophysiological signals, the discussion
presented here focuses primarily on electrophysiological tech-
niques. Methods using nonelectrical sensors are discussed in
chapters 4 and 18 as well as in chapter 3 of this volume (MEG).
In all electrophysiological techniques, electrodes detect the
electrical voltage generated by neuronal activity and pass it to
the amplification unit. Although the different types of elec-
trodes share similar operating principles in serving this func-
tion, their design (e.g., size, material, geometry) usually
depends on the recording location (e.g., the scalp, the cortical
surface, or within the cortex) and the application for which
they are used. Figure 9.1 shows four types of sensors. For EEG

recordings (fig. 9.1A), the electrodes are placed on the scalp
and are not in direct electrical contact with the conductive
tissue, so conductive electrode gel is usually applied between
the electrode and the skin (although “dry electrodes,” not using
gels, are currently under development [e.g., (Popescu et al.,
2007; Taheri et al., 1994]). Other sensors, such as ECoG elec-
trodes (fig. 9.1B) or microelectrodes (figs. 9.1C and D), are in
direct electrical contact with conductive tissue and thus do not
require conductive gels. Figure 9.2 shows the locations of EEG,
ECoG, and intracortical electrodes.

Sensors do not measure the electrical potential at a single
electrode but, rather, the potential difference between two
electrodes (see chapters 3 and 6, this volume). Different elec-
trode configurations (or montages) are used depending on the
electrode type and location and on the kind of information to
be obtained from the recording. The two most commonly used
configurations are called monopolar and bipolar montages
(although as explained in chapter 3, all recordings of voltage
are, strictly speaking, bipolar since they necessarily measure a
potential difference between two locations). In a bipolar mon-
tage, the signal recorded from each electrode is the potential
difference between it and another electrode placed over a dif-
ferent brain area. In this case both electrodes are usually sensi-
tive to brain activity, that is, both are considered to be signal
electrodes. In contrast, in a monopolar montage, the signal
recorded from each electrode is the potential difference
between it and a designated reference (or common) electrode,
which is most often placed at some distance from the brain.
The reference electrode is usually considered to be neutral

Figure 9.1 (A) A single EEG electrode (image courtesy of Grass Technologies, West Warwick, Rl) (B) X-ray showing two implanted subdural Ad-Tech ECoG electrode
grids and a short strip of 4 electrodes (Ad-Tech, Racine, WI). (C) The Utah/Cyberkinetics microelectrode array (Maynard et al., 1997). (D) One configuration of the

Michigan microelectrode array (Kipke et al., 2003).
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(i.e., largely insensitive to brain activity) (see chapter 6 of this
volume for full discussion of this complex issue). (An example
of a nonneutral reference is the mastoid in an EEG experiment
that involves activity in auditory cortices [which are located
near the mastoid].) Thus, in a bipolar montage every signal
electrode is referenced to another signal electrode. In contrast,
in a monopolar montage, every signal electrode is referenced
to a neutral electrode. These configurations can be used
whether one is acquiring signals by EEG, ECoG, or microelec-
trode recording. (It should be noted that, in traditional EEG
parlance, signal and reference electrodes were often referred to
as active and inactive electrodes. However, at present the term
active is generally used as defined later in this chapter, and
inactive has largely disappeared.)

ELECTROENCEPHALOGRAPHY
Introduction to EEG

The most common method for recording brain signals in
humans is electroencephalography (EEG), which is noninva-
sive, safe, and relatively inexpensive. EEG is recorded with elec-
trodes placed on the scalp. It is the summation of the electrical
activity of thousands to many millions of synapses, neurons,
and axons in the underlying brain, particularly the cortex, that
produces detectable scalp voltages, as described in chapter 3
(Fisch and Spehlmann, 1999). Many factors influence the over-
all quality of the signal, including the strengths of the sources
and their distances from the electrodes, the locations of the
electrodes on the scalp, the electrical impedances of the elec-
trodes and of the tissues between them and the sources, and the
recording montage. It is estimated that at least 6 cm? of syn-
chronized cortical activity is required to generate a reliably
detected scalp potential (Nunez and Srinivasan, 2006). Chapters
3 and 6 in this volume discuss the basic principles of EEG
recording in detail. Here, we review the types of EEG electrode
types, their electrical characteristics, and their placement.

EEG Electrode Design

As discussed in chapter 6, EEG electrodes can be made of
different metal or metal/metal-salt combinations; the choice of
metal can have a significant impact on the type and quality of
recordings. The most commonly used EEG electrodes are made
of gold, tin, or silver/silver-chloride (Ag/AgCl) (fig. 9.1A). Gold
and tin electrodes are maintenance-free and have a good fre-
quency response for most EEG purposes. For recording EEG
signals that include frequencies below 0.1 Hz, Ag/AgCl elec-
trodes provide superior results. In order to reduce large offset
(i.e., DC) potentials, all electrodes connected to the same ampli-
fier should use the same material. Nonetheless, even when iden-
tical materials are used, small offset potentials can be accentuated
by movement artifacts, as described later in this chapter.

EEG electrodes can be passive or active. Passive electrodes
are simply metal disks (made of either tin, silver, silver/silver
chloride, or gold-plated silver) that are connected to an ampli-
fier by a cable. A good electrode-scalp interface is critical for
obtaining good recordings. This is achieved by cleaning or
lightly abrading the skin and using conducting gels at the inter-
face between the scalp and the electrode to allow current to
travel from the scalp to the sensor and then along the cable to

the amplifier. Since the amplitude of brain signals is small, they
are susceptible to contamination by movements of the cable
and by environmental electromagnetic noise such as power-
line interference. Thus, it is often important to shield, shorten,
and stabilize the cable. Passive electrodes are relatively
inexpensive and are used in the vast majority of clinical and
research EEG recordings.

In contrast, active electrodes contain a preamplifier with a
1-10x gain built inside the electrode. Although this added
component itself adds some noise (because the input imped-
ance and the signals are larger), it also makes the electrode
considerably less sensitive to such factors as environmental
noise and cable movements. Consequently, active electrodes
can perform well in environments with higher environmental
noise or higher electrode-skin impedance. Like passive elec-
trodes, active electrodes require gel at the interface between
the scalp and the electrode.

The gels used with EEG electrodes are necessary but not
ideal for long-term recording because they usually dry out and
stop functioning after some time. Thus, a number of research
groups are trying to develop dry electrodes, i.e., electrodes that
do not require gel. Although these efforts have produced
encouraging results indicating the feasibility of dry electrodes
(e.g., Fonseca et al., 2007; Luo and Sullivan, 2010; Popescu et al.,
2007; see also chapter 6, in this volume), there is at present no
robust and widely available dry electrode for EEG recording.
Researchers are also investigating water-based electrodes, which
will simplify EEG setup and clean-up (Volosyak et al., 2010).

The impedance of the skin-electrode junction is called the
electrode impedance. It is the opposition to alternating current
and is measured in units of ohms (Q). This impedance between
the scalp and the electrode is one of the most important factors
determining the quality and stability of EEG recordings. The
conducting electrode gel placed between the electrode and the
scalp decreases the impedance and allows current to travel
more easily from the scalp to the sensor. Impedance is mea-
sured between two electrodes placed on the scalp. That is, for
so-called monopolar recordings, it may be measured between
the so-called signal electrode and the so-called reference
electrode, between a pair of signal electrodes (for so-called
bipolar recordings), or between one signal electrode and all the
others. The impedance is frequency dependent. The specific
frequency used to define the impedance of a system varies
from one manufacturer to another but is typically in the range
of around 20 Hz. The impedance depends on the surface area
of the electrodes, the condition and preparation of the skin, the
properties of the gel, and the amount of time that has lapsed
since electrode placement. Sometimes the skin is slightly
abraded (e.g., with an abrasive electrode paste or a blunt
needle) to decrease impedance. Electrode gels containing NaCl
in concentrations of 5-10% can also help in reducing imped-
ance. For good EEG recording, the impedance should be below
5000 Q) (Fisch and Spehlmann, 1999).

EEG Electrode Placement and

Signal Characteristics

The maintenance of secure and stable electrode placement
on the scalp is one of the most critical requirements in
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EEG electrodes

ECoG electrodes

Microelectrodes

Figure 9.2 Different BCI recording modalities. EEG electrodes, ECoG
electrodes, and intracortical microelectrodes are placed in different locations.
(Modified from Leuthardt et al., 2006b.)

EEG recording. Along with high impedance, unstable place-
ment is one of the most common causes of poor or artifact-
laden EEG recordings. Many research and clinical groups use
commercially available electrode caps (e.g., Electro-Cap
International, Eaton, OH; g.tec, Graz, Austria), which allow for
fast and accurately positioned placement of the electrodes.
Most caps use the standard International 10-20 system of elec-
trode placement (see chapter 6 and Klem et al., 1999) or an
extended version of that system (Oostenveld and Praamstra,
2001; Sharbrough et al., 1991). Many caps come with built-in
electrodes at fixed locations, as shown in figure 9.3, right, but
have the disadvantage of the inflexibility of the montage and
the difficulty of replacing an electrode in case of failure. Other
caps (fig. 9.3, left) have many locations into which the indi-
vidual electrodes must be screwed. The advantage of these caps
is that many different montages can be implemented, individ-
ual electrodes can be easily replaced in the event of failure, and
electrode height can be adjusted as needed to reduce imped-
ance; on the other hand, each electrode must be inserted or
removed independently, and the wires must be brought
together and properly handled so as to minimize environmen-
tal noise and movement artifacts.

Figure 9.3 (Right) Electrode cap with built-in electrodes giving a specific montage.
(Left) Electrode cap with many sites for individual screwed-in electrodes.
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EEG signals typically have an amplitude of 10-20 uV, a
spatial resolution on the scale of centimeters, and a bandwidth
of 0-70 Hz (i.e., they record signals in this frequency range).
These relatively poor signal characteristics are the result of
volume conduction through the tissue between the brain and
the electrode. As the EEG signals pass through the dura, fluids,
skull, and skin, the signals spread and blur. Furthermore, the
tissue acts as a low-pass filter, attenuating fast high-frequency
components of the signal. Therefore, EEG can provide infor-
mation only about the electrical activity of the brain over large,
highly synchronous areas.

ELECTROCORTICOGRAM

Introduction to ECoG
The electrocorticogram (ECoG) is recorded from electrodes
that are surgically implanted below the skull. The electrodes
are placed either above the dura (i.e., epidural) or below the
dura (i.e., subdural). Because placement of the electrodes
requires surgery, ECoG recording in humans is typically
accomplished by recording from patients who have such elec-
trodes implanted for short periods (up to 1-2 weeks) for clini-
cal-evaluation reasons. These are usually people who are under
evaluation for surgery for epilepsy or tumor abatement and
who are interested in participating in a research protocol. Since
this population is limited, many fewer subjects are available for
BCI studies with ECoG than with EEG.

ECoG Electrode Design

ECoG electrodes used in humans are typically made of
platinum, silver, or stainless steel and are available in strip or
grid configurations (e.g., 64 electrodes arranged in an 8 x 8
array; see fig. 9.1B) (see chapter 15 of this volume). The elec-
trodes in the array are embedded into a thin and flexible silas-
tic sheet. Each exposed recording site is generally about
2-3 mm in diameter, with interelectrode distances of 5-10 mm.
Each individual electrode connects to a ribbon cable that is
several feet long and connects to the amplifier and digitizer.
Several research groups have begun to build ECoG recording
arrays using photolithographic procedures with highly flexible,
biocompatible substrates such as polyimide, and electrode sites
with materials such as platinum (Kim et al., 2007; Rubehn
et al., 2009). Although these new designs have provided very
encouraging results in animal studies, they are not yet approved
for use in humans. Since ECoG arrays include many different
electrode configurations that are chosen based on the clinical
needs of each individual patient, there is little standardization
among the configurations used for ECoG BCI studies.

ECoG Electrode Placement Signal Characteristics

Since ECoG electrodes are implanted in humans for clini-
cal purposes (e.g., for localizing seizure foci and functional
mapping in patients with epilepsy [Crone et al., 1998] or for
continuous stimulation for patients with chronic intractable
pain [Stadler et al., 2010; Tsubokawa et al., 1991]), the clinical
goals for the patient, not the research goals, must always be the
highest priority. Despite the resulting disadvantages, ECoG
recording has many advantages. First, compared to EEG sensors,
ECoG recording sensors are located closer to the sources of the



brain signals recorded. Second, ECoG signals have amplitudes
that are higher than those recorded with EEG (e.g., a maximum
of 50-100 uV for ECoG, compared to 10-20 uV for EEG
[Leuthardt et al., 2004b]). Third, spatial resolution is on the scale
of millimeters, versus the cm scale used for EEG (Freeman et al.,
2000; Slutzky et al., 2010). Finally, ECoG can record a frequency
bandwidth up to at least 250 Hz (Leuthardt et al., 2004a) com-
pared to EEG’s bandwidth maximum of about 70 Hz. It is these
superior characteristics that explain the use of ECoG in preop-
erative evaluation for brain surgery. At the same time, they have
facilitated investigations in BCI research and other areas.

ECoG is typically recorded in a monopolar configuration;
signals are referenced to an electrode located either over a func-
tionally silent area of cortex or placed subdermally (i.e., under the
skin but outside the skull). Because ECoG signals have relatively
large amplitudes and are recorded inside the skull, they are not
very susceptible to noise from sources outside the brain when the
electrodes have a good ground electrode. Moreover, as in EEG
recordings, the reference electrode should be placed in an area in
which voltage is not modulated by the experimental conditions.

INTRACORTICAL RECORDING

Introduction to Intracortical Recording
Microelectrodes surgically implanted within the brain are used
to record extracellular neuronal action potentials (spikes) or
local field potentials (LEPs). These microelectrodes (figs. 9.1 and
9.2) consist of an exposed conductive metallic area placed on an
insulated substrate; both the electrode metal and the insulated
structure can vary based on the fabrication method and experi-
mental application. With a few notable exceptions (e.g.,
Hochberg et al.,, 2006; Kennedy et al., 2004), BCI studies with
this recording technology have been limited to animals (i.e.,
mainly rodents and monkeys). As described in detail in chapter
5, microelectrodes can be fabricated by different procedures and
in different configurations: individual microwires with a distant
reference; twisted wires that produce a tetrode configuration
(Harris et al., 2000); silicon micromachined arrays such as the
Utah array (Nordhausen et al,, 1996) (fig. 9.1C), MEMS-based
silicon arrays such as the Michigan electrode array (Wise et al.,
1970) (fig. 9.1D); and the cone electrode, in which a standard
wire electrode is placed inside a hollow glass cone, into which
cortical neurites grow (Kennedy, 1989). The Utah array and
Michigan electrodes have become widely used for chronic intra-
cortical recordings. Each electrode system has an array of elec-
trodes that varies in geometry, dimension, and electrode count.
The Utah array is designed as a “bed-of-needles,” in which the
recording sites are placed in a 10 x 10 flat plane, and generally
record at a single depth in cortex (see fig. 9.1C). Each electrode
needle is typically 1.2 mm long, with an exposed surface of
50 pum, and approximately 400 um between adjacent needles.
Conversely, the Michigan electrode has recording sites placed
at different depths on one or more probes, allowing recordings
in three dimensions. The Michigan electrode array typically
has at least 16 electrode sites and can have more than 64. The site
spacing and diameters vary depending on the application (e.g.,
whether spikes or LEPs are being recorded).

Intracortical Electrode Design. A wide range of materials
are used for the electrode sites and for the electrode support

structure. Microwire arrays are commonly made of stainless
steel or tungsten. The Utah array uses Teflon™-insulated plati-
num-iridium wires soldered to a silicon micromachined base.
The Michigan electrode array consists of a silicon-substrate
base with gold leads and iridium recording sites deposited by
photolithography. Cone electrodes use an insulated gold wire
placed in a hollow glass cone.

Due to the small dimensions of their exposed recording
areas, microelectrodes have very high impedances—hundreds
of kilohms to several megohms. Thus, the signals are usually
amplified by a preamplifier located as close as possible to the
electrode prior to transmission to the main amplifier. This
reduces environmental noise from the signal (e.g., 60- or 50-Hz
power-line noise and movement artifacts), since the brain
signal is amplified before the noise is introduced.

Intracortical Signal Characteristics

Two of the most important limitations of microelectrode
recordings are the technical demands imposed by the record-
ing and processing from many sites at high bandwidth (e.g.,
25-50 kHz) and the difficulties of establishing and maintaining
recordings from individual neurons over longer periods.

In the recording of action potentials the quality of the
recording is typically assessed by the signal-to-noise ratio
(SNR) (see chapter 7 in this volume), which is the ratio of the
signal amplitude (i.e., the peak-to-peak amplitude of an action
potential) to the noise amplitude (i.e., the background noise).
An acceptable standard deviation of the background noise may
be 10-20 pV, whereas desired action-potential amplitudes are
on the order of 100 uV or more.

AMPLIFIERS

Brain signals have relatively small amplitudes (e.g., 10-20 puV
for EEG; 50-100 pV for ECoG, 1 uV for evoked potentials).
Thus, after they are detected by an electrode, and before they
can be used by a computer in a BCI application, they must first
be amplified (and perhaps filtered) and digitized. Signal ampli-
fication, and (depending on the system design) signal digitiza-
tion, are accomplished by the biosignal amplifier.

The biosignal amplifier must amplify the source signal
without distortion, and it must suppress noise as much as
possible. Amplifiers have either analog outputs or an integrated
analog-to-digital conversion (ADC) unit. When an amplifier is
used for recordings in humans, it must be safe and properly
approved for human use. This is particularly important when
invasive recording methods are used (e.g., in the case of ECoG
and intracortical recordings), since the electrodes make direct
contact with brain tissue and must be electrically isolated from
any power sources.

AMPLIFIER DESIGN
Biosignal amplifiers used for neural recordings are instru-
mentation amplifiers. They are differential amplifiers (i.e.,
measuring a potential difference) and have high-impedance
input buffers and a high common-mode rejection ratio
(CMMR). The CMMR is the measure of how well a differential
amplifier rejects a common signal present on both input leads.

CHAPTER 9. BCl| HARDWARE AND SOFTWARE | 169



A channel consists of a pair of electrodes, and the amplifier
measures the difference in potential between those two elec-
trodes. Ideally, the amplifier should augment only those signals
that differ between the two input electrodes, and it should
attenuate or eliminate the signal components that are common
to both signals. The CMRR is typically between 60 and 110 dB
(i.e., between 99.9% and 99.9997% of a potential that is
common to the two electrodes is eliminated). Additional elec-
tronics applied to individual electrodes before the instrumen-
tation amplifier (e.g., a preamplifier or other filtering) may
introduce different gains on each channel, and therefore reduce
the CMRR of the amplifier.

For EEG recording with 128 electrodes on the scalp, an
amplifier with 128 channels contains 128 inputs for the elec-
trodes, as well as an input for the so-called reference electrode
and an input for the ground. For BCIs, amplifiers with fewer
channels (e.g., 8 or 16) can be used quite effectively. A typical
instrumentation amplifier is shown in figure 9.4. This amplifier
includes a buffering stage and an amplification stage. The buft-
ering stage consists of a high-impedance input buffer that uses
a voltage follower circuit for each signal input. Because this
high impedance allows only an insignificant amount of current
to flow into the amplifier, it prevents a high-resistance source
from being loaded down (i.e., dissipated) (Clark and Webster,
1995). The amplification stage, which follows buffering, ampli-
fies the difference between the two input signals. The equation
for the differential gain of this amplifier is given by:
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In EEG recordings, electrodes are typically placed on the
scalp with 2.5-10 cm between adjacent electrodes, and the
ground electrode is usually placed elsewhere on the head (e.g.,
on the forehead or the mastoid behind the ear). A typical mon-
tage is shown in figure 9.4. All EEG recordings measure the
difference in potential between two electrodes. As already
noted, the convention is to call EEG recording monopolar
when an electrode potential is compared to that of a so-called
reference electrode that is placed at an electrically distant loca-
tion, and to call EEG bipolar when an electrode potential is
compared to that of any one of the other so-called signal elec-
trodes on the head (see chapters 3 and 6 in this volume). In
either case, each channel consists of a pair of electrodes, and
the amplifier measures the difference in potential between
them. Typically, for bipolar recording, EEG amplitude is
5-20 uV depending on the scalp location, interelectrode dis-
tance, and the underlying brain activity. Bipolar recordings are
less sensitive to widespread noise and other artifacts and are
more sensitive to localized brain activity.

In so-called monopolar recordings, all the channels of the
amplifier use as their negative input a common, or reference,
electrode that is often placed on the ear lobe or mastoid (fig.
9.5). The other electrodes are connected to the positive inputs
of the amplifier channels. As in the bipolar montage, the
ground electrode is usually located on the head. Monopolar
EEG recordings typically have amplitudes up to 50 pV.
Monopolar recordings are more sensitive to broadly distrib-
uted EEG activity as well as to widespread noise and other arti-
facts and are less sensitive to localized brain activity.
Nevertheless, monopolar recording has a significant advan-
tage: because all the channels use the same reference, the

Filter ADC ——*“CP3-FC3”

Biosignal Amplifier

R2

R3

Buffering stage Amplification stage
(1X gain) (e.g., 1000X gain)

Figure 9.4 Bipolar EEG channel with amplifier. In this example, the potential difference between electrodes CP3 and FC3 combine to make channel (CP3-FC3).

Electrode FPz is used as the ground. The differential amplifier circuit is also shown.
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Figure 9.5 Electrode montage for monopolar EEG recording. In this example, the electrodes C3, C4, Pz, and Oz are all referenced to a mastoid electrode (TP9).

Electrode FPz is used as the ground. Refer to figure 9-4 for the amplifier circuit.

digitized signals can be used to reconstruct with software any
desired montage. By this means it is possible to focus on EEG
components with particular spatial-distribution characteristics
(e.g., McFarland et al., 1997) (see chapter 7 of this volume for
discussion of spatial filtering).

In most cases, EEG amplifiers can also be used to record
ECoG signals, which have characteristics similar to those
of EEG in terms of bandwidth, amplitude, and impedance
(all within about one order of magnitude of EEG). However,
there are a few important differences. First, ECoG signals, par-
ticularly those used for BCIs, contain high-frequency informa-
tion (e.g., 70-250 Hz) not seen in EEG recordings, which
typically have a low-pass cutoff (see chapter 7) of around 70 Hz
or lower. Therefore, the amplifier filtering must allow high-
frequency signals to pass through unattenuated. Second, the
anti-aliasing filter (see chapter 7) must have a higher low-pass
cutoft and the sampling rate must be high enough to record
high-frequency signals.

Amplifier designs for intracortical recordings also have
specific requirements. First, very high sampling rates are
required by the ADC (>25 kHz), so an appropriate anti-alias-
ing filter must be incorporated. Second, the type of signal being
recorded may affect the required filtering. For example, single-
unit recordings typically remove all low-frequency signals
(e.g., less than 300 Hz), in order to retain only the spike wave-
forms. Because the electrode arrays used for single-unit record-
ings can also record LFPs, the amplifier must be designed
specifically for the type of recorded signal and the application.
However, it is also possible to record the wideband signal, and
then perform digital filtering later in software.

AMPLIFIER REQUIREMENTS
The amplifier input impedance should be much higher than
the electrode impedance (i.e., the impedance of the electrode-
scalp interface). If it is not, the signal will be significantly
attenuated. EEG or ECoG electrode impedance is normally in
the range of 0.10-20 kQ (at 1 kHz). The amplifier input imped-
ance should be at least 100 times larger than this (i.e., at least
several megohms). The amplifier input impedance should be
correspondingly higher for electrodes that have higher imped-
ances, such as microelectrodes for recording from individual
neurons. In such cases preamplifiers with very high input
impedances are often used; the buffering stage in the differen-
tial amplifier shown in figure 9.4 satisfies this requirement.

An important consideration in choosing an amplification
system is the number of channels required. This is determined
in part by the type of signal to be recorded and processed. For
example, eight or fewer channels may be sufficient for EEG
components such as slow waves or P300 evoked responses that
have low spatial frequencies (Birbaumer et al., 2000; Guger
et al., 2003; Krusienski et al., 2006; Pfurtscheller et al, 1997).
The number of channels needed also helps determine the sig-
nal-analysis methods that should be used. For example, algo-
rithms that integrate information from different cortical sites
(e.g., common spatial patterns [CSP]) require more channels
(Guger et al., 2000; McFarland and J. R. Wolpaw, 2003; Ramoser
et al,, 2000). ECoG and neuronal recordings often use 16 to
several hundred channels (Campbell et al., 1989; Leuthardt
et al., 2004a; Rousche et al., 2001). Many modern amplifica-
tion systems provide many channels and high per-channel
sampling rates (e.g., systems made by such vendors as Plexon,

CHAPTER 9. BCl HARDWARE AND SOFTWARE | 171



g.tec, Tucker-Davis Technologies, and Alpha-Omega). At the
same time, the amplitude resolution and dynamic range of the
ADC can have a significant effect on the bandwidth of the sig-
nals recorded. For example, ADCs with 16-bit resolution are
often unable to accurately record DC potentials. In contrast,
ADCs with 24-bit resolution have a sufficient input range to
prevent saturation when presented with large DC potentials,
while they still maintain the resolution for recording small and
fast potential changes. As a result, most 16-bit ADCs have a
high-pass filter applied prior to digitization to remove the DC
offset potential. Therefore, BCIs that use low-frequency waves
should consider whether or not a 16-bit ADC is appropriate.

ANALOG-TO-DIGITAL CONVERSION

The signals that are recorded from the brain are analog signals,
and are normally converted to digital signals before any fur-
ther processing. This analog to digital conversion is called digi-
tization. Digitization is performed by an analog-to-digital
converter (ADC). An ADC digitizes signals from each elec-
trode many times per second; this is called the sampling rate.
For example, an ADC with a sampling rate of 256 Hz acquires
256 samples per second, or one sample every 1/256th of a
second (i.e., one every 4 msec). As discussed in chapter 7, to
accurately acquire and reconstruct the information present in
the signal, the sampling frequency must meet the requirements
of the Nyquist criterion, that is, it must be at least two times
larger than the highest frequency occurring in the signal. If the
Nyquist criterion is not satisfied, that is, if the signal contains
frequency components higher than half the sampling rate, then
the digital signal will be distorted by aliasing (see chapter 7).
When aliasing occurs, digitized signals with frequencies that
are higher than half the sampling rate masquerade as signals of
lower frequency. It is then impossible, in the digital version of
the signal, to distinguish between an aliased signal and an
actual low-frequency signal. In practice, the sampling rate
should be several times higher than the signal of interest, since
the anti-aliasing filter (next section) is not perfect and does not
completely eliminate higher-frequency signals.

FILTERING
Biological signals typically contain a large range of frequencies.
Thus, it is necessary either to digitize them at a very high
sampling rate or to remove nonessential higher-frequency
information with an anti-aliasing filter prior to digitization.
For example, since scalp-recorded EEG signals are largely
limited to frequencies below 100 Hz, higher-frequency activity
in EEG recordings is mainly non-EEG noise (such as electro-
myographic [EMG] activity). This unwanted activity can be
removed by applying an anti-aliasing filter with a corner
frequency (see below) of 100 Hz to the signal prior to digitiza-
tion. The signal can then be safely digitized with a relatively
modest sampling rate of at least 200 Hz. In contrast, neuronal
action potentials contain relevant information at frequencies
up to several kilohertz; thus, the filter frequency range and
sampling rate need to be much higher for neuronal action
potentials than for EEG. In sum, the choice of digitization
parameters is determined by the kind of signals being recorded
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and the frequency-sensitivity characteristics of the sensor
that records them (e.g., EEG electrodes, ECoG electrodes, or
microelectrodes).

In addition to anti-aliasing filters, amplification systems
may incorporate additional analog filters that limit signal
content to specific frequency ranges. Analog filters can be
constructed using resistors, capacitors, and inductors, but
because of the physical size of inductors, most amplifiers
use filters with only resistors and capacitors. These are called
RC filters. RC filters make it possible to block some frequencies
(e.g., frequencies that contain noise) while allowing others to
pass. It is relatively simple to construct them in different con-
figurations and with different resistors and capacitors that
together determine the particular frequencies that are blocked.
The two possible types of RC filter are called low-pass and
high-pass filters. As the names suggest, low-pass filters allow
low frequencies to pass while blocking higher frequencies;
in contrast, high-pass filters allow high frequencies to pass
while blocking lower frequencies (e.g., the direct current [DC]
component of the signal). Low-pass and high-pass filters can
also be combined to create what are called bandpass filters.
When low-pass and high-pass filters are combined to eliminate
a narrow frequency band, they create what are called notch
filters. In contrast to bandpass filters, which let a range of
frequencies pass, notch filters block a range of frequencies
and are often used to suppress interference from 50-Hz or
60-Hz power lines.

It is important to select an analog filter (e.g., Bessel,
Butterworth, or Chebychev designs) with characteristics
appropriate for the signal and the application. Analog filters
are characterized by their order, their corner frequencies, and
their phase (Thomas et al., 2004). A filter’s order is the number
of stages of the filter (i.e., the number of times the filter is
applied in succession). A filter’s corner frequency is the transi-
tion frequency between the passed and blocked range: it is the
frequency at which the signal amplitude is attenuated by 3 dB
compared to the peak amplitude (i.e., it is reduced to 29.3% of
the peak amplitude). A filter’s phase specifies the frequency-
dependent time displacements it produces (i.e., how much it
delays a component of a specific frequency). A higher filter
order is more effective in suppressing unwanted frequencies
but produces larger phase shifts in the signal. Filters with high
orders can also be unstable.

For several reasons it is often advantageous to use analog
filters prior to digitization instead of applying the digital filters
after digitization. First, analog filters are required to prevent
aliasing (i.e., a digital filter cannot be applied to a digital signal
to remove aliasing because aliasing occurs in the digitization
process). Second, digital filters may become unstable due to
the rounding errors of the digital processor. On the other hand,
digital filters do not eliminate the original signal (i.e., it is
always possible to go back to the original unfiltered digitized
data), whereas analog filters (which are incorporated into the
amplification system) do not permit going back to the original
unfiltered data (i.e., the only data available are the filtered data).
Furthermore, it is easy to apply a variety of different digital fil-
ters to the same data and compare the results. Like analog fil-
ters, digital filters can be characterized by their order, corner
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Figure 9.6 Schematic of a typical biosignal amplifier design and relevant artifacts.

frequencies, phase, and type (e.g., Butterworth or Chebychev).
Figure 9.6 shows a typical biosignal amplifier design with its
analog filters.

DIGITIZATION
Once analog signals are appropriately amplified and filtered,
they are digitized by the ADC. The choice of the sampling rate
depends largely on the kind of brain signals being recorded.
EEG signals are often acquired with a sampling frequency of
256 Hz. Typically, analog filtering between 0.5 and 100 Hz
(Guger et al., 2001) is applied, although particular brain signals
may require other filtering ranges. For example, slow-wave
recordings require a high-pass filter with a very low corner
frequency (e.g., 0.01 Hz) (Birbaumer et al., 2000). P300-based
systems may use a 0.1-30 Hz bandpass filter (Sellers et al.,
2006). ECoG recordings are often filtered with a bandpass filter
of about 0.5-500 Hz and then digitized with a sampling
frequency of 1000 Hz (Leuthardt et al., 2004a). Neuronal action
potential (spike) recordings are typically filtered with a
bandpass of 100 Hz to 6 kHz, and digitized at about 40 kHz
(Zhang et al., 1998), because spikes typically have durations of
<1 msec.

In addition to using an appropriate ADC sampling rate, it
is extremely important to ensure that the voltage range and
resolution of the ADC are appropriate for the signal being dig-
itized. Most ADC:s digitize signals using 16-bit, 24-bit, or 32-bit
resolution over some input range (e.g., = 250 mV). The small-
est signal change that the ADC can detect is dependent on the
resolution and the input range:

|4
_ Vrange
‘/res - 2_N
(9.2)

Analog output (low impedance)

where V_is the resolution, V. is the input voltage range, and
N is the number of bits. For example, a 24-bit amplifier with an
input range of + 250 mV can detect signal changes as small as
(i.e., has a resolution of) 500mV/2* =0.03uV, whereas a
16-bit amplifier with the same input range has a resolution of
500mV/2'"® =7.6uV. Conversely, a 16-bit ADC with a resolu-
tion of 0.03 uV would have an input range of only 1.95 mV,
whereas a 32-bit ADC with a resolution of 0.03 pV could
handle an input range of over 127 V. Therefore, an ADC with at
least 24-bit resolution is needed to record signals that include
large slow potentials or DC potentials. It is also important to
note that the theoretical resolution of an ADC can be smaller
than its actual resolution, because the ADC itself can introduce
noise to the signal, and hence the smallest bits are not always a
reliable representation of the signal.

Brain signals recorded with many channels (i.e., many
electrodes) yield a spatial representation of the brain activity. If
brain signals from different channels contribute to an analysis
(as is the case with many BCI analysis techniques), all the
channels should be digitized simultaneously. However, if the
digitization system contains only one ADC that digitizes
signals from different channels in succession, the samples
from different channels are acquired at different times. Several
solutions to this problem are possible: (1) using an amplifier
with simultaneous sample-and-hold, which holds multiple
analog values until the digitizer is ready to read the sample;
(2) sampling at a very high rate so that the discrepancies in
sample times among channels are very small; (3) using a sepa-
rate ADC for each channel and synchronizing their sampling;
(4) interpolating between the successive samples from each
channel to derive the expected values from all channels at
specific time points (e.g., McFarland et al., 1997). When
multiple amplification systems are used, the problem of
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non-simultaneous sampling is greatly exacerbated unless the
systems are synchronized.

ARTIFACTS

Electrical signals recorded from the brain (and EEG signals in
particular) have small amplitudes and thus, despite all precau-
tions, remain highly susceptible to various forms of contami-
nation (fig. 9.6). As discussed in chapter 7, recordings can be
contaminated by biological artifacts (e.g., EMG activity, ECG
activity, EOG activity), electrode or connector artifacts (e.g.,
electrode pops [i.e., unstable tissue contact], movement poten-
tials, DC offsets), electromagnetic interference (e.g., capacitive
or inductive coupling with power lines), and noise inherent to
the amplifier and the digitization process. Each artifact can
affect the biosignals differently over different frequency ranges.
For example, for low-frequency EEG recordings (e.g., <30 Hz),
it may be more important to eliminate wideband EMG artifact
(which can distort the entire signal) and less important to
eliminate 60-Hz noise.

Nevertheless, external electrical sources, especially 50- or
60-Hz alternating current (AC) power lines, are often major
sources of artifacts. Thus, it is important to maximize the dis-
tance of the subject from electronic devices and power cords,
and it may be necessary to use additional shielding around the
subject to reduce noise artifacts. This problem may be particu-
larly difficult in hospital settings or in the homes of people with
severe disabilities due to the frequent nearby presence of equip-
ment such as ventilators. Artifacts can also come from mag-
netic fields. Since this type of artifact depends on the physical
separation between the wires that connect the two electrodes
of each channel to the amplifier, these wires are often twisted
together to reduce the space between them and thereby reduce
artifacts induced by magnetic fields.

Electrode movements can also produce artifacts by chang-
ing the DC offset voltage produced by the metal-electrolyte
and the electrolyte-skin junctions. For example, stainless-steel
electrodes, which have a high electrode impedance, can gener-
ate high DC voltages (from the mV range up to the V range) that
can be larger than the brain signals themselves (e.g., EEG is usu-
ally 5-20 pV at the amplifier input). DC offsets can be reduced
by ensuring that all electrodes are of the same material and
that the same gel is always used. This avoids the polarization

TABLE 9.1 Commonly used hardware interfaces and their properties

between electrodes that can introduce a large DC offset
potential. (The same principle of always using the same
material holds true for any recordings within the brain that
use a reference [e.g., a skull screw].) At the same time, if a DC
voltage is stable and does not saturate the amplifier, it is often
not a significant problem. However, if a DC voltage does satu-
rate the amplifier or if it varies over time, it can be a severe
problem. Such variations are often produced by electrode
movements that affect the electrical properties of the electrode-
tissue interface.

Electrode movements can be minimized in several ways.
silver/silver chloride electrodes are nonpolarizable and thus
have less motion artifact than polarizable electrodes (e.g., plat-
inum) (Bronzino, 2006). In general, the designs and integra-
tion of the EEG electrodes, their cables, and the electrode caps
are all important in minimizing instability at the metal-gel and
gel-skin junction. Movement at the gel-metal junction can be
reduced by having the electrode contact only the gel and not
the skin itself. Movement at the gel-skin junction can be
reduced by preparing the skin with abrasive gel to achieve opti-
mal impedance and by ensuring that the electrode is tightly
fixed in place (e.g., with collodion or a tight cap). In the case of
active electrodes the gel can be used without abrasion. It is also
worthwhile to minimize the possible movement of the cables
that connect the electrodes to the amplifier (e.g., by taping or
otherwise anchoring them to the chair or bed), and to make
the cap, electrodes, and electrode wires as light in weight as
possible. For all recording methods (EEG, ECoG, intracortical
recordings), flexible wires are important to reduce the danger
of traction on the electrodes. Electrode platforms now under
development will include on-chip filtering, amplification, and
digitization, and wireless transmission that can reduce or
remove many of these concerns.

HARDWARE INTERFACES

After digitization, brain signals are communicated to a host
device, most commonly a personal computer, through a hard-
ware interface. The most common interfaces are listed in table
9.1. Even a Bluetooth™ transmitter is not completely wireless,
since it requires connections between the electrode array and
the amplifier and ADC. Its advantage is that it does not tether
the user to a computer and allows freer movement.

INTERFACE DATA RATE (MB/SEC) EASE OF USE AVAILABILITY # CONNECTED DEVICES DISTANCE FROM COMPUTER (M)
RS232 0.25 ++ + 1 <1

Bluetooth 2.0 0.26 ++ ++ 8 <100

uUsB 2.0 60 +++ +++ 127 <10

PCle 2.0 500/lane ++ + 1-4 <1

Firewire 800 100 ++ + 63 <10

Ethernet 25-250 ++ +++ NA <1000
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INTERFACE PROTOCOLS
RS232 was one of the first standardized transmission proto-
cols. Computer serial ports use the RS232 protocol for serial
binary data transmission. It is robust and easy to use, but
its low data transmission rate (or bandwidth) limits it to trans-
mitting relatively few channels and at low rates. Although the
electrical definition of the RS232 interface is standardized,
there are several different RS232 connectors available.

Bluetooth™ is a wireless protocol for transmitting data over
distances of less than 100 m. The mobility provided by this
wireless protocol is a big advantage for biosignal recordings
because subjects can move freely with the recording device.
However, such wireless or mobile systems entail high power
consumption. With current technology, devices can be
designed to work for several days without recharging. Up to
eight Bluetooth™ devices can be connected wirelessly to a single
computer simultaneously. However, the bandwidth is shared
among the devices so that the maximum data rate is divided by
the number of devices.

USB is a serial bus standard for connecting devices to a host
computer. The USB protocol has recently become the de-facto
standard communication protocol for most new devices, replac-
ing other serial and parallel port devices. USB 2.0 provides a
much higher bandwidth than Bluetooth™ or RS232 and therefore
allows more data to be transferred (e.g., higher sampling rates
and/or more channels). The main advantage of USB is that it is
standard in nearly all new computers including laptops. However,
if multiple devices are connected to the same USB hub (a single
hub with multiple ports), the bandwidth is shared among all
devices, thus lowering overall bandwidth for each device.

Firewire is a serial bus interface standard for high-speed
communications that is often used by computers. It is currently
one of the fastest interfaces and has many of the same proper-
ties as the USB protocol. It has some additional technical
advantages. For example, Firewire devices can be connected
sequentially to allow for multiple devices on a single hub.
The new Firewire 800 protocol is 66% faster than the USB 2.0
protocol, but it is not as widespread as the USB standard.

Peripheral component interconnect (PCI) is a bus standard
for internal connection of hardware components, such as a
data-acquisition (DAQ) board. PCI provides very high data-
transfer rates compared to USB, with varying degrees of digital
resolution (e.g., 16, 24, or 32 bits), depending on the board.
New PCI Express interfaces provide even higher data-transfer
rates; this increases the number of channels and/or the sam-
pling rates per channel that are possible. The primary disad-
vantage of PCI is that the PCI card must be installed internally
within the PC. This means that only desktops and laptops that
have PCI slots (most laptops do not) can be used and that the
PC needs to be turned off to install the PCI card. As a result,
PCI-based systems are not as portable as systems that use the
interfaces described above.

Ethernet is a network interface that is available on most
computers. It is capable of very high data-transfer rates. A dis-
advantage of ethernet is that most computers have only one
ethernet port.

To compare the different interfaces described above, it is useful
to compare their transmission capabilities. An RS232-based

interface with a 115-kBit/sec bandwidth allows transmission of
11 channels of 16 bits/sample data (plus one start and stop bit
per byte) at 512 Hz/channel. This might be sufficient for EEG
or limited ECoG recordings but not for spikes. A single USB
2.0-based interface port is capable of transmitting up to 26
channels of 32 bits/sample data at 38.4 kHz/channel, with
guaranteed bandwidth and retransmission if an error occurs.
Finally, a PCI Express 2.0 card is capable of transmitting 8 GB/
sec when using 16 lanes (500 MB/lane), and it can thereby
potentially transmit thousands of channels of 32-bit/sample
data at 40 kHz/channel. Thus, for applications that require high
sampling rates and many channels, PCI Express interfaces may
be the only possible choice.

TRANSMISSION PRINCIPLES

With any of these types of interface, digital data are typically
transferred from the data-acquisition device to the computer
in blocks. The smallest possible block size is one sample, in
which only one sample per channel is transmitted at each time
step. For example, if 64 channels are recorded, each block
would contain a total of 64 samples. However, for the computer
software receiving the data, there is usually a significant com-
putational cost involved in acquiring each block of data, no
matter how large or small it is. This cost often makes it imprac-
tical to use blocks that contain only one sample per channel,
particularly with high sampling rates. For this reason, most
devices transfer data in larger blocks (e.g., 30 samples per
channel). For example, if 64-channel data are collected in
30-msec blocks with a sampling rate of 1000 Hz, 1920 samples
(64 channels x 30 samples) are transmitted in each block. If the
sampling rate is 500 Hz, 960 samples are transmitted in each
block (64 channels x 15 samples).

CLIENT HARDWARE

Biosignals are detected by the electrodes and transmitted to
the amplifier and ADC, where they are filtered and digitized,
respectively. The filtered and digitized data are transmitted to
client hardware (e.g., a PC or dedicated microcontroller). The
client hardware handles several tasks: it controls data acquisi-
tion; it stores the data from the ADC; it processes data to
extract brain-signal features and to translate them into output
commands; and it sends the output commands to the applica-
tion device. Depending on the the BCIs purpose, there
are several options for the client hardware (see table 9.2).
The selection depends on the demands of the planned usage,
specifically those regarding portability, computational power,
and whether or not a standardized operating system (e.g.,
Microsoft Windows) with compatible drivers is required. We
briefly consider the selection of client hardware for a variety of
applications.

For clinical EEG and ECoG BCI applications, it is impor-
tant to have complete BCI systems that are reliable and easy to
operate and that have an adequate sampling rate and number
of channels. In these situations, a portable and wearable data-
acquisition device that can be mounted on a wheelchair or
beside the patient may be particularly desirable. Although
pocket PCs are highly portable, can be switched on rapidly,
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TABLE 9.2 The different client hardware options and their characteristics

PRICE INTERFACES AVAILABLE PERFORMANCE SCREEN PORTABILITY
Laptops - ++ ++ + +
Netbook +++ +/- - - ++
PC +/— +++ +++ +++ -
Pocket PC +/- - - - +++

and can also be easily mounted, they are limited in processing
capabilities and screen size. Since BCI research and develop-
ment often address questions that require more channels,
higher sampling rates, and more demanding real-time
analyses, it is often essential to use powerful, highly flexible
BCI systems. Conventional laptops and PCs are typically more
capable of satisfying the need for many channels, high sam-
pling rates, and high interface bandwidth.

Spike recordings using microelectrodes arrays typically
require much higher sampling frequencies than EEG/ECoG
recordings. Thus, they require very high digitization capabili-
ties and data-transmission rates. A highly capable PC worksta-
tion or dedicated hardware is often the solution adopted in this
situation.

Finally, in accord with the definition of a BCI used through-
out this book, it should be noted that the application hard-
ware itself (e.g., wheelchair, robotic arm, etc.) is not part of the
BCI per se. That is, the BCI is responsible for the tasks of
acquiring brain signals and processing them to generate output
commands. These commands are then implemented by the
application which may (e.g., as in a speller) or may not (e.g., as
with a robotic arm) be physically housed in the computer
that performs the other functions (e.g., signal processing) of
the BCL

FUTURE DIRECTIONS

Future hardware development that would have a major impact
on improving BCI systems includes improvements to sensor
technologies. For EEG electrodes it is desirable that electrodes
can be rapidly applied and that they can function robustly
without gel. Development of practical and robust dry elec-
trodes will be a major step in achieving these goals (see chapter
6 of this volume). For ECoG, one can expect development of
highly flexible ECoG arrays with very high channel counts and
high spatial resolution (see chapter 15 of this volume). For
implantable microelectrode arrays, one can expect further
miniaturization that increases spatial resolution and decreases
damage to brain tissue caused by chronic implantation (see
chapter 5 of this volume).

SOFTWARE

COMPONENTS OF BCI IMPLEMENTATION

While the components of BCI hardware provide the technical
capability to acquire signals from the brain, to analyze them,
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and to produce real-time outputs, it is the BCI software that
determines and coordinates what actually happens. BCI soft-
ware contains four key components:

. Data acquisition, which amplifies, digitizes,
transmits, and stores brain signals

. Signal analysis, which extracts signal features
that represent the user’s intent and translates
these features into commands that embody the
user’s intent

« Output, which uses these commands to control
an output device (e.g., a cursor, an
environmental controller, a wheelchair) and
which provides feedback to the user about the
results of the output

. An operating protocol, which configures and
parameterizes the acquisition, analysis, and
output components and determines the onset,
offset, and timing of operation.

In data acquisition, brain signals are recorded, stored, and
made available for analysis. The parameters that describe this
data acquisition include: the number of signal channels that
are acquired; the signal sampling rate; and the block size (i.e.,
the number of signal samples that are transferred to the signal
processing module in each batch of data). Different BCIs vary
substantially with regard to these parameters. For example, a
BCI for a P300-based clinical application may require acquisi-
tion of 8 channels at a sampling rate of 256 Hz per channel; a
BCI for ECoG research may require acquisition of 128 chan-
nels at a sampling rate of 1000 Hz per channel; and a BCI that
uses a microelectrode array to record from single neurons may
require acquisition of more than 128 channels at 40 kHz per
channel. Many hardware vendors offer software that can
acquire and store brain signals using hardware made by that
vendor (e.g., Neuroscan, EGI, BrainProducts, Plexon, Tucker-
Davis, or Ripple).

In signal analysis, signals acquired from the brain are trans-
ferred into output device commands. This process has two
stages. As described in chapters 7 and 8, the first stage is feature
extraction, which involves the extraction of specific brain-
signal features that reflect the intent of the user. The second
stage is translation in which those features are converted into
device commands. These two stages are realized using a number
of mathematical operations, such as frequency analyses or



spike sorting (for feature extraction), and linear or nonlinear
algorithms (for translation). These two stages can be realized
using software products that address specific requirements
or that can be adapted to a variety of different needs. Several
manufacturers offer software that can extract features (e.g.,
the firing rate) from neuronal activity (e.g., Tucker-Davis,
Cyberkinetics, or Plexon). More general software, capable
of many different analyses, includes Matlab™ (which is the
de-facto standard for signal analysis in a wide range of domains),
LabView™, or the open-source languages Octave (which is
mostly compatible with Matlab) or Python with its numerical
analysis packages.

The output component of the software controls the output
device and conveys appropriate information (i.e., feedback)
about that output to the user. For some applications the output
and the feedback are identical (e.g., a BCI spelling application
that puts its output on a screen in front of the user, or a robotic
arm the movements of which can be seen by the user). In other
applications the output and feedback are different (e.g., an
environmental control application in which the output is a
command for room-temperature change, and the feedback is
an indication of the change that appears on the user’s screen).
All BCIs require some sort of feedback on performance to
achieve and maintain optimal performance. Several capable
commercial software programs can provide feedback via
visual or auditory stimuli (e.g., E-prime, Presentation,
Inquisit, DirectRT, STIM, Cambridge Research VSG, or
Superlab). In some of these packages, the stimuli can be
dependent on external input and thus could be used to provide
feedback in a BCIL.

The operating protocol, discussed in chapter 10 of this
volume, defines the configuration and parameterization of
the data acquisition, signal analysis, and output components
and determines the onset, offset, and timing of operation. Thus,
the operating protocol ties the function of these three individ-
ual components together and ensures that the BCI functions
effectively.

DESIGN PRINCIPLES FOR R&D BCI SOFTWARE

The four key components of the BCI software can be realized
using a large variety of technical approaches. In selecting
among these approaches to build the most useful BCI software,
particularly in the present early stage of BCI research and
development, three criteria must be met:

. The software must satisfy the technical require-
ments of real-time operation. It must encom-
pass the full range of sampling and update
rates, have sufficient speed of analysis, and have
low and reliable output latency.

. The software should allow the efficient
implementation of a broad range of BCI
designs and should facilitate subsequent
modifications. That is, it should be able to
accommodate different types of brain signals,
signal analyses, and outputs.

. The software should readily accommodate
different hardware components and different
operating systems.

SATISFYING THE TECHNICAL REQUIREMENTS FOR

A BCI SYSTEM
This first criterion is itself often very challenging. An effective
BCI must acquire signals from the brain, analyze these signals
to produce output commands, and produce the output (and
associated feedback), and it must do all this in real time with
minimal delays and stable timing. Software that is optimized
for any one of these three steps, such as the programs men-
tioned above (e.g., E-prime, etc.), may not be able to interact
effectively with the other steps in a timely fashion. For exam-
ple, analysis of brain signals during stimulus presentation
requires that the timing of stimulus presentation is known with
respect to the timing of data acquisition. Existing experimental
protocols that integrate signal acquisition with stimulus pre-
sentation often configure stimulus presentation software to
output the timing of stimulus presentation (e.g., to the parallel
port) and then record that output signal along with the brain
signals. Although this approach allows for accurate association
of stimulus timing with brain signal samples, it is substantially
limited in the complexity of the paradigms it can support.
There are several reasons for this. First, each type of event that
needs to be registered in this way requires its own signal chan-
nel (which may reduce the number of brain-signal channels
that can be recorded, if enough synchronous digital input
channels are not available). Second, the hardware that accom-
plishes this requires making new cable connections, and so
forth. Third, there is no record in the data file about the nature
of the events on the different event channels (which impedes
offline interpretation).

ACCOMMODATING MANY DESIGNS AND
SUBSEQUENT MODIFICATIONS
The second criterion is that the software should be able to
implement any specific BCI design and to accommodate sub-
sequent modifications needed. Later modification should be
relatively easy and should not require extensive reprogram-
ming. This is particularly important for BCI studies with
humans since these studies often involve many different kinds
of studies by many different researchers at many different loca-
tions. Nevertheless, this principle has generally not received
the attention it deserves. Successful adherence to this require-
ment depends mainly on the BCI software frameworK’s archi-
tecture (i.e., the flexibility and capacities of the software’s
different components and their interactions), which must be
general enough to accommodate changes in key parameters of
the system. For example, BCI software should not limit a BCI
system to a specific number of signal channels, to a specific
sampling rate, or to specific signal-analysis methods. Although
software with such limitations may perform effectively in spe-
cific configurations, a desired change in the configuration may
necessitate extensive reprogramming of the entire system. It is
often difficult or impossible to assess the flexibility of a given
BCI system by simply evaluating its performance in a specific
configuration.
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ACCOMMODATING DIFFERENT

HARDWARE COMPONENTS AND

DIFFERENT OPERATING SYSTEMS
The third criterion is that the software should readily accom-
modate different hardware components and different operat-
ing systems. This makes it possible and practical for a BCI
systeny’s data collection and data analysis, as well as its further
development, to be performed by different personnel in
different locations with potentially different hardware. System
or experimental development may be performed in one
laboratory using a particular brand of data acquisition hard-
ware, whereas data collection may be performed in a different
laboratory using different hardware. Unfortunately, this prin-
ciple is also rarely considered.

Moreover, the data stored during online operation should
be readily available for analysis by other research groups. It is
an all-too-common practice for data to be stored in a format
specific to a particular study and for essential details of the
study to be stored elsewhere (e.g., notebooks, clinical data-
bases, etc.). This practice hinders or prevents analyses by
others as part of collaborative projects. In contrast, when
data and associated parameters are stored in a standard format
they can be easily accessed and evaluated by many different
investigators. Thus, BCI software that stores all online data
and associated parameters in a standardized format can
greatly facilitate BCI research and development and can also
contribute to the efficient and effective oversight of clinical
applications.

In summary, BCI software must first and foremost imple-
ment a system that, from a technical perspective, functions
properly. In addition, since most research environments
involve different people, a variety of experiments, and some-
times multiple locations (i.e., in BCI research programs
rather than isolated BCI research projects), it is also critical to
build such BCI implementations using a software architecture
that can accommodate the differing parameters of different
BCI paradigms and that can facilitate the interaction and
collaboration of different people. Creating a system with these
demanding characteristics from scratch is complex, difficult,
and thus costly, irrespective of what language or software
environment (e.g., C++ or Matlab™) is used for the implemen-
tation. Thus, as an overall approach, it is desirable to build
BCI systems using general-purpose BCI software that appro-
priately addresses these requirements and that also solves the
issues of complexity, difficulty, and cost associated with system
development.

OVERVIEW OF GENERAL-PURPOSE BCI
RESEARCH SOFTWARE

In the earliest days of BCI development, all laboratories wrote
their own software to handle the specific needs of their respec-
tive BCI applications. Typically, there was little capacity for the
products of one groups efforts (e.g., their software and hard-
ware) to satisfy another group’s needs. Based on the consider-
ations described above, it became clear that this was a needlessly
inefficient approach and that it would be beneficial to try to
develop a general-purpose BCI software platform that could
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implement many different BCI designs, a platform that could
accommodate a wide variety of brain signals, processing meth-
ods, output types, hardware components, operating systems,
and so forth. The goal was to enable researchers to make
changes in their BCI systems easily and without extensive
reprogramming.

Such general-purpose BCI software platforms have been
developed. These platforms include:

. a Matlab/Simulink-based system (Guger et al.,
2001) that has recently been commercialized as
g.BClsys (http://www.gtec.at/products/g.
BClIsys/bci.htm) and intendiX (http://www.
intendix.com/)

. aflexible brain-computer interface described by
Bayliss (2001)

. the BF++ framework (Bianchi et al., 2003)
(http://www.brainterface.com)

. xBCI (http://xbci.sourceforge.net)

. rtsBCI, which is a Matlab/Simulink-based
system that is part of the BioSig package
(Schlogl et al., 2004) (http://biosig.sf.net)

. Pyft, a platform-independent framework to
develop BCI feedback applications in Python
(Venthur and Blankertz, 2008)

. Real-Time Messaging Architecture (RTMA)
(Velliste et al., 2009)

. OpenViBE (Renard et al., 2007)

. BCI2000 (Schalk et al., 2004; Mellinger et al.,
2007; Schalk, 2009; Schalk and Mellinger, 2010;
Wilson and Schalk, 2010)

Of these systems, the only openly available platforms that
have been used in laboratories beyond those that developed
them are OpenViBE and BCI2000. Development of these two
systems is supported by dedicated funding. Thus, these two
projects have the impetus and resources to continue to develop,
maintain, and disseminate the software. Both OpenViBE and
BCI2000 represent general-purpose BCI software platforms
that can also be used for other data acquisition, stimulus pre-
sentation, and brain-monitoring applications. Both platforms
are based on a modular design that is implemented in C++.

OpenViBE can use 10 different data-acquisition devices.
Current realizations support EEG-based one- or two-dimen-
sional BCIs using motor imagery, a P300-based speller, and
real-time visualization of brain activity in two or three dimen-
sions. OpenViBE’s functions are documented for users as well
as developers on a project wiki. A number of published studies
have used OpenViBE (e.g., Lécuyer et al., 2008; Lotte et al.,
2010). OpenViBE is available under the LGPL license at http://
openvibe.inria.fr.

BCI2000 can use more than 18 different data-acquisition
devices and can synchronize them with signals from a variety
of other input devices (e.g., joystick, mouse, keyboard,
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Nintendo Wii controller, Tobii™ eye trackers). It currently sup-
ports BCIs that use EEG signals (e.g., P300, sensorimotor
rhythms, slow cortical potentials), ECoG signals, or local field
potentials, and has a basic capability to support BCIs that use
spikes. Current realizations support three-dimensional cursor
movements, a P300 speller, and a sequential menu-based
speller. It can also provide programmable auditory-visual
stimulation. BCI2000 also comes with a certification proce-
dure to document system timing of any BCI2000 configuration
(Wilson et al., 2010). BCI2000 and its use are described in tuto-
rials and references targeted at users and developers on a proj-
ect wiki and also in a book (Schalk and Mellinger, 2010).
BCI2000 is available free of charge for research and educational
purposes at http://www.bci2000.org.

BCI2000 is based on a general model that consists of four
interconnected modules:

. source (data acquisition and storage)
. signal processing
. application

. operator interface

These modules communicate using a generic protocol based
on TCP/IP, and they can therefore be written using any pro-
gramming language on any operating system. The communi-
cation between and among the modules uses this generic
protocol to transmit all information needed for operation.
Thus, the protocol does not need to be changed if a module is
changed. The distinctive property of this structure is that
changes may be made in one or more of the modules without
necessitating changes to the other modules or to the rules by
which they interact with one another. In addition, the modules
are interchangeable (e.g., any signal acquisition module can be
used with any signal processing module without requiring any
additional programming or configuration). This allows new
acquisition systems, algorithms, and applications to be devel-
oped quickly and integrated into the BCI2000 framework
without the need to worry about re-implementing previously
existing modules.

BCI2000 has had and continues to have a substantial
impact on BCI research. By the end of 2010, it had been
acquired by more than 600 laboratories around the world. It
has provided the basis for studies reported in more than 150
peer-reviewed publications that describe BCIs based on EEG,
ECoG, and MEG recordings. For example, it has been used to
demonstrate cursor control using: EEG (McFarland et al,
2008a, 2008b, 2010; J. R. Wolpaw and McFarland, 2004); ECoG
(Blakely et al., 2009; Felton et al., 2007; Leuthardt et al., 2004a;
Leuthardt et al., 2006a; Miller et al., 2010; Schalk et al., 2008c;
Wilson et al., 2006); and MEG signals (Mellinger et al., 2007).
It was used for control of a humanoid robot by a noninvasive
BCI (Bell et al., 2008) and for exploring the BCI usage of P300
evoked potentials (Furdea et al., 2009; Kiibler et al., 2009;
Nijboer et al., 2008; Sellers et al., 2006, 2010; Townsend et al.,
2010; Vaughan et al., 2006) and steady-state visual evoked
potentials (SSVEP) (Allison et al., 2008). It has been used in a
BCI based on high-resolution EEG techniques (Cincotti et al.,

2008a) and for BCI control of assistive technologies (Cincotti
et al., 2008b). BCI2000 has also provided the basis for the first
extensive clinical evaluations of BCI technology for the needs
of people with severe motor disabilities (Kiibler et al., 2005;
Nijboer et al., 2008; Vaughan et al., 2006) and the first applica-
tion of BCI technology to functional restoration in people after
strokes (Buch et al., 2008; Daly et al., 2009; Wisneski et al.,
2008). Finally, several studies have used BCI2000 for purposes
other than online BCI control (e.g., mapping of cortical func-
tion using ECoG [Brunner et al., 2009; Kubanek et al., 2009;
Leuthardt et al., 2007; Miller et al., 2007a, 2007b; Schalk et al.,
2007, 2008a, 2008b]); the optimization of BCI signal process-
ing routines [Cabrera and Dremstrup, 2008; Royer and He,
2009; Yamawaki et al., 2006]).

In summary, general-purpose BCI software has been effec-
tive in implementing functioning BCI systems, in reducing the
complexity, time, and cost of setting up and maintaining those
BCI systems, and in enabling multisite studies using multiple
acquisition systems and computers.

Although it is able to satisfy the requirements of BCI
research and development programs, general-purpose BCI
software may become superfluous, even cumbersome, in the
future when specific BCI designs are validated and finalized for
clinical use. When this time comes, it may be optimal to imple-
ment a dedicated BCI software system specifically for each
particular purpose. Even in these cases, however, it may be
advantageous to retain such properties as the modularity of
components that are liable to be changed in the future; this
should facilitate the implementation of future modifications
and expansions as well as the continual oversight of system
function.

EVALUATING BClI HARDWARE
AND SOFTWARE

Timing performance is the technical metric of greatest interest
in evaluating the ability of BCI hardware and software to sup-
port an effective BCI system. To work properly, BCI systems
must perform a sequence of tasks that are properly timed and
coordinated. Without proper timing, the BCI will perform
poorly or will fail entirely. The tasks that must be properly
timed include acquisition of the brain signals, storage of these
signals so that they can be processed in blocks, their analysis
(i.e., extracting features and translating them) to produce
output commands, and implementation of these commands by
the application. Moreover, these must be accomplished in a
closed-loop manner by providing feedback of task perfor-
mance to the user. In addition, these steps must be properly
coordinated in real time and they must occur on time. All the
tasks of the BCI that connect the user’s brain signals to the
output device must be accomplished quickly with little or no
variation (jitter) in timing. Thus, in evaluating BCI hardware
and software, timing considerations are critical. The timing
characteristics of a BCI system, and thus its suitability for spe-
cific applications, depend on its individual hardware and soft-
ware components and on the manner in which these components
interact. The principles involved in assessing a BCI’s timing are
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reviewed here (and presented in more detail in Wilson and
Schalk, 2010).

TIMING CHARACTERISTICS OF
A REPRESENTATIVE BCI SYSTEM

LATENCY OVERVIEW
The operation of any BCI can generally be seen as occurring in
three stages: data acquisition; data processing; and output. All
three stages might be controlled by a single program (e.g., a
single Matlab script or C-language program). Alternatively,
they might be controlled by multiple independent programs
that interact with each other via a defined communication
protocol (e.g., a network-aware protocol like BCI2000 or
OpenViBe). By whichever means these three steps are con-
structed, each step requires time and thus entails delay
latencies. If these latencies are too long or too unpredictable,
they can interfere with, or entirely prevent, effective real-time
operation of the BCI system.

Figure 9.7 shows the timeline of events in the operation of
a typical BCI system. It shows the progression of three blocks
of data (blocks N1, N2, and N3) from the arrival of the brain
signals at the amplifier, to production of the BCI output, to the
execution of the BCI's command by the application, with the
times of each successive event marked.

Let us examine the progress of the first block data, N1.
During the period from ¢, to t_, data are collected, and the
ADC amplifies, digitizes, and stores the data in a hardware
buffer where it waits to be transmitted to the PC. The first
sample collected in the block of data stays in the buffer for the
duration of the block (e.g., 30 msec) while it waits for the rest
of the data in the block to be collected, amplified, digitized, and
stored in the buffer. In the figure this process is illustrated in

System latency

. Sample block duration
I

N1

duration
ADC f

the box labeled “ADC?” We will call this period the sample block
duration. Sample block durations are typically several tens of
milliseconds long. A 30-msec data block acquired, for example,
at a sampling rate of 1000 Hz would contain 30 samples per
channel. At ¢ , the digitized data block (block N1) is ready to
be transmitted to the PC. From ¢ | to ¢, (the box labeled “DT”
for data transfer), the data are transmitted to the BCI’'s PC; this
transmission is completed at t, Thus, at ty the data block N1
has been stored in PC memory (RAM) and is ready to be pro-
cessed. From ¢ to t, (the box labeled “SP” for signal process-
ing), the data are processed and translated into a command
that is sent to the application device at ¢, From ¢, to t,, the com-
mand is processed by the application device, which executes
the command at £,

Figure 9.7 also shows the onset and duration of the pro-
gression of the next two sets of data (blocks N2 and N3). Note
that the progression of block N2 is offset from block N1’s pro-
gression by the time period represented by ¢  to ¢ _; thus, while
the N1 block reaches application output at ¢, block N2 reaches
outputat ¢ . If the sample block duration is 30 msec, block N2’s
output occurs 30 msec after N1s.

The latency is the period of time represented by the differ-
ence in two time points. For example, the signal-processing
latency is ¢, minus t,. The magnitude and variability of each
latency depend on the system parameters, as well as on the
capacities of the hardware and software. Effective BCI opera-
tion requires that these latency magnitudes and variabilities
fall within acceptable limits. To understand these latencies
better, we now examine them in more detail.

ADC LATENCY
The time period for acquisition of data for a sample block
is fixed by the BCI protocol. The amplification, digitization,
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Figure 9.7 System timing diagram showing the timeline of events in a typical BCl system. It follows the progress of three blocks of data (N1, N2, and N3) from

the amplifier input to the BCl's application device. Abbreviations: ADC, analog-to-digital converter; DT, data transfer; SP, signal processing; APP, application.

The times (t) that define the latencies of each successive event are marked.
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and storage of the data typically have latencies of <1 usec and
are often in the range of 10 nsec; they are therefore negligible
on the scale of the acquisition duration of a single sample
(i.e., at a sampling rate of 25 kHz one sample is acquired every
40 psec). The exact latency depends on the type of converter
used (e.g., flash, successive-approximation, sample-and-hold,
counter, or tracking ADC, each of which has a different digiti-
zation method, speed, and precision [Tompkins, 1993]). Note
that because data are always transmitted in blocks containing
a certain number of samples, the last sample acquired for a
data block will spend only a minimum time in hardware and
software buffers, whereas the samples acquired earliest will
spend a longer time (approximately ¢ | to ¢ ) in the buffers.

DATA-TRANSFER LATENCY

The data-transfer latency, L is the latency between the time at
which all the data in the block have been acquired, amplified,
digitized, and stored in the buffer (¢  for N1) and the time at
which the data are acquired by the PC software to be available
to the PC software for processing. In figure 9.7, for the NI
block, this is the time from ¢ | to ¢,. Using the times defined in
figure 9.7:

Data Transfer Latency =L, =t,—t_, (9.3)

For amplifiers connected via bandwidth-limited serial
interfaces, the transmission latency may have a measurable
impact on amplifier latency. When using USB 2.0 or PCI card
connections, transmission latency (¢ , to ¢)) may generally be
neglected, as illustrated by the following example. If we assume
acquisition of 16 channels of 24-bit (3-byte) data and transmis-
sion of blocks of eight samples, each block corresponds to 384
bytes of data. At USB 2.0 speed (i.e., a maximum transmission
rate of 60 MB/sec), these data should take approximately
6.4 usec to transfer, which is less than the duration of a single
sample’s acquisition. On the other hand, if the configuration is
changed to 64 channels and a block duration of 100-msec and
is sampled at 4800 Hz (equal to 92,160 bytes), the transmission
time will be approximately 1.5 msec, assuming that transmis-
sion starts instantaneously and without interruption. Because
this is on the time scale of events during the BCI task, it may be
important to take this latency into account.

SIGNAL-PROCESSING LATENCY
The signal-processing latency, L, is defined as the total time
required for the data to be processed, that is, for the signal fea-
tures to be extracted and translated into an output command.
From figure 9.7, this is the time from ¢ to t,):
Processing Latency = Ly, =, —t, (9.4)
The signal-processing latency depends on the complexity
of the processing and on CPU speed. For example, the process-
ing for a cursor-movement application might extract the power
spectrum from every data block, whereas the processing for a
matrix-selection application might extract evoked potential
amplitude. The computational demands of these different fea-
ture extractions may differ considerably. The number of chan-
nels that need to be processed will, of course, also affect

processing time. These factors will help determine the mini-
mum acceptable capacities of the processing hardware and
software. The system must be able to process each block at least
as fast as it is acquired and amplified, digitized, and stored by
the ADC, that is, by the time the next block is ready for pro-
cessing. Thus, the time from t,to t  must be shorter than the
time from ¢ , to t . Otherwise, the BCI will lag progressively
further behind (ie., the time elapsed between brain signal
input and device output will get longer and longer over time),
and BCI performance will degrade.

APPLICATION-OUTPUT LATENCY
The application-output latency, L, ,is defined as the delay from
the time at which the BCI command is issued to the time at
which the application device implements this command. From
figure 9.7, this is the time from ¢, to ¢,:

Application Output Latency =L t,—t

App T (9.5)

The application latency is determined by a number of fac-
tors that depend largely on the nature of the application’s
output. For example, if the output is cursor movement on a
video screen, its latency is affected by the speed of the graphics
card, the type of monitor (e.g., cathode-ray tube [CRT] or
liquid crystal display [LCD]), and the monitor resolution and
refresh rate. If the output is the movement of a robotic arm, the
application output latency depends on the response time of the
robot and the distance to be moved.

SYSTEM LATENCY

The system latency is defined as the minimum time interval
between brain signal input to the ADC and the related change
that this causes in the application output. Recalling that the last
sample in block N1 is collected just before or at ¢_, the system
latency is the time from ¢_ to .. It can be calculated as the sum
of data-transfer, signal-processing, and application latencies:

System Latency = (t, —t_) (9.6)
The system latency jitter is the standard deviation of the system
latencies in a given test and provides a measure of the variabil-
ity in overall system timing.

BLOCK PROCESSING DURATION
The block processing duration is the time interval between suc-
cessive blocks of data that have been transmitted to the PC for
processing. As figure 9.7 shows, N1’s data are presented to the
PC at ¢, whereas N2’s data are presented to the PC at ¢ - Thus:

Block Processing Duration = (t, —t,) 9.7)

Ideally, the block processing duration should be identical
to the sample block duration. However, inconsistencies in
operating-system timing may interrupt and delay data transfer
and/or signal processing, causing the time period between data
blocks to be different from the expected block duration. (This
introduces a jitter; see below.) The block processing jitter is the
standard deviation of equation (9.7) for all block durations in a
single test.
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The block processing duration is the primary indicator of the
systemt’s ability to perform real-time signal processing in a BCI
paradigm. The block processing duration must be no longer
than the sample block duration. If the time required to process
a block of data is longer than the time to acquire the data,
the system will still be processing block N1 when block N2 is
ready to be transferred for signal processing. In a closed-loop
system, this means that the application output and feedback
are progressively delayed. This quickly produces performance
degradation. If this is the case, adjustments must be made (e.g.,
the signal-processing algorithms need to be optimized to increase
performance, or a more powerful signal-processing computer
system must be used, or the task itself must be modified).

TIMING JITTER
All of the latencies described in this chapter have some vari-
ability. This variability is called jitter. Jitter is defined as the
standard deviation of the measured latencies. The jitter is
essentially a measure of the timing consistency of each system
component. For example, the output latency may have a mean
of 10 msec but a jitter of 8 msec, which indicates that there is
much variability in the time required to update the output.
Jitter can potentially have significant effects on the user’s BCI
performance, particularly with stimulus-evoked BCIs such as
the P300 speller in which the evoked-response signal process-
ing depends on the precise timing of the stimulus delivery.

Furthermore, jitter that occurs early in the BCI system
chain of events will affect all later components as well. For
example, a large data transfer jitter will propagate through the
signal-processing and application components and will
increase the variability of output timing.

The sources of jitter depend on the hardware, software, and
operating system used. For example, BCIs running on the
Microsoft Windows operating system must compete with other
system services (e.g., antivirus programs, email programs,
interactions with hardware, and other background programs).
At any time, Windows may decide that another process has a
higher priority than the BCI program and therefore allow the
other process to finish before BCI processing can begin. This
problem can be mitigated by disabling services and other pro-
grams in Windows, by increasing the task priority of the BCI
program, or by using a real-time operating system such as
some versions of Linux. (However, many hardware drivers are
available only for Windows operating systems, in which case
Windows is the only option.)

The timing definitions described here apply to any BCI
system. All systems that record and process brain-signal data
and generate a device command will have some latency between
acquisition of the brain signals and the corresponding action
executed by the application device. This is true regardless of
the nature of the brain signals (e.g., EEG, ECoG, or neuronal
action potentials) or the choice of output device (e.g., a robotic
arm, computer cursor, or a spelling application).

REPRESENTATIVE RESULTS

In this section we describe the timing characteristics of a rep-
resentative test BCI system in terms of the latencies defined
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Figure 9.8 Components of the test BCl validation system: (A) computer running
BCI2000; (B) monitor and optical sensor; (C) stimulus detection trigger box; (D)
TTL outputs from trigger box to amplifier; (E) amplifier; (F) amplifier digital
output to digital input.

above, and address factors that have substantial effects
on timing performance. This representative system uses a
g.USBamp amplifier/digitizer and a g.TRIGbox stimulus-
detection box (both from g.tec Guger Technologies, Graz,
Austria) and the BCI2000 software platform (Schalk et al,
2000). BCI2000 is executed on an 8-core, 2.8-GHz Mac Pro
with 6 GB RAM and an NVIDIA 8800 GTX graphics card.
We tested the system performance with two different opera-
ting systems, Microsoft Windows XP SP3 and Windows Vista
SP1, and two different monitors, a CRT monitor with a refresh
rate of 100 Hz and an LCD monitor with a refresh rate of
60 Hz.

Figure 9.8 shows this test BCI system and the timing evalu-
ation system. The system was controlled by BCI2000 running
on a PC (seen in fig. 9.8A). It repeatedly presented (not shown
in the figure) a white rectangular stimulus on a black back-
ground. The optical sensor (B in fig. 9.8) was placed over the
area of the monitor where the stimulus appeared. The sensor
provided input to the stimulus detection box (C in fig. 9.8).
The threshold levels were set so that changes in video lumines-
cence were properly detected. When the detection box detected
a stimulus, it generated a 250-mV pulse that was recorded by
the amplifier (E). (It is also possible to generate a 5-V pulse,
which can be recorded on a synchronous digital input chan-
nel.) This allowed accurate measurement of the timing of the
stimulus. The data transfer latency was measured by using the
digital input and output lines; immediately following the acqui-
sition of a data block, the digital output line was pulsed and
recorded on a digital input line (F). This pulse appeared in the
next data block after a period of time equal to the block dura-
tion latency, since the next block was already being amplified,
digitized, and stored while the current block was being trans-
mitted to the PC.

Figure 9.9 shows the system latency components during a
cursor movement task as a function of the sampling rate and
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the number of channels. Each latency result is described in
detail here.

DATA-TRANSFER LATENCY

The data-transfer latency (light gray bars in fig. 9.9) varied
with the amount of data transmitted (fig. 9.9, inset panel at
right): when data with more channels or a higher sampling rate
were acquired, more time was required to transmit the data
over the USB 2.0 connection. Nevertheless, this delay was
insignificant compared to the latencies for processing and
output; it was less than 1 msec even for 32 channels sampled at
4800 Hz. Because the data-transfer latency was measured by
analyzing the digitized signals, the resolution of the reported
values was dependent on the sampling rate. Specifically, sam-
pling rates of 512, 1200, 2400, and 4800 Hz correspond to a
timing resolution of 1.95 msec, 0.83 msec, 0.42 msec, and 0.21
msec, respectively. These values are smaller than acquisition of
a single sample at the given rate. As the figure shows, the pro-
cessing latency (dark gray bars) accounted for most of the
overall latency and varied with the amount of data processed.

SIGNAL-PROCESSING LATENCY
The signal-processing latency was significantly (p < 0.001,
ANOVA) influenced by the sampling rate and number of
channels. This is expected, since the signal-processing proce-
dure for the cursor-movement task involves performing a
common-average reference for the entire data block and then
calculating the power spectrum of every channel. Therefore,
larger sample rates or channel counts produced a correspond-
ing increase in the amount of time required to process the data.
This would be the case for any signal-processing algorithm.

It is important to understand how the algorithmic com-
plexity relates to the amount of data processed. That is, it is
usually not reasonable to expect that there will be a linear rela-
tionship between the amount of data to be processed and the
time required to process the data. For example, a simple matrix-
matrix multiplication, as is done when computing a spatial

filter involving combinations of all channels, increases as a
power of three with the number of elements. Thus, doubling the
number of channels will increase the processing time by (2°)
(i.e., by 8 times). Therefore, it is critical to consider the com-
puter’s ability to process even small increases in the amount of
data resulting from more channels or a higher sample rate.

OUTPUT LATENCY
In contrast to the signal-processing latency, the video-output
latency did not depend on the number of channels, sampling
rate, or task (p = 0.67). The mean video-output latency on the
MacPro Windows XP system using a CRT monitor with a
refresh rate of 100 Hz was 5.06 + 3.13 msec. The minimum and
maximum output latencies were 1.33 msec and 11.33 msec,
respectively. Because the current implementations of the
BCI2000 feedback protocols are not synchronized to the
refresh rate of the monitor, the video output latency values
could range from 0 msec (i.e., when the output command was
issued precisely at the monitor refresh) to the inverse of the
refresh rate (i.e., when the output command was issued imme-
diately following a refresh). The latency could be as much as
10 msec at a refresh rate of 100 Hz. The experimental results
corresponded closely to this: 1/(11.33 msec - 1.33 msec) equals
100 Hz. The minimum output latency (1.33 msec) should then
correspond to the latency of the system (operating system and
video card) in processing a graphics command and sending it
to the monitor.

As described, all tests were replicated using an LCD
monitor. In this case, the mean video output latency was
15.22 + 5.31 msec, with a range of 7.29 to 27.16 msec. The
maximum possible refresh rate for this monitor was 60 Hz.
(The mean value is larger for the LCD monitor due to the on
time for liquid crystals, which is the amount of time required
for the crystals to reconfigure and let light pass through when
a current is applied [Stewart, 2006].) The performances of
the CRT and LCD monitors are compared in figure 9.10
which shows that the CRT monitor almost always produces
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substantially smaller output latencies with less variation among
latencies.

Thus, the timing properties of the monitor are important to
consider when designing a BCI system, and the type of moni-
tor selected can have a significant impact on the performance
of the BCI. An LCD monitor, although weighing less and being
more accessible, may not have acceptable performance for all
BCI applications due to its inherent variability in timing.
However, LCD monitor technology is progressing at a fast
pace, and newer monitors are available with 120-Hz refresh
rates and response times of <1 msec.

OPERATING SYSTEM
In addition to the tests described above, all tests were repli-
cated on the same Mac Pro system using Windows Vista
Enterprise instead of Windows XP in order to determine
the effect that the operating system has on the tasks using
otherwise identical hardware and the CRT monitor. There were
no significant measurable differences in the ADC latency or
signal-processing latency between Windows XP and Windows
Vista for any task, sampling rate, or number of channels
(p>0.5).

However, the video-output latencies for Windows Vista
were significantly larger than those for Windows XP (p <0.001)
(fig. 9.11). The mean video-output latency for Windows Vista
was 20.26 + 7.56 msec (with a range from 6.12 msec to
42.39 msec) compared to 5.72 * 1.62 msec (with a range of
1.33 msec to 11.33 msec) with Windows XP. Figure 9.11 shows
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Figure 9.11 Comparison of video output latencies for Windows XP and
Windows Vista.
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the distributions of video-output latencies for Windows XP
and Windows Vista on the Mac Pro. The data suggest that the
timing of stimulus presentation using Vista, at least with this
particular hardware and driver configuration, may be inade-
quate for many BCI applications. It is usually impossible to
observe such timing inconsistencies with the naked eye. The
BCI system running on Windows Vista did not appear to have
different timing characteristics (e.g., stimulus presentation
timing) compared to the Windows XP system. Nevertheless,
our analysis showed that the timing on the Windows Vista
system was far more variable (Wilson and Schalk, 2010). Thus,
unless the actual stimulus delivery time is measured and
taken into account by the BCI, this more variable timing
might impair the performance of BCI systems that depend on
precise stimulus timing, such as those based on P300 evoked
potentials.

This consideration of BCI timing characteristics and our
evaluation of a representative BCI reveal that choices regarding
the system’s monitor and the operating system can have a sub-
stantial effect on the timing performance of the BCI system. In
particular, using Windows Vista and/or an LCD monitor may
reduce the performance of the BCI system due to increased
latencies and jitter in stimulus presentation and due to loss of
the tight temporal relationship between timing of stimulus
presentation and timing of data acquisition. In summary,
determination of the timing of each new system configuration
is very important in evaluating and comparing BCI system
software and hardware.

SUMMARY

This chapter discusses the key components of the hardware
and software currently used in BCI development and describes
evaluation procedures that can help ensure that BCI systems
perform as desired. The section on hardware describes the dif-
ferent types of sensors that detect brain signals, the compo-
nents that amplify and digitize these signals, the interface
hardware that connects different components, and the client
hardware that runs BCI software. These descriptions indicate
that the engineering principles behind BCI hardware are rela-
tively well understood so that the selection and configuration
of BCI hardware can be accomplished by appropriately apply-
ing and integrating current understanding of analog and digi-
tal electronics.

The section on software describes the different components
of BCI software: data acquisition components that record, dig-
itize, and store brain signals; signal analysis components that
extract signal features that represent the user’s intent and that
translate these features into commands that embody the user’s
intent; output components that control the application that
realizes that intent; and the operating protocol that determines
the configuration, parameterization, timing, and oversight of
operation. This section also describes important principles for
designing BCI software and lists currently used software
tools for BCI research. As is the case for implementation of
hardware, the implementation of BCI software follows well-
established principles of software design.



The section on procedures to evaluate hardware and soft-
ware describes the components of the timing characteristics of
a BCI system, procedures to evaluate them, and representative
results. These descriptions indicate that assessment of timing
characteristics is an important issue in BCI development
and that satisfactory results can be achieved with careful
implementation.

In summary, development of BCI hardware and software is
an ongoing endeavor. Its challenges are caused mainly by the
simple fact that the level of standardization in both hardware and
software is not very high despite ongoing efforts in both areas.
An additional major issue is the need for sensors that can acquire
brain signals with high fidelity, reliability, and robustness. It is
anticipated that these hardware challenges can be successfully
addressed and that further software improvements will make
significant contributions to the success of future BCIs.
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10 | BCI OPERATING PROTOCOLS

STEVEN G. MASON, BRENDAN Z. ALLISON, AND JONATHAN R. WOLPAW

revious chapters in this section describe BCI operation
from signal acquisition, through feature extraction and
translation, to output commands, and the hardware and
software that produce it. BCIs do not operate in isolation; they
operate in the world, that is, in an environment. Their environ-
ment has three essential elements: the BCI user; the BCI appli-
cation; and, usually, external support for the BCI. Just as the
individual steps of BCI operation (i.e., signal acquisition, fea-
ture extraction, etc.) interact with each other according to a
protocol (see chapter 9, this volume), each BCI interacts with
its environment according to a protocol. This protocol, speci-
tying how the BCI relates to its environment, is called the BCI’s
operating protocol.
A BCI operating protocol has four key elements. Each can
be stated as a question:

. Who initiates BCI operation: the BCI or the user?

. Who parameterizes the feature extraction and
translation process: the BCI or its external
support?

. Does the BCI tell its application what to do or
how to do it?

« Does the BCI try to recognize its own errors or is
this left entirely to the user or the application?

Taken together, the answers to these questions comprise a
BCT’s operating protocol.

This chapter addresses each of these questions in turn.
Each question has two possible answers, and each answer
defines a particular class of BCI operating protocols. Although
specific BCI protocols may bridge classes (e.g., some aspects of
parameterization might be handled by the BCI and others by
external support), these questions and their answers provide a
framework for understanding operating protocols. The chapter
describes the characteristics, advantages, and disadvantages of
each protocol class, and it provides illustrative examples from
among existing or conceivable BCIs. It concludes with a dis-
cussion of the specialized operating protocols needed for user
training and for research.

THE KEY ELEMENTS OF THE BCI
OPERATING PROTOCOL

HOW IS BCI OPERATION INITIATED?

As is true for anyone who can engage in a particular inten-
tional action, a BCI user is sometimes actively using the BCI

(e.g., using it to communicate with someone) and is at other
times not using the BCI (e.g., is doing something else, sleeping,
daydreaming, etc.):

. 'The state of active BCI use is referred to as
intentional control.

. The state of other activities is referred to as no
intentional control, or more simply, no control.

By this terminology, a person is using the BCI during inten-
tional control and not using the BCI during no control (Mason
et al. 2007; Mason and Birch 2005).

Ideally, BCI use should be as easy and convenient as a per-
son’s muscle-based actions. That is, the person should be able
to operate the BCI in a self-paced mode, in which the BCI is
readily available, and in which the user can perform intentional
control whenever s/he desires (Mason et al. 2006). To allow
such user-paced operation, a BCI must be able to differentiate
reliably between the user’s no-control state and the user’s inten-
tional-control state. This is a difficult requirement. It is difficult
because a wide range of brain activity signals might correspond
to no control, and the BCI must be able to recognize all of them
as indicating the no-control state. If the BCI is unable to accu-
rately distinguish between no control and intentional control,
brain activity during no control will sometimes be translated
into unintended actions. This problem of sending an unin-
tended message or command has been called the “Midas Touch
Problem,” after the greedy king who wished that everything he
touched would turn to gold, then accidentally turned his
daughter into gold (Moore 2003). For many BCI applications,
even a small number of such false-positive errors could make
BCI use very frustrating and possibly impractical. For other
BCI applications, it could even be hazardous: if, for example,
the BCI controlled a motorized wheelchair on the sidewalk
next to a busy city street.

At present, BCI operating protocols address the need to
avoid unintended actions during a no-control state in one of
two ways: through synchronous protocols that limit BCI actions
to times when the user can safely be assumed to be in the
intentional-control state; and, alternatively, through self-paced
(or asynchronous) protocols that are able to distinguish
satisfactorily between the no-control state and the intentional-
control state.

SYNCHRONOUS PROTOCOLS
A synchronous protocol limits the times during which the
BCI will actually convert the user’s brain activity into action
(Mason and Birch 2005; Miiller-Putz et al. 2006). One kind of
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Figure 10.1 (A) A synchronous operating protocol. Shading indicates the times when the BCl is available for control, and hatching indicates the times when
the BCl expects the user to be providing control commands. The arrows indicate the cues provided by the BCI prior to the onset of the BCl usage periods.

(B) A self-paced (also called asynchronous) operating protocol. The continuous shading indicates that the BCl is always available to the user. The hatched
rectangles indicate periods of intentional control that are initiated by the user and recognized by the BCI. The time periods between hatching are periods

of no control.

synchronous protocol gives the user a specific sensory stimu-
lus and analyzes the brain activity that occurs during a fixed
period immediately afterward. The BCI converts brain signals
into output only during that poststimulus period. In this way,
the protocol limits and specifies the times when the BCI
will convert brain activity into action. Alternatively, the
protocol might provide cues, such as a “get-ready” indicator
to inform the user of an impending period of expected inten-
tional control. Synchronous BCI operation is depicted in
figure 10.1A.

One common type of synchronous BCI is a P300 speller
discussed in detail in chapter 12, this volume. The user views a
matrix containing letters and/or other items. Each row or
column of the matrix flashes in succession, and the subject
notes (e.g., counts) each flash that contains the letter that s/he
wants to communicate. The resulting brain activity can be used
to identify which row and column contain the desired letter
and thus allows the user to spell with brain activity (Farwell
and Donchin 1988; Sellers et al. 2006; Vaughan et al. 2006; Jin
et al. 2010). This BCI is synchronous because the output is
based on the user’s responses to stimuli (i.e., flashes) presented
on a schedule determined by the BCIL.

In a second type of synchronous BCI, users spell by imag-
ining different types of movements. Brain-imaging techniques
can determine which kind of movement imagery a person is
performing. For example, users might think about moving the
left hand, right hand, feet, or other areas and thereby direct a
cursor or arrow to select a particular letter (Wolpaw et al. 2003;
Scherer et al. 2004; Pfurtscheller et al. 2006; Miiller et al. 2008).
Such a BCI is synchronous because users must imagine the
movements at specific times. One drawback to these synchro-
nous protocols is that the BCI expects intentional control when
it gives the prompt, and if the user does not respond with
appropriate brain activity during the specified period, the
result may be an undesired action. The two synchronous BCI
approaches described above typically do not even consider the
possibility that the user does not intend to use the BCI at the
specified time. Hence, such BCIs will always identify one of
the possible items as the target (or will identify a direction for
cursor movement, etc.), which will of course be a mistake if the
user does not intend any control. In addition, the user may find
that a synchronous protocol, in which the BCI specifies the
times of operation, is awkward and unnatural for many real-
world tasks.
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SELF-PACED PROTOCOLS
The alternative to a synchronous protocol is a self-paced proto-
col (also referred to as an asynchronous protocol). A self-paced
protocol distinguishes between no-control and intentional-
control states. This mode of operation is depicted in
figure 10.1B. It allows a person to use the BCI whenever s/he
desires. Self-paced protocols can yield more natural and
dynamic interactions between the user and BCI, but they are
much more challenging to develop. Initial efforts to develop
reliable self-paced protocols have had some success, but they
are not yet suitable for general use outside the laboratory.

Self-paced steady-state visual evoked potential-based
(SSVEP-based) BCI designs have been described in several
studies (Trejo et al. 2006; Allison et al. 2010). To produce a BCI
output, the user focuses on one of a set of rapidly flickering
lights each of which represents a different possible output.
Whenever the BCI detects a significant increase in EEG
activity at the same frequency as one of the flickering targets, it
implements the command associated with that target. Thus,
users can move a cursor to spell, select numbers, or perform
other tasks by focusing on a target whenever they wish. If the
user is doing something other than using the BCI and is not
attending to any of the flickering targets, then there is no
increase in the activity associated with any of the targets, and
the BCI does not produce outputs. (See chapter 14 for further
discussion of such SSVEP-based BClIs.)

Self-paced BCIs can rely on motor imagery as well. Some
BClIs allow users to navigate through a virtual environment
(Leeb et al. 2007; Scherer et al. 2008) by imagining movements
at any time. If the BCI detects the EEG activity associated with
one of several specific mental tasks (such as imagining left-
hand movement), then that activity is translated into a particu-
lar command.

COMBINED SYNCHRONOUS

AND SELF-PACED PROTOCOLS
It is certainly also possible to design BCIs that combine self-
paced and synchronous protocols. For example, the BCI might
remain in an inactive standby mode until the user produces a
specific sequence of sensorimotor rhythm amplitudes (or some
other brain activity) that rarely if ever occurs by chance and
that can serve as a reliable self-paced key to activate the BCI.
The activated BCI might then operate under a synchronous
protocol to support intentional control until the user produces



another (or the same) self-paced key to return the BCI to the
standby mode.

For example, one recently developed system allows users to
turn an SSVEP BCI on or off by imagining foot movement
(Pfurtscheller et al. 2010). Other types of such semisynchro-
nous BCIs might facilitate more flexible operation. They might
use contextual cues to interpret user requests and thus allow
users to perform different tasks with the same signal. For
example, if a user imagines foot movement while playing a vir-
tual soccer game, the system might perform different actions
based on the game state. The avatar might run forward if the
ball is far away, or kick the ball if it is nearby, or the BCI might
switch to a strictly synchronous mode for a special action such
as a penalty kick. BCIs that combine users’ commands with
other relevant information to produce appropriate outputs
should become increasingly common and capable as BCIs are
integrated with ambient intelligence and context-aware sys-
tems (Allison 2009; Millan et al. 2010).

CURRENT USE OF SYNCHRONOUS

AND SELF-PACED PROTOCOLS
At present, the realization of reliable, fully self-paced BCI pro-
tocols remains one of the most difficult and important prob-
lems confronting the development of BClIs that are suitable for
widespread use outside the laboratory. Until such protocols are
further developed and validated in online testing, synchronous
protocols can certainly serve in simple BCI communication
systems for people who cannot use conventional (i.e., muscle-
based) assistive communication devices (e.g., Vaughan et al.
2006; Kiibler and Birbaumer 2008; Nijboer et al. 2010; Sellers
et al. 2010).

HOW IS THE FEATURE-EXTRACTION AND
TRANSLATION PROCESS PARAMETERIZED?

In the feature extraction and translation operations, the BCI
extracts specific features from the brain signals and uses them
as independent variables in calculations that produce depen-
dent variables (i.e., the commands that go to the application).
The parameters of these operations specify how often they
occur, which features are extracted, how they are extracted,
and the forms and constants of the equations that translate the
extracted features into the dependent variables. Appropriate
parameter selection, or parameterization, is obviously essential
for effective BCI performance. Parameters vary widely among
BClIs as a function of signal type and of the methods used for
feature extraction and translation. Nevertheless, BCI operating
protocols can be broadly grouped into two categories:

. preparameterized protocols

. self-parameterized protocols.

PREPARAMETERIZED PROTOCOLS
Preparameterized BCI protocols use fixed parameters that have
been selected for the BCI. For example, a BCI might be param-
eterized from the results of an initial session in which the user
is asked to imagine a specific set of actions. Analysis of the

brain signals associated with the imagined actions can yield an
optimal set of parameters for translating the user’s brain activ-
ity into the specific application commands linked to the
specific imagined actions (Pfurtscheller et al. 2006; Trejo et al.
2006; Miiller et al. 2008). These protocols are most suited for
limited single-time BCI studies in which a single prestudy
parameterization is sufficient (Allison et al. 2010). In contrast,
in real-life use, it would be typical for a BCI to be used repeat-
edly over many days or more, and it is thus likely that periodic
repetitions of the preparameterization procedure would be
needed (Nijboer et al. 2010). On the other hand, some BCI sys-
tems can function well for prolonged periods with the same set
of parameters (Sellers et al. 2006).

SELF-PARAMETERIZED PROTOCOLS
Self-parameterized (also called adaptive) BCI protocols select
and modify their own parameters. They might do this through
periodic automated procedures. For example, a P300 BCI used
for word-processing could periodically conduct a brief auto-
mated copy-spelling session in which the user is given a
number of letters (i.e., target letters) to select from a matrix.
Analysis of the responses evoked by target versus nontarget let-
ters would yield an updated set of parameters for translating
the user’s brain activity into letter selection. Alternatively, a
BCI might incorporate continuing parameter updating into its
standard operation. For example, a sensorimotor rhythm
(SMR)-based BCI might continually adjust the constants in
the equations that convert SMR amplitudes into cursor move-
ments by making simple assumptions about average intent
over past movements (e.g., that, on the average, the user
intended to move right as often as s/he intended to move left).

Because self-parameterized BCI protocols can adjust (at
least in theory, see chapter 8, this volume) to spontaneous and
adaptive changes in the user’s brain signals, they are generally
preferable in BCIs for everyday use. They will undoubtedly
become more common as BCI research and development
evolve. During this transition time, many, indeed most, proto-
cols are and will continue to be partially self-parameterized in
that they select and/or update some parameters on their own
and receive the remainder from elsewhere (e.g., from proce-
dures conducted by technical support personnel or research-
ers). For example, in the SMR-based BCI system described in
Wolpaw and McFarland (2004), the features used are selected
by the experimenters while the weights assigned to those fea-
tures are continually updated by the BCI itself. In a recent
long-term study of SMR-based and P300-based BCI usage, key
parameters were updated automatically, and, in addition, some
parameters were modified as needed by the experimenters
(Nijboer et al. 2010).

DOES THE BCI TELL ITS APPLICATION
WHAT TO DO OR HOW TO DO IT?

After recording brain signals, a BCI performs two operations.
First, it extracts signal features such as the power in specific
frequency bands or the firing rates of specific neurons. Then,
it translates these features into commands that operate an
application (also called a device) such as a word-processing
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program, an environmental control unit, a wheelchair, or a
neuroprosthesis. Although all BCIs extract signal features and
translate them into commands, their operating protocols fall
into two classes in terms of the nature of the commands that
they produce (Wolpaw 2007). These two classes are described
and illustrated in chapter 1 of this volume (see also fig. 1.6)
and include:

. goal-selection protocols

. process-control protocols

GOAL-SELECTION PROTOCOLS
In a goal-selection (or simply selection) protocol (also referred
to as a discrete-control protocol), signal features are translated
into specific commands selected from among a finite set of pos-
sible commands: “type the letter E”; “turn the T'V to channel 37;
“pick up the apple”; and so forth. Thus, in a goal-selection proto-
col, each feature-translation operation produces a different com-
mand chosen from among a defined set of discrete commands.

P300-based and SSVEP-based BClIs (see chapters 13 and
15, this volume) illustrate how synchronous or asynchronous
BClIs can rely on goal-selection protocols. In both examples,
the user can select among a set of different goal-selection com-
mands by attending to one item out of a set of choices.

PROCESS-CONTROL PROTOCOLS

In a process-control (or simply process) protocol (also referred
to as a continuous-control or kinematic-control protocol), signal
features are translated into commands that produce the next
step in a process (e.g., movement of a cursor or a wheelchair,
progressive opening and closing of a robotic hand, change in
the force exerted by a neuroprosthesis, etc.). In a process-
control protocol, each feature-translation operation produces
the next step in an ongoing process (e.g., the next movement of
a cursor on a computer screen). For example, the self-paced
BCIs mentioned above (Leeb et al. 2007; Scherer et al. 2008),
which enable users to move through a virtual environment via
imagined movement, rely on process control. So do many
other BClIs, including other SMR-based BCls, single neuron-
based BCIs, and even some P300-based BCls (e.g., Hochberg
et al. 2006; Citi et al. 2008; McFarland et al. 2010).

COMPARISON OF GOAL-SELECTION

AND PROCESS-CONTROL PROTOCOLS
The question of how the BCI converts the user’s intention into
action—by either a goal-selection protocol or a process-control
protocol—focuses exclusively on the nature of the command
that results from the feature translation. From that command
onward, a BCI could serve many different applications in many
different ways. For example, a goal-selection protocol, which is
commonly used for applications such as word-processing,
could also be used to drive a wheelchair if the set of commands
included: “go to the kitchen”; “go to the TV”; and so forth.
Conversely, a process-control protocol, which is commonly
used to move a cursor, could operate a TV if the process moved
the cursor to reach icons that then executed actions such as

“turn TV on,” “select channel 10,” and so forth.
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Furthermore, a particular BCI application might switch
back and forth between process-control and goal-selection
protocols. Thus, a BCI mouse-control application, in which a
process-control protocol moves the cursor to an icon, might
then switch to a goal-selection protocol to decide whether to
select (i.e., click on) that icon or continue on to another icon
(e.g., McFarland et al. 2008). For example, Cherubini et al.
(2008) describe a BCI system that can allow commands in
three modes: single-step, semi-autonomous, or autonomous.
In the single-step mode, the robot moves a fixed short distance
with each movement command, whereas in the semi-autono-
mous mode, each movement command causes the robot to
move a graded distance in one direction, avoiding obstacles
through artificial intelligence. These first two modes are pro-
cess-control protocols. In contrast, in the third mode, the
autonomous mode, each command selects a target from among
a set of targets in a defined environment, and the robot then
moves to the target. This mode is a goal-selection protocol. As
noted at the beginning of this chapter, chapter 11 discusses
applications to which either or both of these two classes of
operating protocols (goal-selection and process-control) might
be applied.

HOW ARE TRANSLATION ERRORS HANDLED?

For a communication or control interface, an error is a failure
to recognize the user’s intent. All such interfaces face the
problem of errors, and BClIs are no exception. A BCI might
mistakenly recognize “Yes” as “No,” “Type an A” as “Type a B,
or “Stay in place” as “Go forward” Furthermore, a BCI that
uses a self-paced operating protocol might commit false-
positive or false-negative errors by mistaking the no-control
state for the intentional-control state or vice versa. That is, the
BCI might produce output when the user does not intend to
use the BCI, or it might not produce output when the user does
intend to use the BCIL. (The former is analogous to a smart-
phone with a touch screen sensing a touch when no touch has
occurred.)

In their present early stage of development, BCIs are par-
ticularly prone to translation errors. The importance of such
errors and the measures taken to eliminate them or minimize
their impact vary widely across BCIs and their applications. In
word-processing applications, for example, misspellings may
be tolerated or easily fixed. On the other hand, in prosthesis
or wheelchair control applications, movement errors may
have severe consequences. Nevertheless, even for an applica-
tion as safe as word-processing, too many errors can make the
BCI very inefficient, unacceptably frustrating, or even entirely
useless.

The need to minimize errors often leads to slower perfor-
mance. In P300-based goal-selection protocols, for example,
it is possible to reduce errors by increasing the number of
stimulus sequences per selection, but performance will conse-
quently be slower. To reduce errors for SMR-based process-
control protocols, the length of the data segment used to
determine each step (e.g., each cursor movement) may be
increased or the size of each step may be decreased, but again
performance will be slower. Thus, the benefits of measures that



reduce errors must be weighed against the concomitant
slowing of performance. In fact, users themselves often have
preferences in this regard, with some preferring fast error-
ridden performance and others preferring slow but accurate
performance.

BCI operating protocols handle errors in one of two ways:

. through error-blind protocols

. through error-detection protocols

ERROR-BLIND PROTOCOLS
In error-blind protocols, the BCI operation does not include
any provision for detecting or correcting errors. Most current
BCI operating protocols fall into this category. These error-
blind protocols do not themselves recognize errors, nor do
they incorporate any measures for dealing with them. Although
they may consider the likelihood of errors in defining param-
eters such as the number of stimulus sequences per selection
(e.g., Jin et al. 2010), they do not include any procedures
for detecting or eliminating errors during BCI use. Rather,
they simply identify the user’s intent through their feature
extraction and translation procedures and send the (hopefully
correct) result to the application.

In these error-blind protocols, error recognition and
correction is left to the user and/or to the application. For
example, in a word-processing application, the user may
recognize mistakes and correct them by backspacing. Or a
wheelchair-movement application might recognize a wall
(or a drop-off) ahead and therefore ignore a “Move forward”
command from the BCI. In both of these examples, the BCI
operating protocol is not responsible for detecting or address-
ing the error. In the first example, the user does this, and in the
second example, the application does.

ERROR-DETECTION PROTOCOLS

In error-detection protocols, the BCI operation includes spe-
cific measures for avoiding, detecting, and/or correcting
errors. BCIs that use error-detection protocols are at present
confined primarily to laboratory settings. These BCIs use the
person’s brain signals not only to recognize intent but also to
detect errors. They may, for example, recognize from the brain
signals that are evoked by the execution of a command whether
or not that command was an error (Schalk et al. 2000; Parra
et al. 2003; Buttfield et al. 2006; Ferrez and Milldn 2008). Or,
they might recognize from signal features simultaneous with
those used to recognize intent that an error is occurring (Bayliss
et al. 2004). Or, perhaps even better, they might use particular
signal features to predict errors ahead of time and then take
appropriate measures (such as not sending the fallacious intent
to the application). For example, Makeig and Jung (1996)
showed that EEG measures could predict up to 10 sec ahead of
time when sonar operators were more likely to make errors
(see other examples in chapter 23, this volume). Although BClIs
that incorporate error correction into their operating protocols
are just beginning to be explored, their development is likely to
become increasingly important as efforts to produce truly
useful BCIs continue to advance.

OPERATING PROTOCOLS FOR USER
TRAINING AND SYSTEM TESTING

The central purpose of BCI systems is to provide communica-
tion and control. BCI operating protocols are designed to serve
this purpose. At the same time, special protocols are often
needed for system parameterization and testing and for user
training. The special protocols that serve these purposes typi-
cally have a distinctive feature: the intent of the user, and thus
the correct output of the BCI, are established ahead of time and
are known to the user, the operator/experimenter, and the BCI.
Protocols of this kind can be called directed-output (or super-
vised learning) protocols, or simply directed protocols. They
allow the actual output of the BCI to be directly compared to
its correct output. Such protocols are often used to parameter-
ize BCI systems. For example, the copy-spelling routines used
to develop or update classifiers for P300-based BCI spelling
applications are directed protocols (e.g., Sellers et al. 2006;
Vaughan et al. 2006; Nijboer et al. 2010) (see chapter 12, this
volume). Comparable routines can be used to parameterize
SMR-based BClIs that rely on specific motor imagery (e.g.,
Scherer et al. 2004; Pfurtscheller et al. 2006; Miiller et al. 2008)
(see chapter 13, this volume) and SSVEP-based BCIs (e.g.,
Trejo et al. 2006) (see chapter 14, this volume).

Furthermore, directed protocols can guide the BCI user
and/or the BCI system in their adaptive interactions that seek
to improve the correspondence between the user’s intent and
the brain-signal features that the system extracts and translates
into output. This guidance function has been particularly
important in the development of SMR-based BCI control of
multidimensional cursor movements (e.g., Wolpaw and
McFarland 2004; McFarland et al. 2010) (see chapter 13, this
volume).

Directed protocols are widely used in BCI research. Indeed,
such protocols produce the data reported in most BCI studies.
These protocols allow the success of different BCI designs, and
of different modifications of specific designs, to be assessed
and compared. Thus, they are essential tools in the develop-
ment and validation of more effective systems (Miiller-Putz
et al. 2006; Pfurtscheller et al. 2006). Furthermore, a self-
parameterized BCI protocol might reparameterize itself peri-
odically by employing a directed-protocol subroutine.

Atthe same time, it is important to understand that directed
protocols only approximate real-life protocols in which the
user alone specifies the intent to be translated into device com-
mands. Although the approximation is often close, this is not
necessarily always true. One major concern is that the user’s
brain activity may be substantially different for directed and
real-life protocols. This issue may reduce the confidence with
which the results obtained with a directed protocol can be
extrapolated to real-life BCI operation.

SUMMARY

A BCI operates in an environment that includes the BCI user,
the BCI application, and, usually, external support for the BCL
It interacts with this environment according to an operating
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protocol. BCI operating protocols can be characterized in terms
of four fundamental questions, each of which has two possible
answers.

The first question is: How is BCI operation initiated? In
synchronous protocols, the BCI initiates its own operation. In
self-paced (or asynchronous) protocols, the user’s brain signals
initiate BCI operation. Synchronous protocols are simpler to
develop. However, self-paced protocols may provide more
natural and convenient communication and control. The BCI
systems now being introduced into clinical use have synchro-
nous protocols, whereas self-paced protocols are an area of
increasing research interest.

The second question is: Into what does the BCI convert
the user’s brain signals? In a goal-selection protocol, each
feature translation operation produces a command that is
selected from among a finite set of possible commands (e.g.,
the letters of the alphabet). In a process-control protocol, each
feature translation operation produces a command that is
the next value in an ongoing process (e.g., the movement of
a cursor).

The third question is: How is the feature-extraction and
translation process parameterized? Preparameterized protocols
use fixed parameters that have been provided to the BCL
Self-parameterized protocols select and modify their own
parameters, either continually during the course of their
normal operation or through periodic automated procedures.
Although preparameterized protocols are simpler to develop,
self-parameterized protocols are generally more suitable for
long-term usage. Many current BCIs use protocols that are
partially preparameterized and partially self-parameterized.

The fourth question is: How are errors handled? Error-
blind protocols do not themselves recognize errors, nor do they
incorporate any measures for dealing with them; error han-
dling is left to the user and/or to the application. In contrast,
error-detection protocols use the person’s brain signals not only
to recognize intent, but also to detect errors. Error-detection
protocols are just beginning to be developed and they are likely
to become increasingly important.

Finally, BCI training and testing rely heavily on special
directed protocols in which the correct output is established
ahead of time. These protocols are used to parameterize BCI
systems, and they are essential for the laboratory development
and optimization of better systems. They can also guide the
BCI user and the BCI system in optimizing the BCT’s recogni-
tion and implementation of the user’s intent. At the same time,
directed protocols may not provide perfect guidance to how
BCIs will function in real-life operation when the user alone
determines the correct output.
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11 | BCI APPLICATIONS

JANE E. HUGGINS AND DEBRA ZEITLIN

he ultimate practical goal of most brain-computer inter-

faces (BClIs) is to operate devices that provide communi-

cation or control capacities to people with severe
disabilities. The device operated by a BCI is referred to as its
application. The application is not part of the BCI. It receives
the BCI’s output commands, and it converts these commands
into useful actions, thus making the BCI and the application
together into a potentially powerful assistive device. Without a
useful application, a BCI is an interesting research endeavor or
conversation novelty of no practical value. Thus, a BCI’s appli-
cations are crucial to its utility and to its subsequent clinical
and commercial success.

Hypothetical BCI applications, as presented in science fic-
tion books and films, range from living in alternate realities
(e.g., The Matrix, Warner Bros. Pictures 1999), to enhancing
human abilities (Gibson 1984), to becoming a spaceship
(McCaftrey 1969). Even in the scientific literature BCI studies
have sometimes looked toward goals of these types as eventual
future applications (e.g., Vidal 1973). The appeal of BCIs as
mainstream technologies, or at least as mainstream toys, is
apparent from the appearance in the news and at trade shows
of games or game controllers that claim brain signals as their
control source (e.g., Heingartner 2009; Twist 2004; Snider
2009). Advertisements for these products may evoke images of
using brain power to become super-human.

In reality, however, the limited capabilities that true BCIs
can currently provide make them of interest mainly to people
with significant physical impairments. Many people with dis-
abilities already use assistive technology (AT) to provide acces-
sible interfaces with commercial devices that were not designed
with a disabled user in mind. For example, an AT can provide
an alternative interface to an existing technology (e.g., a head-
controlled computer mouse) or it can provide alternative
methods of accomplishing a task (e.g., a wheelchair to provide
mobility). By either means, an AT restores function to people
with significant impairments by providing an alternative
method for task completion. Successful BCIs could signifi-
cantly extend the usefulness of AT and could allow it to serve
people who cannot be adequately served by current AT devices,
all of which depend in some measure on muscle control.

As BCI researchers develop BCIs for everyday use by
people with physical impairments, they should seek the
involvement of experts who are experienced in evaluating and
meeting the needs of people with physical impairments. These
experts include prospective BCI users with personal experi-
ence of disability, as well as medical or AT experts who provide

AT technology to those who need it. The basic principles and
clinical realities that have proven critical to development and
dissemination of conventional (i.e., muscle-based) AT are
equally relevant to BCI-based AT. Thus, they are emphasized
throughout this chapter.

This chapter addresses BCI development and implementa-
tion as an exciting and potentially important new AT area.
It has six major sections. The first section places BCIs in the
context of AT and describes the target users. The second
section examines the types of control schemes (i.e., goal selec-
tion versus process control) for BCI control of AT applications.
The third section considers the kinds of AT applications that
BCIs might operate. The fourth section discusses the most
important factors involved in selecting and providing AT
applications controlled by BCIs. The fifth section describes two
basic approaches to configuring BCI-controlled AT applica-
tions (i.e., BCI/AT versus BCI+AT). Finally, the sixth section
discusses approaches to performance optimization.

BCls IN ASSISTIVE TECHNOLOGY
AND THEIR POTENTIAL USERS

BCls IN ASSISTIVE TECHNOLOGY

An assistive technology (AT) is a device or procedure that
bridges the gap between the physical (or cognitive) abilities of
people with impairments and a function that they want to
perform. For example, a wheelchair provides mobility and
improves function for people who are otherwise unable to
move around in their homes or communities by themselves.
Likewise, a communication device that produces spoken words
can enable those who cannot speak to communicate with
others, either face to face or by telephone.

AT typically uses a person’s remaining functional abilities
to replace lost or missing function. Thus, a manual wheelchair
allows arm function to replace missing leg function, and a
head-controlled computer mouse allows head movement to
replace hand function for mouse operation. AT for cognitive
impairments typically relies on the physical ability to take notes
or to access lists of instructions to overcome memory or other
cognitive limitations. Since BCIs do not require physical move-
ment, they have been proposed mainly for people with severe
physical rather than cognitive impairments. In the future BCIs
might also prove useful to the much larger numbers of people
with less significant impairments who would benefit from an
additional interface option for accessing technology. For example,
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a person who operates a communication system using a switch
activated by muscle activity may find a BCI useful for operat-
ing environmental control of lights, temperature, or an enter-
tainment system. At this time, only one research group appears
to be exploring the use of BCIs to help people with cognitive
impairments (e.g., Hsiao et al. 2008; and see chapter 22 in this
volume).

A BCI might be integrated with an application so that
together they constitute a stand-alone AT device (referred to
here as a BCI/AT device or system) that provides a specific
function (e.g., speaking phrases through a voice simulator).
Alternatively, a BCI might serve as a general-purpose or plug-
and-play interface that replaces standard physical interfaces
(e.g., a joystick or mouse) to operate existing AT applications
(e.g., a power wheelchair, a computer cursor, or a robotic arm).
Such general-purpose or plug-and-play systems will be referred
to in this chapter as BCI + AT devices or systems to distinguish
them from stand-alone BCI/AT systems. Whereas the stand-
alone BCI/AT option is limited to a single application (which it
may perform very well), the plug-and-play BCI + AT option
has more versatility (but may or may not perform as well for
each of its various possible applications).

Throughout the lengthy history of AT research and devel-
opment, numerous AT devices have been created. Most of
these can be easily configured to be controlled by muscle-based
interfaces such as a switch, joystick, keyboard, or computer
mouse. The interface selected is matched to the user’s available
abilities. For example, a wheelchair can be driven by a joystick,
or by a keypad of small switches, or by a switch activated by
breath control. Thus, AT can provide many useful functions
to people who can produce even the simplest muscle activa-
tion. In contrast, BCIs are intended primarily for people who
cannot produce such muscle actions or who cannot produce
them consistently or reliably. If BCIs can provide the same
standard outputs as switches, joysticks, keyboards, and com-
puter mice, they can operate existing AT. A BCI with standard
outputs that could replace a USB keyboard, USB mouse,
joystick, or mechanical switch closure could be used to control
many different devices. Table 11.1 lists some examples of
existing AT devices that might be controlled by a plug-and-
play BCL

As BCIs move toward clinical use to directly benefit people
with physical impairments, their development will benefit
from the input of people trained in AT. AT development and
implementation are areas of rehabilitation engineering that
meld engineering and medical knowledge about disability. AT
is a well-established component of patient care and has a
lengthy history, a large literature, and a corps of trained per-
sonnel who can be of great use to BCI researchers. Working in
conjunction with physicians, physical and occupational thera-
pists, and speech-language pathologists, AT personnel have
experience in evaluating the needs of and current abilities of
people with disabilities and in determining their options for
interfacing with technology. Thus, AT service providers can
assist in designing BCIs to meet the needs of people with phys-
ical impairments, and they are well positioned to compare
BCI performance with that of other options. The Rehabilitation
Engineering and Assistive Technology Society of North
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America (RESNA), founded in 1981 (Cooper et al. 2007),
provides a meeting ground for researchers and clinicians in
this field and can be a good resource for BCI researchers
and developers. Graduate degrees in AT are available from a
number of institutions (www.resna.org; http://www.athenpro.
org/node/124). Further information on the evaluation of the
abilities of people with physical impairments, on the prescrip-
tion of AT, and on comprehensive coverage of AT can be found
in Cook and Hussey (2002).

POTENTIAL USERS OF BCI-OPERATED AT

PEOPLE WITH TOTAL, CLASSICAL, OR

INCOMPLETE LOCKED-IN SYNDROME
The choice of interface to operate an AT depends on the abili-
ties of the user. Interfaces for severely disabled users are usually
driven by body motion, eye-blink, breath, myoelectric activity,
eye gaze, or voice. These modes of device control all require
some degree of muscle activation and usually some actual
physical movement. Such conventional AT interface options
are accessible to anyone who can reliably make one of these or
similar muscular actions. Nevertheless, some people are unable
to produce even the minimal muscle activations needed to
control such conventional AT interfaces.

Given the limited capabilities of current BCIs, one logical
group of potential BCI users consists of people who are
unable to make any voluntary muscle activation and who thus
may be described as having total locked-in syndrome (total LIS)
(i.e., the inability to activate any muscle despite having ade-
quate cognitive function [see chapter 19 in this volume]).
However, it is difficult to assess whether individuals with total
LIS retain adequate levels of higher cortical function and
whether (and when) they are sufficiently alert to operate a BCL.
Moreover, this profound level of immobility may make it dif-
ficult for these individuals to perceive a BCI display and may
limit their ability to observe the output of a BCI's operation.
Such difficulties have not yet been thoroughly addressed in
research studies, and it is as yet unclear whether BCIs can be
useful to people with total LIS. Furthermore, total LIS appears
to be quite rare (although it may sometimes be misdiagnosed
as coma).

Total LIS should be distinguished from the more common
syndromes classical LIS and incomplete LIS (see chapter 19, this
volume). Classical LIS is defined as total immobility, but with
retention of vertical eye movements and blinking as well as
EEG evidence of undisturbed cortical function (Bauer et al.
1979) (see chapter 19, this volume). In contrast to the case for
people with total LIS, people with classical LIS can be assessed
for cognitive capacity and alertness because they usually retain
some limited communication ability (i.e., via eye movements).
People with incomplete LIS retain remnants of voluntary move-
ment, such as a finger twitch. Total LIS, classical LIS, and
incomplete LIS may result from any of a number of disorders
or events, including brainstem stroke, advanced amyotrophic
lateral sclerosis (ALS) (Hayashi and Oppenheimer 2003),
trauma (Bauer et al. 1979; Katz et al. 1992), tumor (Bauer et al.
1979), viral infection (Katz et al. 1992), or severe cerebral palsy
(Neuper et al., 2003) (see chapter 19, this volume).


http://www.athenpro.org/node/124
http://www.athenpro.org/node/124
www.resna.org

TABLE 11.1 Different types of AT devices that could be operated by a BCI using switch, USB-mouse, or USB keyboard interfacing;

short examples of features and performance enhancement features are provided

DEVICE AT SWITCH- MOUSE- KEYBOARD- FEATURE PERFORMANCE
CATEGORIES TYPE BCI TYPE BCI TYPE BCI ENHANCEMENT
FEATURE
Vantage' AAC* C,P** C,P Pictorial based Icon prediction
DynaWrite? AAC C,P C,P Text-based, stand-alone Word prediction,
macros
Imperium? ECS C ECS nested menus
Relax I1* ECS C ECS simple menu
DynaVox Vmax®, AAC, ECS, C C Comprehensive communication, Word/Icon
Prentke Romich ECO2,¢ CA computer access and prediction, stored
Tobii C127 environmental control systems text
with many input methods
Wivik® CA C,P C,P C,P Speech output Word prediction,
macros
WordQ? CA CP Word prediction
DASHER'™ CA C CP Unique time-dependent mouse- | Unique word
based text entry prediction features
REACH Interface AAC, CA C,P C,P C,P Text based, computer based Word prediction,
Author™ Smart key
prediction
Cowriter'2 CA P P Word prediction
PointSmart' CA P Gravity effect
Assistive Mouse CA P Tremor reduction
Adapter'
Smart Mustang M P Line following and
Motorized Wheelchair' obstacle avoidance

" Prentke Romich Company, Wooster, OH.

2 DynaVox Mayer-Johnson, Pittsburgh, PA.

3 Tash, Inc, Richmond, VA.

4 Tash, Inc, Richmond, VA.

> DynaVox Mayer-Johnson, Pittsburgh, PA.

¢ Prentke Romich Company, Wooster, OH.

7 Tobii Technology AB, Danderyd, Sweden.
© Holland Bloorview Kids Rehabilitation Hospital; Toronto, Ontario, Canada.
? GoQ Software, Dover, NH.

'° University of Cambridge, Cambridge, UK.
" Applied Human Factors, Inc., Helotes, TX.
2 Don Johnston Incorporated, Volo, IL.

" Infogrip, Inc, Ventura, CA.

“ Montrose Secam Limited, Iver, Bucks, UK.
5 Smile Rehab Ltd, Newbury, Berkshire, UK.

* AT Categories: AAC—Augmentative and Alternative Communication; ECS—Environmental Control System; CA—Computer Access, M—Mobility (but note associated safety issues).

** “C" indicates appropriate for control by that type of BCI. “P” indicates the presence of potentially beneficial performance enhancement features.

PEOPLE WITH SOME RESIDUAL

MOTOR FUNCTION
From the AT perspective, people with classical LIS or incom-
plete LIS are part of a larger population consisting of people
who have lost all useful muscle function except for very limited
and focal control (e.g., limited eye movements, slight twitches
of a muscle, imprecise control of a head-pointing device). It is
this population, people with very little remaining muscle

function (and especially those whose remaining muscle func-
tion is unreliable or easily fatigued), who are potentially the
greatest beneficiaries of current BCIs. At the same time, because
these people do have some muscle function, BCIs may be com-
peting with a considerable range of conventional muscle-based
AT devices. Thus, although conventional AT cannot help people
with total LIS, it is frequently able to help people who have
minimal movement capability, including those with classical
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LIS or incomplete LIS. For example, residual eye movements
or tiny muscle twitches can be used to operate a switch. In fact,
any trace movement can be used to communicate yes/no
(either through technology or to an observant communication
partner). A simple yes/no response can enable a surprisingly
complex array of communication capabilities when combined
either with technology that fulfills the same purpose or with a
partner who presents options one at a time.

A low-technology but effective method of communication
is manual scan using a communication board that includes let-
ters, common sentences, and/or words. This technology
requires a communication partner who points to each item on
the board and waits for a yes/no response that may be given
with minimal muscle movement (e.g., eye blink or change of
gaze direction) to indicate what the user wants to communi-
cate. The communication partner can speed communication
by guessing at word or sentence completion and getting a yes/
no confirmation on the guess. Although labor-intensive for the
communication partner, this communication method has
proven successful and has been used even for large projects
(the best known being Jean-Dominique Bauby’s writing of his
book The Diving Bell and the Butterfly [Bauby 1997]). Such use
of manual scan with a communication partner can enable
communication, but the reliance on the communication part-
ner may shape or direct the content of the communication. The
user cannot communicate independently; rather, communica-
tion is the product of a duet involving user and partner, and the
speed of communication will depend on the familiarity of the
communication partners and the complexity of the topic. AT
that replaces the need for a communication partner can pro-
vide independence in communication. The restoration of some
measure of independence is often very important and highly
desirable to people with very limited useful muscle control.
(On the other hand, reducing or replacing the need for a com-
munication partner also reduces the immediate social interac-
tion of communication, which the user may also value.)

With appropriate conventional (i.e., muscle-based) AT, a
selection can be made using any muscle contraction or physi-
cal movement of which the user is capable. Options from which
auser selects can be presented as either visual or audio prompts.
The number of functions that an AT user can control with even
a single switch is manifold and is limited only by budget, by the
user’s tolerance for the complexity of the interface and the gen-
erally slow rate of control, and by the support system available
for acquiring, customizing, and maintaining the technology.
Communication rate can be increased by a predictive system
that includes spelling and natural-language semantic predic-
tion of word order. In addition, a communication system can
speak aloud the user’s selections. An AT controlled by a single
switch can also operate an environmental-control system that
allows the user to perform such tasks as turning on the radio or
television, changing channels, and even adjusting the tempera-
ture in the room.

For people with advanced ALS, AT controlled by commer-
cially available systems using eye gaze or a switch operated by
residual muscle activity is currently able to provide communi-
cation, computer access, and control of the environment (e.g.,
Tobii C12, Tobii Technology AB, Danderyd, Sweden; ECO2
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with ECOpoint, Prentke Romich Co., Wooster, OH; DynaVox
EyeMax, DynaVox Mayer-Johnson, Pittsburgh, PA). Such sys-
tems can provide all these functions through touch-screen,
switch-scanning, head-movement, or eye-gaze interfaces. For
many people with advanced ALS, BCIs do not as yet provide
enough additional function to be preferred over these other
methods. However, BCIs should enable them to continue to
communicate as their disease progresses and as their other
(muscle-based) capabilities diminish. Indeed, some people
with ALS have chosen to try a BCI and use it regularly in prep-
aration for their anticipated eventual loss of muscle function.

For the small number of people with total LIS, BCIs may be
the only option. However, for the much larger group of people
who retain minimal muscle function (i.e., those who can use
other AT), BCIs can serve as a useful alternative interface that
may replace a muscle-based interface when muscles fatigue or
become unreliable. Thus, BCIs will compete with other AT
interfaces operated by muscle function. To compete success-
fully, they must provide significant added capability. It is
expected that as research and development advance and gener-
ate more powerful, convenient, and robust BCI systems, these
improved BClIs should become useful for the large number of
people with severe disabilities who are now served by many
different conventional AT interfaces.

THE IMPORTANCE OF A USER-ORIENTED
APPROACH

For BCIs to compete successfully for users both now and in the
future and to provide additional benefits beyond conventional
AT, BCI researchers and developers must employ a user-
oriented approach to system design. Ultimately, the choice
between a muscle-based interface and a BCI will depend on
the capabilities and priorities of individual users as well as
on the speed, accuracy, and convenience that each type of
interface provides.

USER-SELECTED GOALS
In all areas of life, people are generally most successful at, and
most eager to engage in, the activities that they themselves
want to do. Young children may excel at remembering the
names of their favorite dinosaurs but cannot remember the
names of the continents. Adults put off starting tedious proj-
ects. Likewise, people with physical impairments are more
likely to use AT if the task that it enables is one that they value
and desire. Indeed, one of the primary factors responsible for
abandonment of AT is the lack of consideration of the user’s
desires during device (i.e., application) selection (Brown-Triolo
2002). In developing useful BCIs, we must be sure that they
provide people with the applications they want in order to
meet their own personal goals. People with physical impair-
ments are as diverse as those without physical impairments,
and their personalities, goals, and dreams are as varied. The
uses to which they want to put an AT device, whether BCI-
controlled or not, are often surprising and depend on person-
ality, individual life experiences, and desires. Although the
extent of disability is unavoidably a limiting factor, with suffi-
cient motivation and support, many activities are available for



people with significant physical impairments. With appropri-
ate AT, a person with tetraplegia since childhood may still pilot
a sailboat, and someone with a double amputation of the lower
limbs may still engage in downbhill skiing.

A survey of 63 people with ALS showed that, among all
areas of potential AT use, they placed highest priority on com-
munication (Gruis et al., 2011). Thus, it is expected that many
potential BCI users will value communication applications
(e.g., interacting with people directly, reading and writing
emails, accessing the internet, participating in telephone calls).
They may want to have independent control of some form of
entertainment (e.g., television, music, or books). Other users
may most highly value activities such as maintaining current
employment, or writing memoirs, books, or articles. For poten-
tial users whose life expectancy permits long-term goals, the
focus may expand beyond basic computer access and control
of the environment to include educational and vocational
goals. Thus, BCIs and their AT applications should be aimed at
serving these and other purposes important to their users, and
they should be easily configurable to serve the particular goals
of each user.

APPROPRIATE TRAINING AND

SUPPORT STRUCTURE
Successful use of any AT depends on user acceptance. User
acceptance must be accompanied by adequate user training
and by the presence of an appropriate support structure. The
importance of these factors is often not adequately appreciated.
AT devices are frequently provided without any training in
their use. For example, a wheelchair may simply be given to a
persons spouse to take home without basic instructions in how
the user gets in and out or navigates around obstacles. Sometimes
expensive augmentative communication devices are provided or
obtained without provision for training the intended user or
caregiver in how to use the device or customize the vocabulary.
In such cases, the devices may be used very little or not at all.

Although the nature of BCI technology makes the need for
user training obvious, it may be less apparent that caregivers
also need significant training. Caregivers are normally respon-
sible for daily AT setup and routine maintenance, and this is
equally true for BCI-operated AT. A user may have several
caregivers who differ in their levels of technical competence
and comfort. For an EEG-based BCI to be successful, the care-
givers must have basic computer skills and be sufficiently
trained and detail oriented to ensure that electrode placement
and impedance are appropriate and that the electrodes are ade-
quately cleaned on a regular basis. Without attention to such
requirements, successful BCI use is not possible.

Most often, one or two caregivers or family members take
the responsibility for setup and maintenance of an AT.
Therefore, an individual’s routine use of an AT device, whether
operated by a conventional interface or by a BCI, can be
affected by the caregivers’ schedules. Caregiver turnover can
also be an issue, because new caregivers must be trained when-
ever an old caregiver leaves. If a caregiver is unwilling or unable
to perform the routine tasks and to troubleshoot any unex-
pected malfunctions, the caregiver can effectively prevent
successful AT use by even the most eager user.

The support essential for use of AT extends beyond the
physical tasks of setup and equipment maintenance. For face-
to-face conversation, it is generally necessary to have willing
conversation partners who will persevere in the face of the
slow communication rates that BCI-controlled communica-
tion systems typically provide. Such systems will be used only
if the user has good opportunities to talk, people to talk to, and
things to talk about. Thus, family members, friends, and
acquaintances may need to act as enablers who provide oppor-
tunities for use of BCI-controlled AT. Successful use of BCI-
controlled AT therefore requires adequate training not only in
the obvious areas of BCI setup, maintenance, and trouble-
shooting, but also in less obvious areas such as communication
strategies and BCI usage opportunities. AT professionals
experienced in the use of alternative and augmentative com-
munication devices can be a great resource in designing, plan-
ning, and implementing such training so that the BCI succeeds
in improving the user’s quality of life.

CONSIDERATION OF USER ROUTINE

AND PREFERENCES

Setup Time

If a BCI-controlled AT system is to be successfully adopted
as an integral part of a person’s communication and control
strategy, its use must fit within the user’s daily routine. While a
15-20 minute setup time may seem like a small price to pay for
BCI use over many hours, this may be unacceptable in a rou-
tine that may already require up to two hours for basic daily
activities such as bathing, dressing, toileting, taking medicines,
acquiring nutrition (possibly through a feeding tube), transfer-
ring into a wheelchair, and adjusting the seating system
for optimal comfort. For an EEG-based BCI, the ease with
which the electrodes can be applied and removed will be a
consideration, as will any BCI-related additional daily hygiene,
such as washing electrode gel from the hair. For a person in
a wheelchair or for someone who uses a ventilator, washing
out the electrode gel may be a significant challenge, although
a dry shampoo can facilitate this task. (The inconvenience of
the electrode gel is one of the major reasons for the desirability
of dry electrodes; see chapter 6, this volume.) Similarly, for
BCIs that use implanted recording arrays, a requirement
for daily calibration may constitute an impediment to user
acceptance.

Fatigue may also be a factor for users with particular disor-
ders (e.g., people with ALS who often need to rest after com-
pleting their morning routine); any need for additional rest
may increase the perceived cost of BCI setup time. Thus, fac-
tors that can reduce BCI setup time may be of paramount
importance to the successful integration of BCIs into people’s
daily lives.

Appearance

Acceptance of BCI technology may also depend on the
BCT’s appearance. The electrode caps currently used with EEG-
based BClIs are obvious. Whereas some users with few other
interface options may not be concerned about their appear-
ance while using a BCI, others may still consider this an impor-
tant issue. For people with less severe impairments who have a
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wider range of AT options available and who may lead less
sequestered lives, BCI acceptance may depend in considerable
part on their appearance when they are using the BCL

Portability

BCI portability is another often overlooked factor that may
be essential for clinical and commercial success. For some
users, the ability to communicate outside the home may be
exceedingly important. Accurate communication during med-
ical appointments can be a matter oflife and death. Participation
in community activities such as religious services, family sport-
ing events, or hobby clubs may be key factors in an individual’s
quality of life. BCI-based communication outside the confines
of the controlled home environment presents additional chal-
lenges to BCI development because unpredictable environ-
ments can interfere with signal recording (e.g., electrical noise
associated with power lines, elevators, automatic door openers,
and many other devices that may produce recording artifacts;
see chapter 7, this volume). As users come to rely on BCIs as an
extension of themselves and as a primary means of communi-
cation, they will expect to be able to use their BCI systems
wherever they go and with unfamiliar conversation partners.
Thus, BCIs for use outside the home must be portable, must
have a setup time short enough to enable setup after transport,
and must be sufficiently robust to operate reliably in a wide
variety of complex environments.

If BCIs are to move beyond the laboratory and become
useful AT devices for people with significant motor impair-
ments, they must serve each user’s most important purposes,
they must be adequately supported and easily integrated into
the user’s life, and they should be portable and robust enough
to function in a variety of environments.

THE COST OF INADVERTENT ACTIVATIONS

Conventional AT interfaces for people who have extreme func-
tional disabilities are particularly susceptible to inadvertent
device activations (i.e., unintended outputs) because these
interfaces are designed to detect very small movements or tiny
physiological signals that are not typically used for device con-
trol. AT interfaces particularly likely to produce such inadver-
tent activations include pressure switches, accelerometers, and
electromyographic (EMG) switches (activated by the electrical
activity of a muscle). As discussed further in chapter 10, BCIs
too must avoid inadvertent activations.

Inadvertent activations are an important issue because they
are one of the most frequent causes for abandonment of AT
devices. For example, so that they are able to call a nurse inde-
pendently, hospital intensive-care patients may be given a
switch that uses a small motor action such as wrinkling the
forehead if no other voluntary movement is available. If the
switch repeatedly calls the nurse when the patient does not
intend to do so, the staft may decide to remove the device (and
presumably check on the patient more frequently). In this case,
although the patient might be able to learn to perform the fore-
head movements reliably enough to use the switch effectively,
the device would be abandoned before this learning can take
place. (This example also further illustrates the importance of
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caregiver acceptance of an AT device.) Although the issue of
inadvertent activations is of particular importance for BCIs,
it is often overlooked, probably because the devices that most
of us use in our everyday lives are not linked to such small
movements and are therefore not as susceptible to inadvertent
activations.

Each BCI application will have a particular cost associated
with inadvertent activations. For some applications, the conse-
quences are simply annoying or inconvenient (e.g, calling
a nurse or caregiver unnecessarily) or frustrating (e.g, choos-
ing incorrect letters in spelling). For other applications, inad-
vertent activations may place the user or others at risk (e.g,
rolling a wheelchair down a staircase or into another person).
Furthermore, users’ sensitivity to inadvertent activations may
depend on the situation. When actively using a BCI, the user
recognizes personal involvement in errors that occur and may
therefore have a relatively high tolerance for the occasional
inadvertent output. In contrast, during no-control periods (see
chapter 10) (especially those during which a sleep mode of
some sort has been activated in the BCI), the user may be much
less tolerant of inadvertent BCI output because such errors will
be perceived as solely the fault of the BCIL. Furthermore, such
errors may entail an inordinate drain on time and energy for
the user or a caregiver to undo their effects. Reliable avoidance
of such errors may be a key factor in ensuring user (and care-
giver) acceptance of BCI-controlled AT devices.

Avoiding inadvertent activation is particularly critical for a
BClI, because the user is generally always in contact with the
BCI once it is set up. Only a few BCI studies (e.g., Birch et al.
2003) have begun to explore this issue despite its high impor-
tance in practical settings. As discussed in detail in chapter 10,
if the BCI uses an asynchronous operating protocol, it must
determine from brain activity alone whether the user is intend-
ing control or is, instead, engaged in some other task (e.g.,
thinking, composing text, watching TV, sleeping, etc.).

Even for the synchronous BCIs now beginning to be pro-
vided to users, the problem of inadvertent activations remains.
Solutions are cumbersome. For example, in use of a P300-
based keyboard, one approach to minimizing inadvertent
activation is for the user to activate a sleep-mode or pause
function, during which the system recognizes that it should
ignore signals. Once in this sleep mode, the only option avail-
able is to exit the sleep mode; this operation typically requires
the user to activate the “restart” option twice in succession.
A user who wishes to take only a short break to think of the
next word to type may be frustrated by having to make three
selections to do so (i.e., one to stop the BCI and two to restart
it). Accurate automated recognition of a no-control state would
be highly beneficial, especially since such states (e.g., brief day-
dreaming) may occur transiently even when a user is actively
engaged in using the BCI.

CONTROL SCHEMES: MATCHING BCls
WITH APPLICATIONS

The function of a BCI application is to accomplish the user’s
intent (i.e., goal), whether it is to spell letters, to control the



room environment, or to move objects with the hand of a
robotic arm. In developing a BCI for use with a specific appli-
cation, it is essential to ensure that the BCI is compatible with
the application. A particular BCI should be matched with the
application only after considering both the BCI’s characteris-
tics and capabilities (e.g., operating protocol and output type,
system speed, accuracy, reliability) and those of the application
(e.g., its degree of automation, the nature of the action it
produces).
The application’s operation has three principal elements:

. The command that the BCI provides to the
application. This is the output of the BCI and
the input to the application, and it can be either
a goal-selection command or a process-control
command.

. 'The conversion of the BCI's command(s) into
the application’s action. This conversion can be
either direct or indirect.

. The action that the application produces. This is
the output of the application and it
accomplishes the user’s goal. It can be either
discrete or continuous or both.

The options for these elements, with their principal advantages
and disadvantages, are discussed in this section. Appropriate
matching of the BCI to the application is critical for ensuring
that the application’s action accomplishes the user’s intent.

THE BCI'S COMMAND TO THE APPLICATION:
GOAL SELECTION OR PROCESS CONTROL

The output of the BCI is a command that serves as the input to
the application. This command is generally expressed as a spe-
cific voltage. This voltage might have a specific set of possible
values (e.g., -2, -1, 0, +1, +2), or it might be capable of having
any value within a specific range of values (e.g., -5 to +5). (It
should be noted that all outputs provided by digital hardware
are, technically, discrete values; however, their typically high-
resolution [e.g., 16- or 32-bit] ensures that BCI commands
can effectively assume any value.)

The command from the BCI to the application can be in
the form of either goal selection or process control (see chapters
1 and 10 in this volume; see fig. 1.6, this volume). A goal-
selection command simply tells the application what the user’s
goal is (e.g., a voltage of -1, or a voltage that falls between 0 and
-1, might correspond to a particular goal, such as a specific
desired location of the user’s wheelchair). The application’s task
is then to perform the action that achieves the goal. In contrast,
a process-control command does not tell the application what
the goal is; rather, it tells the application what to do to achieve
the goal (e.g., a specific voltage would correspond to a move-
ment of the wheelchair in a specific direction). Figure 11.1
illustrates these two different kinds of BCI commands for an
application that drives a wheelchair. Figure 11.1A shows
nine possible wheelchair destinations, that is, nine possible
goals. The BCI sends a goal-selection command that tells the
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Figure 11.1 Possible control interfaces for driving a wheelchair. (A) A goal-
selection interface provides single selection destinations, but limited options.
It relies on automation for safety and task completion. (B) A process-control
interface provides directional control but requires multiple selections to reach a
destination. It could incorporate automatic hazard detection for safety.

application which destination to go to. Figure 11.1B shows five
possible wheelchair directions (Forward, Backward, Right,
Left, Stop). In this case, the BCI sends a series of process-
control commands that step-by-step move the wheelchair to
the desired destination.

From both the user’s and BCT’s perspective, goal selection
is generally easier than process control because the achieve-
ment of the goal, which may involve complex high-speed inter-
actions (e.g., fig. 1.6 in chapter 1), is handled by the application.
Well-functioning goal selection can provide faster, more natu-
ral control. Indeed, as discussed in chapter 1 of this volume,
goal selection may be more closely aligned to the way in which
the nervous system normally behaves (i.e., motor control is
normally distributed across multiple levels of the CNS rather
than micromanaged by the cortex itself). However, goal selec-
tion may limit the flexibility and usefulness of the application
(e.g., in fig. 11.1A, only nine destinations are possible).
Furthermore, goal-selection may place high demands on the
application device, which is expected to automate the accom-
plishment of the user’s goal. For applications such as robotic
arm control, or even wheelchair movement, sophisticated
high-speed automation is important. Poor automation can
frustrate the user, especially if the automation misses an obvi-
ous solution or is unable to adapt to different circumstances
(e.g., an obstacle necessitating a different movement path).
Poor automation can even be dangerous if it does not recog-
nize important safety concerns (e.g., in piloting a wheelchair
near a staircase).

From the application’s perspective, process control is often
easier than goal selection because the BCI tells it exactly what
to do to achieve the user’s goal. Process control may also be
better able to accommodate a wider variety of goals and may
adapt more easily to different situations or unexpected events
(e.g., an obstacle in the way of a movement, a heavier object to
be lifted). Process control may increase the flexibility of func-
tion and decrease the automation necessary in the application.
On the other hand, it may also require considerably greater
speed and complexity in the BCI’s output, and thus it can
place greater demands on both the user and the BCI. For
example, process control of a robotic arm would require the
user and the BCI to support the complex high-speed multijoint
interactions that goal selection would otherwise delegate to the
application. In practice, applications that combine goal-
selection and process-control commands could be good
options: goal selection commands could allow the application
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to handle basic components of an action, while process-control
commands might be used to provide increased precision
or adaptation to changing circumstances. For example, goal
selection might move the hand of a robotic arm to a specific
location, and process control might control the action the hand
performs (e.g., button push, full hand grasp, thumb-finger
pinch, finger point, etc.).

CONVERTING THE BCI'S COMMAND(S)
INTO THE APPLICATION’'S ACTION:
DIRECT VERSUS INDIRECT

In accord with terminology developed in the AT literature, an
application can convert the BCI's commands into the action
that achieves the user’s goal either directly or indirectly (Cook
and Hussey 2002). In direct selection, a goal-selection command
is converted into the action. In indirect selection, a series of
process-control commands produces the action.

Figure 11.2A illustrates a direct selection. A P300-based BCI
(see chapter 12, this volume) presents the letters of the alphabet
in a matrix and enables the user to choose among them. The
BCI command indicates to the application the letter chosen by
the user, and the application simply displays that letter on the
screen, adds it to a document in progress, and so forth. As illus-
trated here, direct selection can be fast and easy for the user and
the BCI, and thus it is often preferable if it can encompass
an adequate array of possible actions. On the other hand, for
applications such as robotic arm control, direct selection may
entail a high degree of automation in the application.

Figure 11.2B illustrates an indirect selection. To spell a letter,
the user first chooses among three groups of letters, then
among subgroups of the group chosen, and finally among the
letters of the subgroup. Thus, the BCI sends three commands to
the application for each letter that the application produces.
Morse code is an example of indirect selection: a dot or a dash
is itself meaningless, but three dots mean selection of the letter
S and three dashes mean selection of the letter O. A P300-based
BCI can also provide indirect selection when, for example, its
matrix includes icons that lead to new matrices that p